
The Role of Associativity and Commutativity in the

Detection and Transformation of Loop�Level Parallelism�

William M� Pottenger

Department of Computer Science

University of Illinois at Urbana�Champaign

billp�uiuc�edu

Abstract

The study of theoretical and practical issues in auto�
matic parallelization across application and language
boundaries is an appropriate and timely task� In this
paper� we discuss theory and techniques that we have
determined useful in parallelizing recurrences and re�
ductions in computer programs� We present a frame�
work for understanding such parallelism based on an
approach which models loop bodies as coalescing loop
operators� Within this framework we distinguish be�
tween associative coalescing loop operators and asso�
ciative and commutative coalescing loop operators� We
present the result of the application of this theory in a
case study of a modern C�� semantic retrieval applica�
tion drawn from the digital library �eld�

� Introduction

In the course of investigating solutions to recurrences
in loops the desire to develop a recurrence recognition
scheme based on technology more general than pattern�
matching arose� This in turn led to an investigation of
the principle property determining the parallelizability
of certain operations�

Consider� for example� a loop of the following nature��

do ��� j � search� neqns
node � perm�j	

�This work is supported in part by Army Contract DABT���
���C�����	 Army Contract N���������C�
���	 NSF Contract MIP�
�������	 and a Partnership Award from IBM� This work is not nec�
essarily representative of the positions or policies of the Army or
Government�

�This example is drawn from the HPF�� benchmark cholesky

if �marker�node	�lt��	 goto ���
ndeg � deg�node	
if �ndeg�le�thresh	 goto
��
if �ndeg�lt�mindeg	 mindeg � ndeg

��� continue

�� � � �

Here we have conditional expressions guarding up�
dates to scalar variables� This is a classic case of a loop
with reduction semantics� Such patterns commonly oc�
cur in computationally important loops in a wide range
of codes �BDE����

Many frameworks have been developed for recogniz�
ing parallelism of this nature based on both syntactic
and semantic schemes� All of these frameworks have one
thing in common� however� the enabling factor under�
lying the transformation is the associative nature of the
operation being performed� In this case� for example�
min is an associative operation�

The loop above� however� is slightly di�erent from a
�standard� minimum reduction in that the presence of
a conditional exit in the loop impacts the parallelizing
transformation� When the above code is executed seri�
ally� there is an invariant point in the iteration space
at which the loop will exit� This point may be an
early exit� depending on the conditional if �ndeg �le�

thresh�� However� the exit point may not be invariant
when the loop is executed in parallel� To understand the
reasons for this� consider the following �naively	 paral�
lelized version of the loop�

doall ��� j � search� neqns
private node� ndeg
node � perm�j	
if �marker�node	�lt��	 goto ���
ndeg � deg�node	
if �ndeg�le�thresh	 goto
��
critical section

if �ndeg�lt�mindeg	 mindeg � ndeg
critical section

��� continue

�� � � �

When this code is executed� the iteration space j �
search� neqns will be partitioned amongst the p pro�
cessors participating in the computation� However� re�
gardless of the particular partitioning employed� it is
possible that a given processor pi may execute some it�
eration j which is not executed when the computation
is performed serially� If deg�perm�j		 is a global min�
imum across the entire iteration space� the �nal result
will be incorrect�

This presents a puzzle� we know thatmin operations
are parallelizable� yet the application of a well�known
transformation resulted in parallel code which is condi�
tionally correct� The key to understanding this lies in
realizing the fundamental property which enables paral�
lelism in this loop� Earlier we pointed out that associa�
tivity is the underlying factor which enables parallelism�
and indeed min is an associative operation� However�
when the conditional exit is added to the mix� we now
have an operation which is not commutative� The key
point to realize is that there is a class of loops which
perform non�commutative� associative operations� As a
result� any transformation which parallelizes a loop of
this nature must not commute the execution order of
the iterations�

In light of this discovery� we have developed a frame�
work for understanding parallelism in a loop based on
the associativity of operations which accumulate� ag�
gregate or coalesce a range of values of various types
into a single conglomerate� In the following section we
discuss related work� and then proceed to the introduc�
tion of the concept of an associative operation based on
a coalescing operator of this nature�

� Related Work

Over the years� the study of loops which perform co�
alescing operations has often focused on the solution
of recurrence relations� The parallel solution of recur�
rences and reductions in Fortran� for example� has been
a topic of study for several years�

��� Associative Operations

Associative operations have been the basis for paral�
lelization of reduction operations in both hardware and
software systems for many years �Kuc��� JD��� FG���
Pot��� PE�
��

In most of these cases� the associativity is limited to
a single binary operation involving the operator � �ad�
dition	 or � �multiplication	� For example� in �PE�
��
recurrence relations are solved using a run�time tech�
nique that is based on the associativity of the underly�
ing operator within either a single reduction statement

or a group of reduction statements which access the
same reduction variable�

Recognition techniques based on the underlying se�
mantics of reduction operations have been implemented
in the Velour vectorizing compiler �JD���� Similar to the
techniques implemented in �FG���� these approaches
identify variables which are computed as recurrent as�
sociative functions derived from statements in the body
of the loop� Harrison also treats the parallelization of
associative inductions� reductions� and recurrences in
functional languages in �Har���

��� Commutative Operations

In �RD��� Rinard and Diniz present a framework for
parallelizing recursive function calls based on commu�
tativity� Similarly� Kuck has shown that simple expres�
sions �e�g�� right�hand�sides of assignment statements	
can be reordered based on combinations of both as�
sociativity and commutativity in tree�height reduction
�Kuc����

� Associativity in Coalescing Loop Operators

In this section we introduce the concept of a coalescing
loop operator� Following this� we demonstrate how asso�
ciativity in a coalescing loop operator enables loop�level
parallelism�

��� Coalescing Operators in Loops

Consider the following de�nition of a loop operator�

De�nition �� Loop Operator

Given a loop L� a loop operator of L is de�ned as the
body of L expressed as a function � of two arguments�
��Xi� Xj	� Xi and Xj represent sets of operands� The
binary operator � returns the result of operating on
operand sets Xi and Xj �
�

The collection of multiple objects into a single data
structure in a loop in an object�oriented language is
an example of a loop operator which coalesces many
objects into a conglomerate whole� In this case� the
operand Xi is the data structure used to collect the
objects�

Thus� in a coalescing operation� the �rst argument
Xi to � represents rvalues of conglomerate operands�
The second argument� Xj � is the source set of operands
which are agglomerated with Xi� The new conglomer�
ate is then returned by ��

These concepts can be generalized as follows�

De�nition �� Coalescing Loop Operator

Let � be de�ned as the body of loop L where L is
represented in the form

L�X�� X�� � � � � Xk��� Xk	 �
�� �� � � � �� ��X�� X�	� X�	� � � � Xk��	� Xk	

This de�nes L in terms of the loop operator ��Xi� Xj	
for the entire iteration space� The binary operator � is
termed a coalescing loop operator� The left operand
Xi is the conglomerate operand set� or simply the con�
glomerate operand� Each right operand Xj � j � �� k
is an assimilated operand set� or simply an assimilated
operand�
�

We will now move on to consider coalescing loop
operators which are associative in nature�

��� Associative Coalescing Operators

The concept of associativity can be extended to include
coalescing loop operators as associative operations� The
central idea is that a coalescing operator can be consid�
ered a single operator consisting of a collection of as�
sociative operations performed within a loop� In this
light� the collection of the various individual operators
can be considered a single associative coalescing loop
operator�

Let�s now consider the case where we have a coa�
lescing loop operator which is associative� The central
question is �What parallelizing transformation does the
property of associativity enable��� If we consider the
case in which � is an associative coalescing loop opera�
tor� then the law of associativity may be applied to L
to yield�

�� �� � � � �� ��X�� X�	� X�	� � � � Xk��	� ��Xk��� Xk		

In this case we used the fact that � is an associative
operator to perform the transformation

��a� b	� c	 � �a� �b� c		

to L where a � �� � � � �� ��X�� X�	� X�	� � � � Xk��	�
b � Xk��� and c � Xk� This process could be repeated
to� for example� reassociate Xk�� with Xk��� etc�

In the following section we present a transformation
capable of achieving such a reassociation �or regroup�
ing	 of operands�

��� Transforming Associative Coalescing Loop Operators

Traditional parallelizing transformations involve the use
of a critical section to guarantee exclusive access to
shared variables� For example� the variable mindeg in
the code example given in the introduction is a shared
reduction variable which must be updated atomically�

When a coalescing loop operator is not commutative�
however� the parallelizing transformation must guaran�
tee that di�erent iterations of the loop are not com�
muted� In other words� when the loop is executed on
more than one processor� the iterations must not be
interleaved�

In the following discussion we do not treat the theo�
retical underpinnings which necessitate the given trans�
formation� please refer to �Pot��� for additional detail�

The following four steps are needed in order to trans�
form a loop based on associativity alone�

� Privatization of shared variables

� Initialization of private variables

� Block loop scheduling

� Cross�processor �reduction�

Privatization refers to the creation of thread or pro�
cess private copies of shared global variables�Tu�
�� The
second step involves the initialization of the newly cre�
ated private variables� In the third step� the iteration
space of the loop is broken into contiguous slices� and
each processor executes a slice of the original iteration
space� Within each slice on each processor the itera�
tions are executed in the original serial order� Across
processors� the slices are also kept in the original serial
order� For example� a loop with iteration space i � �� �
executing on � processors would be scheduled as follows�

�

p�
z �� �

�i � �� �	

p�
z �� �

�i � �� �	

p�
z �� �

�i �
� 	

p�
z �� �

�i � �� �		�

The �nal step is a cross�processor �reduction�� This
involves the serial execution of the associative coalescing
loop operator with each of the privatized variables in
turn� This operation must also preserve the original
order of execution and thus insure that iterations of the
loop are not commuted�

To understand these four steps� let�s consider the
following example involving the non�commutative asso�
ciative operator ��

do i � �� n
var � var � a�i	

enddo

The following is the parallelized version of this exam�
ple� The language used in this code is based on IBM�s
Parallel Fortran �IBM��� with extensions which we have
added to adapt the language to the special needs of the
associative transformation�

parallel loop� block i � �� n
private varp
do�rst
varp � � id for � �

doevery
varp � varp � a�i	

enddo
do�nal� ordered lock
var � var � varp

enddo

The �rst two steps in the transformation are the
privatization and initialization of the shared variable
var� In the above code� varp is the processor�private
copy of var� If p processors participate in the compu�
tation� then p private copies of var are made� one on
each processor� In an abstract sense� privatization ef�
fectively creates an uninitialized conglomerate operand
for use on each processor� In the dofirst section of
code� varp is initialized on each processor� The initial
value � id for � � is the identity for the operator
�� dofirst indicates that this section of code is exe�
cuted once at the invocation of the parallel loop by each
processor�

The doevery clause indicates the section of code that
is to be executed every iteration� The majority of the
computation takes place in this loop� Each processor
is given a contiguous slice of the iteration space� For
example� assuming � divides n� if four processors par�
ticipate in the computation� the iteration space would
be divided as in the previous example�

�

p�
z �� �

�i � �� n��	

p�
z �� �

�i � n�� � �� �n��	
p�

z �� �

�i � �n�� � �� �n��	

p�
z �� �

�i � �n��� �� n		�

In the above example� �parallel loop� block� refers
to a schedule of this nature � i�e�� the slices �or blocks	
are contiguous� and within each block �i�e�� on each pro�
cessor	 the iterations are executed in the original serial
order�

This doevery section of the parallel loop is executed
as a dependence�free doall loop �GPHL���� Thus the
associative transformation enables the execution of the
bulk of the original serial loop consisting of an asso�
ciative coalescing loop operator as a fully parallel doall
loop�

After each processor has completed executing its slice
of the iteration space in the doevery section� they each
compute the dofinal once prior to loop exit� In the
above case� this operation updates the shared variable
var� The update is atomic� and is done in the origi�
nal order in which the slices were distributed� In other

words� according to the schedule just presented� p� will
update var �rst� followed by p�� etc� This is the mean�
ing of the �do�nal� ordered lock� directive� and this
schedule insures that the �nal cross�processor �reduc�
tion� does not interleave �i�e�� commute	 the slices of
the iteration space�

Before concluding this section� we make the following
de�nition�

De�nition �� Parallelizing Transformation of an

Associative Coalescing Loop

Given a loop L with associative coalescing loop operator
body �� we denote L transformed as above Lt�
�

� Abstracting Coalescing Operators from Loops

In this section we present several important cases in
which we have identi�ed coalescing loop operators which
are associative in nature� A number of these cases in�
volve loops previously considered di�cult or impossible
to parallelize� however� the framework presented herein
provides necessary theoretical foundations for perform�
ing the analysis needed to prove these loops parallel�

��� Loops that Perform Output Operations

In our research we have determined that output to a
sequential �le is a non�commutative� associative oper�
ation which coalesces output from the program to the
�le� To understand this point� consider a simple exam�
ple involving the lisp append operator�

append�append���� ���	 ���	
� append��� �� ���	
� �� � ��

append���� append���� ���		
� append���� �� ��	
� �� � ��

Here we are making a simple list of the numbers �� ��
and �� The � � enclose lists� The append operator takes
two operands which are lists and creates and returns a
new list by appending the second operand to the �rst�
In the �rst case above� the list ��� is �rst appended to
the list ���� resulting in the list �� ��� The list ��� is
then appended to this list� resulting in the �nal list ��
� ��� In the second case� the list ��� is �rst appended to
the list ���� resulting in the list �� ��� This list is then
appended to the list ���� resulting in the same �nal list�
The �nal result is identical in both cases even though
the associative order of the operands di�er�

However� if we now consider a case where we attempt
to commute the operands� the results will di�er�

append���� ���	
� �� ��

append���� ���	
� �� ��

Clearly the append operator is not commutative�
This has implications for the parallelization of output
operations in that loops containing sequential output
operations must be parallelized based on associativity
alone� The speci�c techniques used to parallelize out�
put operations of this nature are applicable generally in
computer programs that perform output� These tech�
niques can be applied to the automatic parallelization
of computer programs in systems such as the Polaris
restructurer �BDE����

��� Loops with Dynamic Last Values

When a loop writes to a variable which is �live�out��
the last value of the variable must be preserved across
loop exit� However� when a live�out shared variable
is written conditionally� it is di�cult to identify exactly
when the last value is written� The following exempli�es
this situation�

do i � �� n
� � �

if �condition	temp � � � �
� � �

if �condition	 � � � � temp
� � �

enddo
� � � � temp

In this case the variable temp has a dynamic last
value� As mentioned� this poses a di�culty for par�
allelizing compilers given that condition is loop vari�
ant� In the past this problem has been addressed using
timestamps to identify each write� Writes by processors
executing iterations later than the current timestamp
are permitted� Processors executing iterations earlier
than the current timestamp are not permitted to up�
date the shared variable �TYZ���� This solution incurs
additional overhead in terms of both space to maintain
timestamps and computational time to achieve synchro�
nized access to shared variables�

Within the framework of coalescing loop operators
however� we have determined that last value assignment
is an associative operation which can be parallelized
based on the transformation outlined in section ����

To understand this point� consider the application
of the assign operator� the functional equivalent of as�
signment�

assign��assign � �	 �	

� ��	
assign�� �assign � �		

� ��	

The assign operator simply returns the argument on
the right� This is assignment� As can be seen� assign is
associative� However� if we now consider a case where
we attempt to commute the operands of assign� the re�
sults di�er�

�assign � �	
� ��	

�assign � �	
� ��	

Clearly assignment is not commutative�� Yet our
example loop containing a dynamic last value can be
readily parallelized based on associativity alone�

parallel loop� block i � �� n
private tempp� writtenp
do�rst

writtenp � False
doevery
� � �

if �condition	 then
tempp � � � �
writtenp � True

endif
� � �

if �condition	 � � � � tempp
� � �

enddo
do�nal� ordered lock

if �writtenp	 temp � tempp
enddo

The above discussion has been based on the determi�
nation of dynamic last values of scalar variables� How�
ever� this technique can be easily extended to include
the parallelization of loops with dynamic last values of
entire arrays or array sections� Such a case occurs in the
SPEC CFP�
 benchmark appsp discussed in �Pot����

��� Operators Involving Arrays in Loop�carried Flow De�

pendences

In this section we consider the parallelization of linear
recurrences in the framework of coalescing loop oper�
ators� We address for the �rst time a case in which
operands are array elements with loop�carried �ow de�
pendences between individual elements�

�Discounting the case id id� self�assignment or the identity

operation

It is well known that recurrences are parallelizable
when based on associative binary operators �Har��� By
treating the array used to contain the result as a con�
glomerate operand� associative recurrence relations can
be modeled as associative coalescing loop operators�

Consider the following functional representation of
the non�homogeneous recurrence relation ai � ai����i
where �i is loop�variant

��

op�append�op�append�� � � op�append�
op�append�a� ��	��	 � � � �n��	 �n	

op�append takes the left argument� performs the bi�
nary operation�with the right argument� and returns a
list with this result appended to the left argument� The
operand a� represents the initial value of the conglomer�
ate operand� Similarly� �� � � � �n are the operands which
will be assimilated into the conglomerate� In e�ect� we
have represented the array a as a conglomerate operand
rather than as multiple individual elements�

As de�ned above� op�append is associative� This
can be easily demonstrated in a way similar to append
but with one important additional constraint�

op�append� op�append� ��� ���	 ���	
� op�append� �� ��� �	� ���	
� �� ��� �	 ���� �	� �	�

op�append� ��� op�append� ��� ���		
� op�append� ��� �� ��� �	�	
� �� ��� �	 ��� ��� �		�

Here items in � � are lists� and � 	 are used to properly
associate the operands of the binary operator �� Note
that if � is associative� then op�append is associative�
This is a prototypical example of how two operators can
be coalesced to form a single loop operator�

A straightforward transformation of L to Lt will re�
sult in ine�cient code if the linear recurrence comprises
the bulk of the computation in L� In this case� we can
take advantage of the indexable nature of the array a
to treat each element as a scalar� This transformation
is discussed in detail in �Pot����

The ability to optimize the parallelization of the op�
erator op�append in this way exempli�es the utility of
the framework of coalescing loop operators� we get the
best of both worlds in that we view a as a conglomerate
for the purposes of identifying parallelism� but optimize
the parallel performance by accessing a as multiple in�
dividual elements�

��� Loops Performing Gather Operations

The following depicts a generic gather operation�

�In �Pot���� we discuss the closed�form solution of such recurrences
when � is loop invariant�

for �int i � �� j � �� i � n� ��i	
if �is true�a�i�		

a�j��� � i�

Conceptually� this pattern is quite common in many
sparse and symbolic codes such as those discussed in
�Pot����

The di�culty in parallelizing such a loop occurs be�
cause the initial value of j for a given iteration is depen�
dent on how often a�i� was true in preceding iterations�
However� in �Pot��� we show that gather is an asso�
ciative coalescing operation� and thus this loop can be
transformed into parallel form�

� Commutativity versus Associativity

In the introduction we highlighted the fact that a dis�
tinction must be made between associativity verses com�
mutativity as the basis for parallelization� Simple op�
erators such as � and � are both commutative and as�
sociative and expressions involving such operators can
often be parallelized based either on associativity� com�
mutativity� or some combination thereof �Kuc���� In
the preceding sections� we�ve seen several examples of
coalescing loop operators which were non�commutative�
As a result� the question remains open as to what role
commutativity plays in parallelizing coalescing loop op�
erators� In order to answer this question we must con�
sider the parallel execution of a coalescing loop operator
which is both commutative and associative�

In order for a coalescing loop operator to be commu�
tative� the following must hold� ��Xi� Xj	 � ��Xj � Xi	�
This is simply the de�nition of commutativity applied
to �� Consider the following loop�

sum � �
do i � �� �
sum � sum� i

enddo

The coalescing loop operator � is �� with the se�
mantics �add the assimilated argument on the right
to the conglomerate argument on the left and return
the resulting sum�� In this case� � is both an associa�
tive and commutative operator with identity �� This
loop can thus be transformed into Lt and the result�
ing doevery doall loop executed on four processors as
follows�

p�
z �� �

��� ���� �	 �	

p�
z �� �

��� ���� �	 �	
p�

z �� �

��� ����
	 	

p�
z �� �

��� ���� �	 �	

It appears that commutativity cannot be applied to
much e�ect in this loop� However� that is not quite
true� In fact� if we wished to schedule iterations � and
� on p� and iterations � and � on p�� the commutativity
of �� would allow us to do so� Why� To understand
this� consider the following reassociated form of L�

��� ��� ��� ��� ���� �	 �	 ��� ���� �	 �		 ��
� ����
	 		 ��� ���� �	 �		

This expression depicts the actual order of execu�
tion in the Lt doevery and dofinal� ordered lock

sections� Commutativity clearly allows us to commute
the two operands ��� ��� ��� ���� �	 �	 ��� ��
�� �	 �		 ��� ����
	 		 and ��� ���� �	 �	�

What this means in general is that commutativity
enables the use of more �exible processor scheduling�
The order in which the assimilated operands are re�
duced into the conglomerate whole does not a�ect the
�nal result�

We summarize by distinguishing between two types
of coalescing loop operators� operators which are both
commutative and associative� and operators which are
associative but not commutative� We term the latter
ordered associative coalescing loop operators� and the
former unordered associative coalescing loop operators�
This choice of terminology re�ects the fact that non�
commutative� associative coalescing loop operators have
an intrinsic order in which they must be computed�

� Application of the Model

In this section we present the results of the application
of the theory of associative coalescing loop operators
in the parallelization of a modern C�� semantic infor�
mation retrieval application drawn from the emerging
Digital Library �eld �PS���� In �Pot��� we perform a
detailed analysis of this application� cSpace� and de�
termine that the most time�consuming outermost loop
can be modeled as an associative coalescing loop oper�
ator� The following depicts this loop transformed into
parallel form based on Lt�

parallel loop� block� For each terma in Terms

private ostream osp� co�occurrences coocsp
doevery

For each doc in terma�docs
For each termb in doc�terms in doc
� � �

For each cooc in coocsp
Compute cooc�similarity�terma� termb	

Perform subset operation on coocsp
osp �� terma�similarities

enddo

do�nal� ordered lock
append�os�osp	

enddo

Table � summarizes the performance and scalability
of cSpace across three data sets� For each data set� the
serial version of cSpace was executed on one processor�
and the parallellized version on �� �� �� and � proces�
sors in order to determine the scalability of the appli�
cation� The reported execution times are elapsed �wall�
clock	 times in hours� minutes� and seconds �h�m�s	 and
in minutes and seconds �m�s	� The Sp columns report
speedup for the given execution�

no
pr

PR
m � s

PR
Sp

CR
h � m � s

CR
Sp

DR
h � m � s

DR
Sp

Serial � ���� � ������� � �������� �

Parallel � ���� �	�� ������
 �	�� ������� �	�

� ���� �	�� ������� �	�� ������� �	��

� ����
	�� ������� �	�� ������� �	��

�
 ���� �	�
 ������� ��	�� ������� �
	��

Table �� Execution Times and Speedups for cSpace

The shared�memorymulti�processor employed in our
experiments is an SGI Power Challenge� The Power
Challenge is a bus�based shared�memory cache�coherent
NUMA �non�uniform�memory�access	 multi�processor�
The particular machine used in the experiments de�
scribed in this paper is a ��processor model with �GB
of RAM� The ��bit processors are based on the MIPS
R����� CPU and R����� FPU clocked at ���MHz� Pri�
mary data and instruction caches are ��KB in size� with
a �MB uni�ed secondary cache�

Several interesting trends are revealed in Table ��
First� several runs resulted in super�linear speedups�
This is an indirect result of the poor performance of
multi�threaded dynamic memory allocation in C�� on
the SGI Power Challenge �PS���� The parallel version
of cSpace used in these experiments employs a cus�
tomized memory manager which alleviates much of the
overhead associated with multi�threaded dynamic mem�
ory allocation�

In summary� as can be determined from these results�
cSpace achieved ���� e�ciency for all runs made using
the DR data set�

� Conclusions

We draw the following conclusions�

� A wide variety of loops perform non�commutative�
associative operations

� The theory of coalescing loop operators provides
a general framework for understanding parallelism
in loops of this nature

� Transformation Lt can be used as a general ap�
proach in implementing the parallelism in associa�
tive coalescing loop operators

In the introduction we discussed the need for a re�
currence recognition scheme more general than the cur�
rent pattern�matching techniques implemented in the
Polaris restructurer� We believe an approach which
tests for associativity of coalescing loop operators may
be a reasonable solution to the problem of recognizing
parallelism in loops containing recurrences�

There are many issues to address in the implemen�
tation of an algorithm capable of detecting associative
coalescing loop operations� An algorithm is sketched at
a high level in �Pot���� As such� this presents a chal�
lenging problem in the �eld of parallelizing compilers�

	 Acknowledgements

I would like to acknowledge with a grateful heart the
assistance of my Lord and Saviour Jesus Christ in com�
pleting this work�

References

�BDE��� William Blume� Ramon Doallo� Rudolf
Eigenmann� John Grout� Jay Hoe�inger�
Thomas Lawrence� Jaejin Lee� David Padua�
Yunheung Paek� Bill Pottenger� Lawrence
Rauchwerger� and Peng Tu� Parallel Pro�
gramming with Polaris� IEEE Computer�
�����	��� ��� December ����

�FG��� A� Fisher and A� Ghuloum� Parallelizing
Complex Scans and Reductions� Proceedings
of the SIGPLAN��� Conference on Program�
ming Language Design and Implementation�
June �����

�GPHL��� Mark D� Guzzi� David A� Padua� Jay P�
Hoe�inger� and Duncan H� Lawrie� Cedar
Fortran and Other Vector and Parallel For�
tran Dialects� Journal of Supercomputing�
���	��� �� March �����

�Har�� Luddy Harrison� Compiling Lisp for Evalu�
ation on a Tightly Coupled Multiprocessor�
Technical Report

� Univ� of Illinois at
Urbana�Champaign� Center for Supercom�
puting Res� � Dev�� Mar� ��� ����

�IBM��� IBM� Parallel FORTRAN Language and Li�
brary Reference� March �����

�JD��� P� Jouvelot and B� Dehbonei� A Uni�ed Se�
mantic Approach for the Vectorization and
Parallelization of Generalized Reductions� In

Proceedings of the ���� International Con�
ference on Supercomputing� Crete� Greece�
June
��� ����� ACM�

�Kuc��� D� J� Kuck� The Structure of Computers
and Computations� volume I� John Wiley
� Sons� Inc�� NY� �����

�PE�
� Bill Pottenger and Rudolf Eigenmann� Id�
iom Recognition in the Polaris Parallelizing
Compiler� Proceedings of the �th ACM In�
ternational Conference on Supercomputing�
Barcelona� Spain� pages ��� ���� July ���
�

�Pot��� William Morton Pottenger� Induction Vari�
able Substitution and Reduction Recog�
nition in the Polaris Parallelizing Com�
piler� Master�s thesis� Univ of Illinois at
Urbana�Champaign� Center for Supercom�
puting Res� � Dev�� December �����

�Pot��� William Morton Pottenger� Theory� Tech�
niques� and Experiments in Solving Recur�
rences in Computer Programs� PhD thesis�
Univ� of Illinois at Urbana�Champaign� Cen�
ter for Supercomputing Res� � Dev�� May
�����

�Pot��� William M� Pottenger� The Role of Asso�
ciativity and Commutativity in the Detec�
tion and Transformation of Loop�Level Par�
allelism� Technical Report �
��� Univ� of Illi�
nois at Urbana�Champaign� Center for Su�
percomputing Res� � Dev�� April �����

�PS��� Bill Pottenger and Bruce Schatz� cSpace� A
Parallel C�� Information Retrieval Bench�
mark� Technical Report �
��� Univ� of Illi�
nois at Urbana�Champaign� Center for Su�
percomputing Res� � Dev�� January �����

�RD�� Martin C� Rinard and Pedro C� Diniz�
Commutativity Analysis� A New Analysis
Framework for Parallelizing Compilers� In
Programming Language Implementation and
Design �PLDI�� pages
� �� ACM� ����

�Tu�
� Peng Tu� Automatic Array Privatiza�
tion and Demand�Driven Symbolic Anal�
ysis� PhD thesis� Univ� of Illinois at
Urbana�Champaign� Center for Supercom�
puting Res� � Dev�� May ���
�

�TYZ��� Peiyi Tang� Pen�Chung Yew� and Chuan�Qi
Zhu� Compiler Techniques for Data Synchro�
nization in Nested Parallel Loops� Proceed�
ings of ICS��	� Amsterdam� Holland� �����
��� May �����

