
Accepted for the Grace Hopper Celebration of Women in Computing 2004

Assessing the Impact of Sparsification on LSI Performance

April Kontostathis
Department of Mathematics and Computer Science

Ursinus College
Collegeville PA 19426

akontostathis@ursinus.edu

William M. Pottenger and Brian D. Davison
Department of Computer Science and Engineering

Lehigh University
Bethlehem PA 18015

billp,davison@cse.lehigh.edu

ABSTRACT

We describe an approach to information retrieval using La-
tent Semantic Indexing (LSI) that directly manipulates the
values in the Singular Value Decomposition (SVD) matri-
ces. We convert the dense term by dimension matrix into a
sparse matrix by removing a fixed percentage of the values.
We present retrieval and runtime performance results, using
seven collections, which show that using this technique to
remove up 70% of the values in the term by dimension ma-
trix results in similar or improved retrieval performance (as
compared to LSI), while reducing memory requirements and
query response time. Removal of 90% of the values results
in significantly reduced memory requirements and dramatic
improvements in query response time. Removal of 90% of
the values degrades retrieval performance slightly for smaller
collections, but improves retrieval performance by 60% on
the large collection we tested.

1 INTRODUCTION

The amount of textual information available in digital for-
mats is continuing to grow rapidly. It is impossible for a
single individual to read and understand all of the litera-
ture that is available for any given topic. Researchers in
information retrieval, computational linguistics and textual
data mining are working on the development of methods to
process this data and present it in a usable format.

Many algorithms for searching textual collections have
been developed, and, in this paper, we focus our study on one
system, Latent Semantic Indexing (LSI). LSI was developed
in the early 1990s and has been applied to a wide variety of
learning tasks that involve textual data [4, 6, 14, 12]. LSI

is based upon a linear algebraic technique for factoring ma-
trices called Singular Value Decomposition (SVD). In LSI,
the dimensionally of the text retrieval problem is reduced by
truncating the matrices produced by the SVD process.

Several outstanding issues remain with LSI. First, the
SVD algorithm is computationally expensive. Many approx-
imation algorithms have been implemented to resolve this
problem [1]. Second, choosing an optimal dimensionality re-
duction parameter (k) for each collection remains elusive.
Traditionally, the optimal k has been chosen by running a
set of queries with known relevant document sets against the
SVD matrices for multiple values of k. The k that results
in the best retrieval performance is chosen as the optimal
k for each collection. Optimal k values are typically in the
range of 100-300 dimensions [6]. Unfortunately, a k chosen
using this technique is only optimized to the queries in the
training set.

The third issue that remains with the use of LSI is the
density of the matrices after decomposition. The original
term by document matrix is very sparse, but the T and D

matrices are dense, having few zero values. This density
results in an increase in memory requirements for the LSI
system, and an increase in computation cost when running
the queries.

This paper addresses this third point. We present an algo-
rithm that removes (zeroes out) a large portion of the values
in the Tk and SkDk matrices. In Section 3 we describe the
LSI processing steps. Section 4 describes our approach to re-
ducing the density of the SVD matrices in detail. In Section
5 we show the impact of this approach on retrieval quality
and runtime performance.

2 RELATED WORK

While others have reportedly built large-scale systems uti-
lizing LSI (e.g., the Excite search engine [13]), to our knowl-
edge, only Chen et al. [3] have developed and published a
description of a comprehensive system which directly ad-
dresses the implementation issues required in an LSI system.
The authors describe two approaches for reducing memory
requirements and improving run time efficiency during the
query processing phase of LSI. The first method involves
compressing each entry of the vector to an 8-bit char instead
of a 4-byte float. A lookup table is also implemented to re-
duce the number of multiplications needed when comparing



the query vector to the document vectors. The second ap-
proach involves the development of document clusters, which
are then selected and compared to the query vector. This ap-
proach vastly reduces the number of documents which need
to be compared, and, thus, the number of computations.
The authors do not describe their clustering algorithm in
detail.

Another paper by Gao and Zhang [9] discusses an alter-
native approach to applying sparsification to the LSI term
by dimension and document dimension matrices. The work
by Gao and Zhang was developed independently, and used
only three small collections for evaluation. Our approach to
sparsification is different from the ones used in [9]; further-
more, we present data for seven collections and also collected
data related to the run time considerations, as well as the
retrieval effectiveness, of sparsification.

3 BACKGROUND

In this section we provide background information on the
necessary processing required in a retrieval system that uses
LSI. We also discuss our approach to evaluation.

3.1 Latent Semantic Indexing

Latent Semantic Indexing (LSI) [4] is a well-known tech-
nique used in information retrieval. LSI has been applied to
a wide variety of learning tasks, such as search and retrieval
[4, 6], classification [14] and filtering [6, 7]. LSI is a vec-
tor space approach for modeling documents, and many have
claimed that the technique brings out the ‘latent’ semantics
in a collection of documents [4, 6].

LSI is based on a mathematical technique called Singular
Value Decomposition (SVD). The SVD process decomposes
a term by document matrix into three matrices: a term by
dimension matrix, T , a singular value matrix, S, and a doc-
ument by dimension matrix, D. The number of dimensions
is min (t, d) where t = number of terms and d = number of
documents. The original matrix can be obtained, through
matrix multiplication of TSDT .

In the LSI system, the T , S and D matrices are truncated
to k dimensions. Dimensionality reduction reduces “noise”
in the term–document matrix resulting in a richer word rela-
tionship structure that many researchers claim reveals latent
semantics present in the collection [4, 6]. Queries are repre-
sented in the reduced space by T T

k q, where T T

k is the trans-
pose of the term by dimension matrix, after truncation to k

dimensions. Queries are compared to the reduced document
vectors, scaled by the singular values (SkDk), by computing
the cosine similarity. This process provides a mechanism to
rank the document set for each query.

3.2 Evaluation

Retrieval quality for an information retrieval system can be
expressed in a variety of ways. In the current work, we use
precision and recall to express the quality of an information
retrieval system. Precision is defined as the percentage of re-
trieved documents which are relevant to the query. Recall is
the percentage of all relevant documents that were retrieved.

These metrics can be applied in two ways. First, we can
compute recall and precision at rank = n, where n is a con-
stant. In this case, we look at the first n documents returned
from the query and compute the precision and recall using
the above definitions. An alternative approach involves com-
puting precision at a given recall level. In this second case,
we continue to retrieve documents until a given percentage
of correct documents has been retrieved (for example, 25%),
and then compute the precision. In Section 5, we apply this
second approach to evaluate of our sparsification strategy.

Precision and recall require the existence of collections
that contain a group of documents, a set of standard queries
and a set of relevance judgments (a list of which documents
are relevant to which query, and which are not relevant). We
used seven such collections during the course of our study.
The collections we used are summarized in Table 1. These
collections were downloaded from a variety of sources. MED,
CISI, CRAN, NPL, and CACM were downloaded from the
SMART web site at Cornell University. LISA was obtained
from the Information Retrieval Group web site at the Uni-
versity of Glasgow. The OHSUMED collection was down-
loaded from the Text Retrieval Conference (TREC) web site
at the National Institute of Standards and Technology. Not
all of the documents in the OHSUMED collection have been
judged for relevance for each query. In our experiments, we
calculated precision and recall by assuming that all unjudged
documents are not relevant. Similar studies that calculate
precision using only the judged documents are left to future
work.

4 SPARSIFICATION OF THE LSI

MATRICES

This paper reports the results of study to determine the most
critical elements of the Tk and SkDk matrices, which are in-
put to LSI. We are interested in the impact, both in terms
of retrieval quality and query run time performance, of the
removal of a large portion of the entries in these matrices.
Several patterns were identified in our preliminary work. For
example, removal of all negative elements severely degrades
performance, as does removal of ‘too many’ of the SkDk el-
ements. However, a large portion of the Tk values can be re-
moved without a significant change in retrieval performance.

In this section we describe the algorithm we used to re-
move values from the Tk and SkDk matrices. In Section
5, we describe the impact of this sparsification strategy on
retrieval quality and query run time performance.

4.1 Methodology

Our sparsification algorithm focuses on the values with ab-
solute value near zero, and we ask the question: “How many
values can we remove without severely impacting retrieval
performance?” Intuitively, the elements of the row vectors
in the TkSk matrix and the column vectors in the SkDk ma-
trix can be used to describe the importance of each term
(document) along a given dimension. This approach stems
from the premise that each dimension in the SVD represents
a given concept or group of concepts [12]. Positive values in-
dicate a similarity between the term (document) and the
concept; negative values indicate dissimilarity. Because of

2



Table 1: Collections used to compare Sparsification Strategy to Traditional LSI
Identifier Description Docs Terms Queries

MED Medical abstracts 1033 5831 30
CISI Information science abstracts 1450 5143 76

CACM Communications of the ACM abstracts 3204 4863 52
CRAN Cranfield collection 1400 3932 225
LISA Library and Information Science Ab-

stracts
6004 18429 35

NPL Larger collection of very short docu-
ments

11429 6988 93

OHSUMED Clinically-oriented MEDLINE subset 348566 170347 106

Compute TkSk and SkDk

Determine PosThres: The threshold that would result in removal of x%
of the positive elements of TkSk

Determine NegThres: The threshold that would result in removal of x%
of the negative elements of TkSk

For each element of Tk, change to zero, if the corresponding element
of TkSk Falls between PosThres and NegThres

For each element of SkDk, change to zero, if it falls between
PosThres and NegThres

Figure 1: Sparsification Algorithm

this association between the TkSk and SkDk matrix values,
we decided that the best approach would define a common
truncation value, based on the values in the TkSk matrix,
which would be used for both the Tk and SkDk matrices.
Furthermore, since the negative values are important, we
wanted to retain an equal number of positive and negative
values in the Tk matrix. The algorithm we used is outlined
in Figure 1. We chose positive and negative threshold values
that are based on the TkSk matrix and that result in the re-
moval of a fixed percentage of the Tk matrix. We use these
values to truncate both the Tk and SkDk matrices.

Our approach was tested using seven collections. These
collections have relevance judgments available for each query
and have been used by other researchers to test the perfor-
mance of search and retrieval algorithms [4, 10, 8, 11]. These
collections are summarized in Table 1.

The Parallel General Text Parser (PGTP) [2] was used to
preprocess the text data, including creation and decomposi-
tion of the term document matrix. For our experiments, we
applied the log entropy weighting option and normalized the
document vectors. The sparsification algorithm was applied
to each of our collections, using truncation percentages of
10% to 90%.

Retrieval quality and query runtime performance mea-
surements were taken at multiple values of k. The values of
k for the smaller collections ranged from 25 to 200; k values
from 50 to 500 were used for testing the larger collections.
These values of k were chosen because smaller k values are
preferred when using LSI, due to the computational cost as-
sociated with the SVD algorithm, as well as the computation
cost of storing and comparing large dimension vectors.

5 RESULTS

In this section we describe our experimental results. We
show that our approach substantially reduces the RAM re-
quired to run an LSI system without compromising retrieval
quality. We also show that our approach provides a signifi-
cant improvement in query run time efficiency.

5.1 Impact on Retrieval Quality

The retrieval quality results for three different truncation
values for the collections studied are shown in Figure 2. Re-
trieval quality for our sparsified LSI was compared to a stan-
dard LSI system. The average precision values for both the
baseline and for the experimental technique were obtained
by computing the precision of each query at recall levels .25,
.50, and .75.

Figure 2 demonstrates that removal of 50% of the Tk ma-
trix values resulted in retrieval quality that is indistinguish-
able from the LSI baseline for all seven collections we tested.
In most cases, sparsification up to 70% can be achieved, par-
ticularly at better performing values of k, without a signif-
icant impact on retrieval quality. For example, k=500 for
NPL and k=200 for CISI have performance near or greater
than the LSI baseline when 70% of the values are removed.

5.2 Impact on Query Run Time Perfor-

mance

In order to determine the impact of sparsification on query
run time performance we implemented a sparse matrix ver-
sion of the LSI query processing. The well-known com-
pressed row storage format for sparse matrices was used to

3



(a) MED and CRAN

(b) CISI and CACM

(c) NPL and LISA

(d) OHSUMED

Figure 2: Retrieval Quality of Sparsified LSI vs. LSI

4



Table 2: RAM Savings for T and D matrices

Sparsification Sparsified RAM LSI RAM Improvement
Collection k Level (MB) (MB) (%)

MED 75 70 3.7 7.9 53
CISI 125 70 6.3 12.6 50

CRAN 200 70 8.3 16.3 49
CACM 200 70 14.4 24.6 42
NPL 500 70 93.1 140.5 34
LISA 500 70 66.8 115.7 42

OHSUMED 500 70 3217 3959 19

MED 75 90 1.6 7.9 79
CISI 125 90 2.9 12.6 77

CRAN 200 90 3.6 16.3 78
CACM 200 90 6.3 24.6 75
NPL 500 90 29.0 140.5 79
LISA 500 90 28.3 115.7 76

OHSUMED 500 90 2051 3959 48

store the new sparse matrices generated by our algorithm
[5].

In the compressed row storage format, the nonzero ele-
ments of a matrix are stored as a vector of values. Two ad-
ditional vectors are used to identify the coordinates of each
value: a row pointer vector identifies the position of the first
nonzero element in each row, and a column indicator vector
identifies the column corresponding to each element in the
value vector. This storage format requires a vector of length
num-nonzeroes to store the actual values, a vector of length
num-nonzeroes to identify the column corresponding to each
value, and a vector of length num-rows to identify the start-
ing position of each row. Table 2 shows that this approach
significantly reduces the RAM requirements of LSI. This re-
duction is due to our sparsification strategy, which produces
relative sparse matrix. Implementation of the compressed
row storage format for a non-sparsified LSI system would
result in an increase in the memory requirements.

When comparing the runtime considerations of our ap-
proach to LSI, we acknowledge that our approach requires
additional preprocessing, as we implement two additional
steps, determining the threshold value and applying the
threshold to the Tk and SkDk matrices. These steps are
applied once per collection, however, and multiple queries
can then be run against the collection.

The query processing for LSI is comprised of two primary
tasks: development of the pseudo query, which relies on the
Tk matrix, and the comparison of the pseudo query to the
documents, which uses the SkDk matrix. Table 3 indicates
that the SkDk sparsification ranges from 18% to 33%, when
70% of the Tk values are removed. A much larger SkDk spar-
sification range of 43%-80% is achieved at a 90% reduction
in the Tk matrix.

The number of cpu cycles required to run all queries in
each collection was collected using the clock() function avail-
able in C++. Measurements were taken for both the baseline
LSI code and the sparsified code. Each collection was tested
twice, and the results in Table 3 represent the average of the
two runs for selected records.

Sparsification of the matrix elements results in an im-

provement in query runtime performance for all collections,
with the exception of MED and NPL at 70% sparsification.
The data implies that, for most collections, query run time
performance improves as the number of entries in the doc-
ument vectors is reduced. Figure 2 shows a degradation in
retrieval performance at 90% sparsification for the smaller
collections; however, OHSUMED retrieval quality improves
dramatically at 90% sparsification.

6 CONCLUSIONS

We conclude from this data that query run time improve-
ments in LSI can be achieved using our sparsification strat-
egy for many collections. Our approach zeroes a fixed per-
centage of both positive and negative values of the term and
document vectors produced by the SVD process. Our data
shows that, for small collections, we can successfully reduce
the RAM requirements by 45% (on average), and the query
response time an average of 3%, without sacrificing retrieval
quality. If a slight degradation in retrieval quality is accept-
able, the RAM requirements can be reduced by 77%, and
query run time can be reduced by 40% for smaller collec-
tions using our approach.

On the larger TREC collection (OHSUMED), we can re-
duce the runtime by 30%, reduce the memory required by
48% and improve retrieval quality by 60% by implementing
our sparsification algorithm at 90%.

Acknowledgements

This work was supported in part by National Science Foun-
dation Grant Number EIA-0087977 and the National Com-
putational Science Alliance under IRI030006 (we utilized the
IBM pSeries 690 cluster). The authors appreciate the as-
sistance provided by their colleagues at Lehigh University
and Ursinus College. Co-author William M. Pottenger also
gratefully acknowledges his Lord and Savior, Yeshua (Jesus)
the Messiah, for His continuing guidance in and salvation of
his life.

5



Table 3: Percentage of Document Vector Entries Removed

Term Spars Doc Spars Run Time
Collection k (%) (%) Improvement (%)

MED 75 70 23 -1
CISI 125 70 26 1

CRAN 200 70 29 6
CACM 200 70 28 3
NPL 500 70 33 -3
LISA 500 70 29 10

OHSUMED 500 70 18 3

MED 75 90 47 16
CISI 125 90 53 27

CRAN 200 90 61 37
CACM 200 90 64 40
NPL 500 90 80 66
LISA 500 90 66 54

OHSUMED 500 90 43 30

REFERENCES

[1] Michael W. Berry, Teresa Do, Gavin O’Brien, Vijay
Krishna, and Sowmini Varadhan. SVDPACKC (version
1.0) User’s Guide. Technical report, 1993.

[2] Michael W. Berry and Dian I. Martin. Principal com-
ponent analysis for information retrieval. In E. J. Kon-
toghiorghes, editor, Handbook of Parallel Computing
and Statistics. Marcel Dekker, New York, 2004. In press.

[3] Chung-Min Chen, Ned Stoffel, Mike Post, Chumki
Basu, Devasis Bassu, and Clifford Behrens. Telcordia
LSI engine: Implementation and scalability issues. In
Proceedings of the Eleventh International Workshop on
Research Issues in Data Engineering (RIDE 2001), Hei-
delberg, Germany, April 2001.

[4] Scott C. Deerwester, Susan T. Dumais, Thomas K. Lan-
dauer, George W. Furnas, and Richard A. Harshman.
Indexing by latent semantic analysis. Journal of the
American Society of Information Science, 41(6):391–
407, 1990.

[5] Jack Dongarra. Sparse matrix storage formats. In
Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and
H. van der Vorst, editors, Templates for the Solution
of Algebraic Eigenvalue Problems: A Practical Guide,
pages 372–378. SIAM, Philadelphia, 2000.

[6] Susan T. Dumais. LSI meets TREC: A status report.
In D. Harman, editor, The First Text REtrieval Con-
ference (TREC-1), National Institute of Standards and
Technology Special Publication 500-207, pages 137–152,
1992.

[7] Susan T. Dumais. Latent semantic indexing (LSI)
and TREC-2. In D. Harman, editor, The Second Text
REtrieval Conference (TREC-2), National Institute of
Standards and Technology Special Publication 500-215,
pages 105–116, 1994.

[8] Abdelmoula El-Hamdouchi and Peter Willett. Hierar-
chic document clustering using Ward’s method. In Pro-
ceedings of the Ninth Annual International ACM SIGIR
Conference on Research and Development in Informa-
tion Retrieval, pages 149–156, 1986.

[9] Jing Gao and Jun Zhang. Sparsification strategies in
latent semantic indexing. In M. W. Berry and W. M.
Pottenger, editors, Proceedings of the 2003 Text Mining
Workshop, May 2003.

[10] George Karypis and Eui-Hong Han. Fast supervised
dimensionality reduction algorithm with applications to
document categorization & retrieval. In Proceedings of
CIKM 2000, pages 12–19, 2000.

[11] Stefan Klink, Armin Hust, Markus Junker, and Andreas
Dengel. Improving document retrieval by automatic
query expansion using collaborative learning of term-
based concepts. In Proceedings of the 5th International
Workshop on Document Analysis Systems (DAS), vol-
ume 2423 of Lecture Notes in Computer Science, pages
376–387, Princeton, NJ, USA, August 2002. Springer.

[12] Hinrich Schütze. Dimensions of meaning. In Proceedings
of Supercomputing, pages 787–796, 1992.

[13] John D. Zakis and Zenon J. Pudlowski. The world wide
web as universal medium for scholarly publication, in-
formation retrieval and interchange. Global Journal of
Engineering Education, 1(3), 1997.

[14] Sarah Zelikovitz and Haym Hirsh. Using LSI for text
classification in the presence of background text. In
H. Paques, L. Liu, and D. Grossman, editors, Pro-
ceedings of CIKM-01, tenth ACM International Con-
ference on Information and Knowledge Management,
pages 113–118, Atlanta, GA, 2001. ACM Press, New
York.

6


