The Role of Associativity and Commutativity in the

Detection and Transformation of Loop-Level Parallelism

*

William M. Pottenger
Department of Computer Science
University of Illinois at Urbana-Champaign
billp@uiuc.edu

Abstract

The study of theoretical and practical issues in auto-
matic parallelization across application and language
boundaries is an appropriate and timely task. In this
paper, we discuss theory and techniques that we have
determined useful in parallelizing recurrences and re-
ductions in computer programs. We present a frame-
work for understanding such parallelism based on an
approach which models loop bodies as coalescing loop
operators. Within this framework we distinguish be-
tween associative coalescing loop operators and asso-
ciative and commutative coalescing loop operators. We
present the result of the application of this theory in a
case study of a modern C*+ semantic retrieval applica-
tion drawn from the digital library field.

1 Introduction

In the course of investigating solutions to recurrences
in loops the desire to develop a recurrence recognition
scheme based on technology more general than pattern-
matching arose. This in turn led to an investigation of
the principle property determining the parallelizability
of certain operations.

Consider, for example, a loop of the following nature!:

do 400 5 = search,neqns
node = perm(j)

*This work is supported in part by Army Contract DABT63-
95-C-0097; Army Contract N66001-97-C-8532; NSF Contract MIP-
9619351; and a Partnership Award from IBM. This work is not nec-
essarily representative of the positions or policies of the Army or
Government.

!This example is drawn from the HPF-2 benchmark cholesky

if (marker(node).lt.0) goto 400
ndeg = deg(node)
if (ndeg.le.thresh) goto 500
if (ndeg.lt.mindeg) mindeg = ndeg
400 continue
500 ...

Here we have conditional expressions guarding up-
dates to scalar variables. This is a classic case of a loop
with reduction semantics. Such patterns commonly oc-
cur in computationally important loops in a wide range
of codes [BDET96].

Many frameworks have been developed for recogniz-
ing parallelism of this nature based on both syntactic
and semantic schemes. All of these frameworks have one
thing in common, however: the enabling factor under-
lying the transformation is the associative nature of the
operation being performed. In this case, for example,
min is an associative operation.

The loop above, however, is slightly different from a
“standard” minimum reduction in that the presence of
a conditional exit in the loop impacts the parallelizing
transformation. When the above code is executed seri-
ally, there is an invariant point in the iteration space
at which the loop will exit. This point may be an
early exit, depending on the conditional if (ndeg .le.
thresh). However, the exit point may not be invariant
when the loop is executed in parallel. To understand the
reasons for this, consider the following (naively) paral-
lelized version of the loop:

doall 400 j = search, neqns
private node, ndeg
node = perm(j)
if (marker(node).lt.0) goto 400
ndeg = deg(node)
if (ndeg.le.thresh) goto 500
critical section
if (ndeg.lt.mindeg) mindeg = ndeg
critical section
400 continue

500 ...

When this code is executed, the iteration space 7 =
search,neqns will be partitioned amongst the p pro-
cessors participating in the computation. However, re-
gardless of the particular partitioning employed, it is
possible that a given processor p; may execute some it-
eration j which is not executed when the computation
is performed serially. If deg(perm(j)) is a global min-
imum across the entire iteration space, the final result
will be incorrect.

This presents a puzzle: we know that min operations
are parallelizable, yet the application of a well-known
transformation resulted in parallel code which is condi-
tionally correct! The key to understanding this lies in
realizing the fundamental property which enables paral-
lelism in this loop. Earlier we pointed out that associa-
tivity is the underlying factor which enables parallelism,
and indeed min is an associative operation. However,
when the conditional exit is added to the mix, we now
have an operation which is not commutative. The key
point to realize is that there is a class of loops which
perform non-commutative, associative operations. As a
result, any transformation which parallelizes a loop of
this nature must not commute the execution order of
the iterations.

In light of this discovery, we have developed a frame-
work for understanding parallelism in a loop based on
the associativity of operations which accumulate, ag-
gregate or coalesce a range of values of various types
into a single conglomerate. In the following section we
discuss related work, and then proceed to the introduc-
tion of the concept of an associative operation based on
a coalescing operator of this nature.

2 Related Work

Over the years, the study of loops which perform co-
alescing operations has often focused on the solution
of recurrence relations. The parallel solution of recur-
rences and reductions in Fortran, for example, has been
a topic of study for several years.

2.1 Associative Operations

Associative operations have been the basis for paral-
lelization of reduction operations in both hardware and
software systems for many years [Kuc78, JD89, FG94,
Pot94, PE95].

In most of these cases, the associativity is limited to
a single binary operation involving the operator + (ad-
dition) or % (multiplication). For example, in [PE95],
recurrence relations are solved using a run-time tech-
nique that is based on the associativity of the underly-
ing operator within either a single reduction statement

or a group of reduction statements which access the
same reduction variable.

Recognition techniques based on the underlying se-
mantics of reduction operations have been implemented
in the Velour vectorizing compiler [JD89]. Similar to the
techniques implemented in [FG94], these approaches
identify variables which are computed as recurrent as-
sociative functions derived from statements in the body
of the loop. Harrison also treats the parallelization of
associative inductions, reductions, and recurrences in
functional languages in [Har86].

2.2 Commutative Operations

In [RD96], Rinard and Diniz present a framework for
parallelizing recursive function calls based on commu-
tativity. Similarly, Kuck has shown that simple expres-
sions (e.g., right-hand-sides of assignment statements)
can be reordered based on combinations of both as-
sociativity and commutativity in tree-height reduction
[Kuc78].

3 Associativity in Coalescing Loop Operators

In this section we introduce the concept of a coalescing
loop operator. Following this, we demonstrate how asso-
ciativity in a coalescing loop operator enables loop-level
parallelism.

3.1 Coalescing Operators in Loops

Consider the following definition of a loop operator:
Definition 1: Loop Operator

Given a loop L, a loop operator of L is defined as the
body of L expressed as a function « of two arguments:
a(X;, X;). X; and X represent sets of operands. The
binary operator a returns the result of operating on
operand sets X; and Xj.

O

The collection of multiple objects into a single data
structure in a loop in an object-oriented language is
an example of a loop operator which coalesces many
objects into a conglomerate whole. In this case, the
operand X; is the data structure used to collect the
objects.

Thus, in a coalescing operation, the first argument
X; to a represents rvalues of conglomerate operands.
The second argument, X, is the source set of operands
which are agglomerated with X;. The new conglomer-
ate is then returned by a.

These concepts can be generalized as follows:

Definition 2: Coalescing Loop Operator

Let a be defined as the body of loop £ where L is
represented in the form

L(Xo, X1y, X1, X)) =
Oé(Oé(N Oé(Oé(Xg,Xl),Xg), .. -kal)an)

This defines £ in terms of the loop operator a(X;, X;)
for the entire iteration space. The binary operator « is
termed a coalescing loop operator. The left operand
X; is the conglomerate operand set, or simply the con-
glomerate operand. Each right operand X;, j = 1,k
is an assimilated operand set, or simply an assimilated
operand.

O

We will now move on to consider coalescing loop

operators which are associative in nature.

3.2 Associative Coalescing Operators

The concept of associativity can be extended to include
coalescing loop operators as associative operations. The
central idea is that a coalescing operator can be consid-
ered a single operator consisting of a collection of as-
sociative operations performed within a loop. In this
light, the collection of the various individual operators
can be considered a single associative coalescing loop
operator.

Let’s now consider the case where we have a coa-
lescing loop operator which is associative. The central
question is “What parallelizing transformation does the
property of associativity enable?”. If we consider the
case in which « is an associative coalescing loop opera-
tor, then the law of associativity may be applied to £
to yield:

Oé(Oé(N Oé(Oé(Xo,Xl),Xz), .. .kaz),Oé(kal,Xk))

In this case we used the fact that « is an associative
operator to perform the transformation

(c@b)®c)=(ae (D)

to £ where a = a ... o a(Xo,X1),X2),... Xp_2),
b= Xi_1, and ¢ = X. This process could be repeated
to, for example, reassociate X;_3 with X;_», etc.

In the following section we present a transformation
capable of achieving such a reassociation (or regroup-
ing) of operands.

3.3 Transforming Associative Coalescing Loop Operators

Traditional parallelizing transformations involve the use
of a critical section to guarantee exclusive access to
shared variables. For example, the variable mindeg in
the code example given in the introduction is a shared
reduction variable which must be updated atomically.

When a coalescing loop operator is not commutative,
however, the parallelizing transformation must guaran-
tee that different iterations of the loop are not com-
muted. In other words, when the loop is executed on
more than one processor, the iterations must not be
interleaved.

In the following discussion we do not treat the theo-
retical underpinnings which necessitate the given trans-
formation: please refer to [Pot97] for additional detail.

The following four steps are needed in order to trans-
form a loop based on associativity alone:

e Privatization of shared variables
e Initialization of private variables
e Block loop scheduling

e Cross-processor “reduction”

Privatization refers to the creation of thread or pro-
cess private copies of shared global variables[Tu95]. The
second step involves the initialization of the newly cre-
ated private variables. In the third step, the iteration
space of the loop is broken into contiguous slices, and
each processor executes a slice of the original iteration
space. Within each slice on each processor the itera-
tions are executed in the original serial order. Across
processors, the slices are also kept in the original serial
order. For example, a loop with iteration space i = 1,8
executing on 4 processors would be scheduled as follows:

p1 D2 p3 Ppa

—N——— —
((Z = 1a2) (Z = 3a4) (Z = 576) (7’ = 778))

The final step is a cross-processor “reduction”. This
involves the serial execution of the associative coalescing
loop operator with each of the privatized variables in
turn. This operation must also preserve the original
order of execution and thus insure that iterations of the
loop are not commuted.

To understand these four steps, let’s consider the
following example involving the non-commutative asso-
ciative operator @:

doi=1,n
var = var @ a(i)
enddo

The following is the parallelized version of this exam-
ple. The language used in this code is based on IBM’s
Parallel Fortran [IBM88] with extensions which we have
added to adapt the language to the special needs of the
associative transformation.

parallel loop, block i = 1,n
private vary,

dofirst

var, = <tid for & >
doevery

var, = var, ® a(i)
enddo

dofinal, ordered lock
var = var ® vary
enddo

The first two steps in the transformation are the
privatization and initialization of the shared variable
var. In the above code, var, is the processor-private
copy of var. If p processors participate in the compu-
tation, then p private copies of var are made, one on
each processor. In an abstract sense, privatization ef-
fectively creates an uninitialized conglomerate operand
for use on each processor. In the dofirst section of
code, var, is initialized on each processor. The initial
value < id for @ > is the identity for the operator
@. dofirst indicates that this section of code is exe-
cuted once at the invocation of the parallel loop by each
processor.

The doevery clause indicates the section of code that
is to be executed every iteration. The majority of the
computation takes place in this loop. Each processor
is given a contiguous slice of the iteration space. For
example, assuming 4 divides n, if four processors par-
ticipate in the computation, the iteration space would
be divided as in the previous example:

p1 p2
((i=1,n/4) (i =n/4 +1,2n/4)
b3 pa

(1= 2n/4A+ 1,3n/4) (1 = 3n/tl+ 1,n)).

In the above example, “parallel loop, block” refers
to a schedule of this nature - i.e., the slices (or blocks)
are contiguous, and within each block (i.e., on each pro-
cessor) the iterations are executed in the original serial
order.

This doevery section of the parallel loop is executed
as a dependence-free doall loop [GPHL90]. Thus the
associative transformation enables the execution of the
bulk of the original serial loop consisting of an asso-
ciative coalescing loop operator as a fully parallel doall
loop.

After each processor has completed executing its slice
of the iteration space in the doevery section, they each
compute the dofinal once prior to loop exit. In the
above case, this operation updates the shared variable
var. The update is atomic, and is done in the origi-
nal order in which the slices were distributed. In other

words, according to the schedule just presented, p; will
update var first, followed by ps, etc. This is the mean-
ing of the “dofinal, ordered lock” directive, and this
schedule insures that the final cross-processor “reduc-
tion” does not interleave (i.e., commute) the slices of
the iteration space.

Before concluding this section, we make the following
definition:

Definition 3: Parallelizing Transformation of an
Associative Coalescing Loop

Given a loop £ with associative coalescing loop operator
body «, we denote £ transformed as above Lf.
O

4 Abstracting Coalescing Operators from Loops

In this section we present several important cases in
which we have identified coalescing loop operators which
are associative in nature. A number of these cases in-
volve loops previously considered difficult or impossible
to parallelize; however, the framework presented herein
provides necessary theoretical foundations for perform-
ing the analysis needed to prove these loops parallel.

4.1 Loops that Perform Output Operations

In our research we have determined that output to a
sequential file is a non-commutative, associative oper-
ation which coalesces output from the program to the
file. To understand this point, consider a simple exam-
ple involving the lisp append operator:

append(append([1] [2]) [3])
= append([1 2] [3])
= [12 3]

append([1] append (2] [3])
= append([1] [2 3])
= [12 3]

Here we are making a simple list of the numbers 1, 2,
and 3. The [] enclose lists. The append operator takes
two operands which are lists and creates and returns a
new list by appending the second operand to the first.
In the first case above, the list [2] is first appended to
the list [1], resulting in the list [1 2]. The list [3] is
then appended to this list, resulting in the final list [1
2 3]. In the second case, the list [3] is first appended to
the list [2], resulting in the list [2 3]. This list is then
appended to the list [1], resulting in the same final list.
The final result is identical in both cases even though
the associative order of the operands differ.

However, if we now consider a case where we attempt
to commute the operands, the results will differ:

append([1] [2])
= [1 2]
append([2] [1])
= [2 1]

Clearly the append operator is not commutative.
This has implications for the parallelization of output
operations in that loops containing sequential output
operations must be parallelized based on associativity
alone. The specific techniques used to parallelize out-
put operations of this nature are applicable generally in
computer programs that perform output. These tech-
niques can be applied to the automatic parallelization

of computer programs in systems such as the Polaris
restructurer [BDE196].

4.2 Loops with Dynamic Last Values

When a loop writes to a variable which is “live-out”,
the last value of the variable must be preserved across
loop exit. However, when a live-out shared variable
is written conditionally, it is difficult to identify exactly
when the last value is written. The following exemplifies
this situation:

doi=1,n
if ‘(condition)temp =...
if (condition) ... = temp
enddo
... =temp

In this case the variable temp has a dynamic last
value. As mentioned, this poses a difficulty for par-
allelizing compilers given that condition is loop vari-
ant. In the past this problem has been addressed using
timestamps to identify each write. Writes by processors
executing iterations later than the current timestamp
are permitted. Processors executing iterations earlier
than the current timestamp are not permitted to up-
date the shared variable [TYZ90]. This solution incurs
additional overhead in terms of both space to maintain
timestamps and computational time to achieve synchro-
nized access to shared variables.

Within the framework of coalescing loop operators
however, we have determined that last value assignment
is an associative operation which can be parallelized
based on the transformation outlined in section 3.3.

To understand this point, consider the application
of the assign operator, the functional equivalent of as-
signment:

assign((assign 1 2) 3)

= (3)
assign(1 (assign 2 3))
= (3)

The assign operator simply returns the argument on
the right. This is assignment. As can be seen, assign is
associative. However, if we now consider a case where
we attempt to commute the operands of assign, the re-
sults differ:

(assign 1 2)
= (2)

(assign 2 1)
= (1)

Clearly assignment is not commutative?. Yet our

example loop containing a dynamic last value can be
readily parallelized based on associativity alone:

parallel loop, block i = 1,n
private tempy, written,
dofirst

written, = False
doevery

if (condition) then
tempp, = ...
written, = T'rue
endif
if (condition) ... = temp,
enddo
dofinal, ordered lock

if (writteny,) temp = temp,
enddo

The above discussion has been based on the determi-
nation of dynamic last values of scalar variables. How-
ever, this technique can be easily extended to include
the parallelization of loops with dynamic last values of
entire arrays or array sections. Such a case occurs in the
SPEC CFP95 benchmark appsp discussed in [Pot97].

4.3 Operators Involving Arrays in Loop-carried Flow De-
pendences

In this section we consider the parallelization of linear
recurrences in the framework of coalescing loop oper-
ators. We address for the first time a case in which
operands are array elements with loop-carried flow de-
pendences between individual elements.

2Discounting the case id = id, self-assignment or the identity
operation

It is well known that recurrences are parallelizable
when based on associative binary operators [Har86]. By
treating the array used to contain the result as a con-
glomerate operand, associative recurrence relations can
be modeled as associative coalescing loop operators.

Consider the following functional representation of
the non-homogeneous recurrence relation a; = a;—1 ®5;
where ; is loop-variant?:

op&append(op&append(. . . op&append(
op&append(ao $1)B2) - - . Bn—1) Bn)

op&append takes the left argument, performs the bi-
nary operation @ with the right argument, and returns a
list with this result appended to the left argument. The
operand ag represents the initial value of the conglomer-
ate operand. Similarly, 8; ..., are the operands which
will be assimilated into the conglomerate. In effect, we
have represented the array a as a conglomerate operand
rather than as multiple individual elements.

As defined above, op&append is associative. This
can be easily demonstrated in a way similar to append
but with one important additional constraint:

op&append(op&cappend([1] [2]) [3])
= op&append([1 (1 & 2)] [3])
=>[1(1a2) ((1a2)a3)

op&append([1] op&append([2] [3]))
= op&append([1] [2 (2 ® 3)])
S[1(1e2) (1 R2e3))

Here items in [] are lists, and () are used to properly
associate the operands of the binary operator @&. Note
that if @ is associative, then op&append is associative.
This is a prototypical example of how two operators can
be coalesced to form a single loop operator.

A straightforward transformation of £ to £ will re-
sult in inefficient code if the linear recurrence comprises
the bulk of the computation in £. In this case, we can
take advantage of the indexable nature of the array a
to treat each element as a scalar. This transformation
is discussed in detail in [Pot98].

The ability to optimize the parallelization of the op-
erator op&append in this way exemplifies the utility of
the framework of coalescing loop operators: we get the
best of both worlds in that we view a as a conglomerate
for the purposes of identifying parallelism, but optimize
the parallel performance by accessing a as multiple in-
dividual elements.

4.4 Loops Performing Gather Operations

The following depicts a generic gather operation:

3In [Pot97], we discuss the closed-form solution of such recurrences
when 3 is loop invariant.

for (int i =0,j = 0;i < n; ++1)
if (is_true(ali]))
alj++] =14;

Conceptually, this pattern is quite common in many
sparse and symbolic codes such as those discussed in
[Pot97].

The difficulty in parallelizing such a loop occurs be-
cause the initial value of j for a given iteration is depen-
dent on how often a[i] was true in preceding iterations.
However, in [Pot98] we show that gather is an asso-
ciative coalescing operation, and thus this loop can be
transformed into parallel form.

5 Commutativity versus Associativity

In the introduction we highlighted the fact that a dis-
tinction must be made between associativity verses com-
mutativity as the basis for parallelization. Simple op-
erators such as + and * are both commutative and as-
sociative and expressions involving such operators can
often be parallelized based either on associativity, com-
mutativity, or some combination thereof [Kuc78]. In
the preceding sections, we’ve seen several examples of
coalescing loop operators which were non-commutative.
As a result, the question remains open as to what role
commutativity plays in parallelizing coalescing loop op-
erators. In order to answer this question we must con-
sider the parallel execution of a coalescing loop operator
which is both commutative and associative.

In order for a coalescing loop operator to be commu-
tative, the following must hold: a(X;, X;) = a(X;, X;).
This is simply the definition of commutativity applied
to a. Consider the following loop:

sum =0
dot=1,8

sum = sum +1
enddo

The coalescing loop operator a is += with the se-
mantics “add the assimilated argument on the right
to the conglomerate argument on the left and return
the resulting sum”. In this case, o is both an associa-
tive and commutative operator with identity 0. This
loop can thus be transformed into £! and the result-
ing doevery doall loop executed on four processors as
follows:

+=(+=(01)2) +=(+=(03) 4)

+\

F=(+=(05) 6) +=(+=(07)8)

It appears that commutativity cannot be applied to
much effect in this loop. However, that is not quite
true. In fact, if we wished to schedule iterations 7 and
8 on p; and iterations 1 and 2 on p4, the commutativity
of += would allow us to do so. Why? To understand
this, consider the following reassociated form of L:

This expression depicts the actual order of execu-
tion in the £! doevery and dofinal, ordered lock
sections. Commutativity clearly allows us to commute
the two operands +=(+=(+=(+=(01) 2) +=(+=
(03)4)) +=(+=(05) 6)) and +=(+=(07) 8).

What this means in general is that commutativity
enables the use of more flexible processor scheduling.
The order in which the assimilated operands are re-
duced into the conglomerate whole does not affect the
final result.

We summarize by distinguishing between two types
of coalescing loop operators: operators which are both
commutative and associative, and operators which are
associative but not commutative. We term the latter
ordered associative coalescing loop operators, and the
former unordered associative coalescing loop operators.
This choice of terminology reflects the fact that non-
commutative, associative coalescing loop operators have
an intrinsic order in which they must be computed.

6 Application of the Model

In this section we present the results of the application
of the theory of associative coalescing loop operators
in the parallelization of a modern C™" semantic infor-
mation retrieval application drawn from the emerging
Digital Library field [PS97]. In [Pot97] we perform a
detailed analysis of this application, cSpace, and de-
termine that the most time-consuming outermost loop
can be modeled as an associative coalescing loop oper-
ator. The following depicts this loop transformed into
parallel form based on L!:

parallel loop, block: For each term, in Terms
private ostream os,, co-occurrences coocs,
doevery
For each doc in term,.docs
For each term; in doc.terms_in_doc

For each cooc in coocs,,
Compute cooc.similarity(term,, terms)
Perform subset operation on coocs,,
0s, < term,.similarities
enddo

dofinal, ordered lock
append(0s,0s,)
enddo

Table 1 summarizes the performance and scalability
of cSpace across three data sets. For each data set, the
serial version of cSpace was executed on one processor,
and the parallellized version on 2, 4, 8, and 16 proces-
sors in order to determine the scalability of the appli-
cation. The reported execution times are elapsed (wall-
clock) times in hours, minutes, and seconds (h:m:s) and
in minutes and seconds (m:s). The S, columns report
speedup for the given execution.

PR

CR || DR

DH|

no PR CR
pr || mis | sp hi:m:s Sp h:im:s Sp
[Serial [T [4:07 | 1 [1:A7:10 [1 [10:30:27 | 1 |
Parallel 2 1:50 | 2.25 0:27:16 2.84 3:32:49 3.96
4 1:02_| 3.98 0:14:28 5.34 1:53:52 5.54
8 0:40 | 6.18 0:08:41 8.90 1:08:20 9.23
16 0:35_| 7.06 0:05:44 13.49 0:39:22 16.01

Table 1: Execution Times and Speedups for cSpace

The shared-memory multi-processor employed in our
experiments is an SGI Power Challenge. The Power
Challenge is a bus-based shared-memory cache-coherent
NUMA (non-uniform-memory-access) multi-processor.
The particular machine used in the experiments de-
scribed in this paper is a 16-processor model with 4GB
of RAM. The 64-bit processors are based on the MIPS
R10000 CPU and R10010 FPU clocked at 194MHz. Pri-
mary data and instruction caches are 32KB in size, with
a 2MB unified secondary cache.

Several interesting trends are revealed in Table 1.
First, several runs resulted in super-linear speedups.
This is an indirect result of the poor performance of
multi-threaded dynamic memory allocation in CT+ on
the SGI Power Challenge [PS97]. The parallel version
of cSpace used in these experiments employs a cus-
tomized memory manager which alleviates much of the
overhead associated with multi-threaded dynamic mem-
ory allocation.

In summary, as can be determined from these results,
cSpace achieved 100% efficiency for all runs made using
the DR data set.

7 Conclusions
We draw the following conclusions:

e A wide variety of loops perform non-commutative,
associative operations

e The theory of coalescing loop operators provides
a general framework for understanding parallelism
in loops of this nature

e Transformation £! can be used as a general ap-
proach in implementing the parallelism in associa-
tive coalescing loop operators

In the introduction we discussed the need for a re-
currence recognition scheme more general than the cur-
rent pattern-matching techniques implemented in the
Polaris restructurer. We believe an approach which
tests for associativity of coalescing loop operators may
be a reasonable solution to the problem of recognizing
parallelism in loops containing recurrences.

There are many issues to address in the implemen-
tation of an algorithm capable of detecting associative
coalescing loop operations. An algorithm is sketched at
a high level in [Pot98]. As such, this presents a chal-
lenging problem in the field of parallelizing compilers.

8 Acknowledgements

I would like to acknowledge with a grateful heart the
assistance of my Lord and Saviour Jesus Christ in com-
pleting this work.

References

[BDE*96] William Blume, Ramon Doallo, Rudolf
Eigenmann, John Grout, Jay Hoeflinger,
Thomas Lawrence, Jaejin Lee, David Padua,
Yunheung Paek, Bill Pottenger, Lawrence
Rauchwerger, and Peng Tu. Parallel Pro-
gramming with Polaris. IEEE Computer,
29(12):78-82, December 1996.

A. Fisher and A. Ghuloum. Parallelizing
Complex Scans and Reductions. Proceedings
of the SIGPLAN’94 Conference on Program-
ming Language Design and Implementation,
June 1994.

[FGO4]

[GPHLI0] Mark D. Guzzi, David A. Padua, Jay P.
Hoeflinger, and Duncan H. Lawrie. Cedar
Fortran and Other Vector and Parallel For-

tran Dialects. Journal of Supercomputing,
4(1):37-62, March 1990.

[Har86] Luddy Harrison. Compiling Lisp for Evalu-
ation on a Tightly Coupled Multiprocessor.
Technical Report 565, Univ. of Illinois at
Urbana-Champaign, Center for Supercom-

puting Res. & Dev., Mar. 20, 1986.

[IBM88] IBM. Parallel FORTRAN Language and Li-

brary Reference, March 1988.

[JD8&9] P. Jouvelot and B. Dehbonei. A Unified Se-
mantic Approach for the Vectorization and

Parallelization of Generalized Reductions. In

[Kuc78]

[PE95]

[Pot94]

[Pot97]

[Pot98]

[PS97]

[RD96]

[Tu95]

[TYZ90]

Proceedings of the 1989 International Con-
ference on Supercomputing, Crete, Greece,
June 5-9, 1989. ACM.

D. J. Kuck. The Structure of Computers
and Computations, volume I. John Wiley
& Sons, Inc., NY, 1978.

Bill Pottenger and Rudolf Eigenmann. Id-
iom Recognition in the Polaris Parallelizing
Compiler. Proceedings of the 9th ACM In-
ternational Conference on Supercomputing,
Barcelona, Spain, pages 444-448, July 1995.

William Morton Pottenger. Induction Vari-
able Substitution and Reduction Recog-
nition in the Polaris Parallelizing Com-
piler. Master’s thesis, Univ of Illinois at
Urbana-Champaign, Center for Supercom-
puting Res. & Dev., December 1994.

William Morton Pottenger. Theory, Tech-
niques, and Erperiments in Solving Recur-
rences in Computer Programs. PhD thesis,
Univ. of Illinois at Urbana-Champaign, Cen-
ter for Supercomputing Res. & Dev., May
1997.

William M. Pottenger. The Role of Asso-
ciativity and Commutativity in the Detec-
tion and Transformation of Loop-Level Par-
allelism. Technical Report 1532, Univ. of Illi-
nois at Urbana-Champaign, Center for Su-
percomputing Res. & Dev., April 1998.

Bill Pottenger and Bruce Schatz. cSpace: A
Parallel C** Information Retrieval Bench-
mark. Technical Report 1511, Univ. of Illi-
nois at Urbana-Champaign, Center for Su-
percomputing Res. & Dev., January 1997.

Martin C. Rinard and Pedro C. Diniz.
Commutativity Analysis: A New Analysis
Framework for Parallelizing Compilers. In

Programming Language Implementation and
Design (PLDI), pages 54—67. ACM, 1996.

Peng Tu. Automatic Array Privatiza-
tion and Demand-Driven Symbolic Anal-
ysis. PhD thesis, Univ. of Illinois at
Urbana-Champaign, Center for Supercom-
puting Res. & Dev., May 1995.

Peiyi Tang, Pen-Chung Yew, and Chuan-Qi
Zhu. Compiler Techniques for Data Synchro-
nization in Nested Parallel Loops. Proceed-
ings of 1CS’90, Amsterdam, Holland, 1:177-
186, May 1990.

