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Abstract 
 
Higher order co-occurrences play a key role in the 

effectiveness of systems used for text mining.  A wide 
variety of applications use techniques that explicitly or 
implicitly employ a limited degree of transitivity in the co-
occurrence relation. In this work we show use of higher 
orders of co-occurrence in the Singular Value 
Decomposition (SVD) algorithm and, by inference, on the 
systems that rely on SVD, such as LSI.  Our empirical and 
mathematical studies prove that term co-occurrence plays 
a crucial role in LSI. 

This work is the first to study the values produced in 
the truncated term-term matrix, and we have discovered 
an explanation for why certain term pairs receive a high 
similarity value, while others receive low (and even 
negative) values.  Thus we have discovered the basis for 
the claim that is frequently made for LSI:  LSI emphasizes 
important semantic distinctions (latent semantics) while 
reducing noise in the data 

 
 
1. Introduction 
 
Term clustering is an approach that researchers have 

used to convert the original words of a document into 
more effective content identifiers for use in text mining 
applications.  Unsupervised term clustering algorithms 
generally consist of two phases.  In the first phase term-
term similarity is determined.  The second phase uses the 
term-term similarities to develop clusters of terms.  Latent 
Semantic Indexing (LSI) [4] is a text mining algorithm 
that is based on Singular Value Decomposition (SVD).  
The values in the truncated term-term matrix produced by 
SVD can be treated as similarity measures for input to a 
clustering algorithm. In this work we present simple, 
highly intuitive theoretical framework for understanding 
the values in the LSI term-term matrix.   This framework 
is a critical step towards our goal of detecting correlations 
between the values in the term-term matrix and the higher 
order co-occurrence implicit in the data.  This work also 
presents preliminary work toward detecting patterns in the 

data.   
LSI has been applied to a wide variety of learning 

tasks, such as classification [16] and filtering [6,7].  LSI 
is a vector space approach for modeling documents, and 
many have claimed that the technique brings out the 
�latent� semantics in a collection of documents [4,5]. 

LSI is based on well known mathematical technique 
called Singular Value Decomposition (SVD).  The 
algebraic foundation for Latent Semantic Indexing (LSI) 
was first described in [4] and has been further discussed 
in [2][3].  These papers describe the SVD process and 
interpret the resulting matrices in a geometric context.  
The SVD, truncated to k dimensions, gives the best rank-
k approximation to the original matrix.  In [15], Wiemer-
Hastings shows that the power of LSI comes primarily 
from the SVD algorithm.   

Other researchers have proposed theoretical 
approaches to understanding LSI.  [17] describes LSI in 
terms of a subspace model and proposes a statistical test 
for choosing the optimal number of dimensions for a 
given collection.  [14] discusses LSI�s relationship to 
statistical regression and Bayesian methods.  [8] 
constructs a dual probability model for LSI using the 
cosine similarity measure.   

Although other researchers have explored the SVD 
algorithm to provide an understanding of SVD-based 
information retrieval systems, to our knowledge, only 
Schütze has studied the values produced by LSI [13].  
We expand upon this work, showing here that SVD 
exploits higher order term co-occurrence in a collection, 
and providing insight into the origin of the values 
produced in the term-term matrix.  

This work, for the first time, provides a model for 
understanding LSI semantically � a goal that has been 
quite elusive for over 12 years since the technique was 
first introduced.  Our framework is based on the concept 
of term co-occurrences.  Term co-occurrence data is 
implicitly or explicitly used for almost every advanced 
application in textual data mining.   

This work provides the theoretical foundation for 
understanding the use of limited transitivity in LSI. 
Eventually, the patterns we are detecting will be used to 



 

approximate the SVD algorithm, which is resource 
intensive [5,6,7], at much lower cost.   In [10], we 
describe an unsupervised learning algorithm that develops 
clusters of terms, using the LSI term-term matrix to define 
the similarity between terms.  Use both similarity and anti-
similarity measures to develop clusters.  Our results show 
a significant improvement in performance when the 
positive and negative clusters are used in a search and 
retrieval application.      

The goal of the current line of work is a theoretically 
sound, effective and efficient unsupervised clustering 
algorithm that can be applied to a wide variety of textual 
data mining applications.  The theoretical framework we 

provide here is a crucial step in this research project.  
In section 2 we present a simple example of the use of 

third-order co-occurrence in LSI.  Section 3 presents a 
mathematical proof of term transitivity within LSI.  In 
section 4 we identify some initial patterns in the data.   

 
2. Co-occurrence in LSI � An Example 

 
The data for the following example is taken from [4].  

In this paper, the authors describe an example with 12 
terms and 9 documents.  The term-term matrix for this 

collection is shown in table 1.  
The SVD process used by LSI decomposes the matrix 

into three matrices:  T, a term by dimension matrix, S a 
singular value matrix, and D, a document by dimension 
matrix.  The number of dimensions is min (t, d) where t = 
number of terms and d = number of documents.  The 
original matrix can be obtained, through matrix 
multiplication of TSDT.  The reader is referred to [4] for 
the T, S, and D matrices.  In the LSI system, the T, S and 
D matrices are truncated to k dimensions.  
Dimensionality reduction reduces �noise� in the term�
term matrix resulting in a richer word relationship 
structure that reveals latent semantics present in the 

collection.  After dimensionality reduction the term-term 
matrix can be approximated using the formula 
TkSk(TkSk)T.  The term-term matrix, after reduction to 2 
dimensions, is shown in table 2. 

We will assume that the value in position (i,j) of the 
matrix represents the similarity between term i and term j 
in the collection.  As can be seen in table 2, user and 
human now have a value of .94, representing a strong 
similarity, where before the value was zero.  In fact, user 
and human is an example of second order co-occurrence.  
The relationship between user and human comes from 
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human x 1 1 0 2 0 0 1 0 0 0 0
interface 1 x 1 1 1 0 0 1 0 0 0 0
com puter 1 1 x 1 1 1 1 0 1 0 0 0
user 0 1 1 x 2 2 2 1 1 0 0 0
system 2 1 1 2 x 1 1 3 1 0 0 0
response 0 0 1 2 1 x 2 0 1 0 0 0
tim e 0 0 1 2 1 2 x 0 1 0 0 0
EPS 1 1 0 1 3 0 0 x 0 0 0 0
Survey 0 0 1 1 1 1 1 0 x 0 1 1
trees 0 0 0 0 0 0 0 0 0 x 2 1
graph 0 0 0 0 0 0 0 0 1 2 x 2
minors 0 0 0 0 0 0 0 0 1 1 2 x

Table 1:  Deerwester Term by Term Matrix
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human 0.62 0.54 0.56 0.94 1.69 0.58 0.58 0.84 0.32 -0.32 -0.34 -0.25
interface 0.54 0.48 0.52 0.87 1.50 0.55 0.55 0.73 0.35 -0.20 -0.19 -0.14
com puter 0.56 0.52 0.65 1.09 1.67 0.75 0.75 0.77 0.63 0.15 0.27 0.20
user 0.94 0.87 1.09 1.81 2.79 1.25 1.25 1.28 1.04 0.23 0.42 0.31
system 1.69 1.50 1.67 2.79 4.76 1.81 1.81 2.30 1.20 -0.47 -0.39 -0.28
response 0.58 0.55 0.75 1.25 1.81 0.89 0.89 0.80 0.82 0.38 0.56 0.41
tim e 0.58 0.55 0.75 1.25 1.81 0.89 0.89 0.80 0.82 0.38 0.56 0.41
EPS 0.84 0.73 0.77 1.28 2.30 0.80 0.80 1.13 0.46 -0.41 -0.43 -0.31
Survey 0.32 0.35 0.63 1.04 1.20 0.82 0.82 0.46 0.96 0.88 1.17 0.85
trees -0.32 -0.20 0.15 0.23 -0.47 0.38 0.38 -0.41 0.88 1.55 1.96 1.43
graph -0.34 -0.19 0.27 0.42 -0.39 0.56 0.56 -0.43 1.17 1.96 2.50 1.81
minors -0.25 -0.14 0.20 0.31 -0.28 0.41 0.41 -0.31 0.85 1.43 1.81 1.32

Table 2:  Deerwester Term by Term Matrix, truncated to two dimensions



 

the transitive relation:  user co-occurs with interface and 
interface co-occurs with demonstrates the value of the LSI 
system, since queries on the term user would correctly 
result in documents containing the term human in the 
context of this collection.   

A closer look reveals a value of 0.15 in the 
relationship between trees and computer.   Looking at the 
co-occurrence path gives us an explanation as to why 
these terms received a positive (although weak) similarity 
value.  From table 1, we see that trees co-occurs with 
graph, graph co-occurs with survey, and survey co-occurs 
with computer.  Hence the trees/computer relationship is 
an example of third order co-occurrence.   In section 4 we 
present trend data that explains term-term matrix values in 
terms of the number of connectivity paths between terms. 

 
3. Transitivity and the SVD 

 

In this section we present mathematical proof that the 
SVD algorithm encapsulates term co-occurrence 
information.  Specifically we show that a connectivity 
path exists for every nonzero element in the truncated 
matrix. 

We begin by setting up some notation.  Let A be a 
term by document matrix.  The SVD process decomposes 
A into three matrices:  a term by dimension matrix, T, a 
diagonal matrix of singular values, S, and a document by 
dimension matrix D.  The original matrix is re-formed by 
multiplying the components, A = TSDT.   When the 
components are truncated to k dimensions, a reduced 
representation matrix, Ak is formed as Ak = TkSkDk

T [4].   
The term-term co-occurrence matrices for the full 

matrix and the truncated matrix are [4]: 
(3a)  B = TSSTT 
(3b)  Y = TkSkSkTk

T 
 
We note that elements of B represent term co-

occurrences in the collection, and bij >= 0 for all i and j.  
If term i and term j co-occur in any document in the 
collection, bij > 0. Matrix multiplication results in 
equations 4a and 4b for the ijth element of the co-
occurrence matrix and the truncated matrix, respectively.  
Here uip is the element in row i and column p of the matrix 
T, and sp is the pth  largest singular value. 

(4a)  jp
1

ip
2
pij uu sb �

=

=
m

p
 

(4b)  jp
1

ip
2
pij uu sy �

=

=
k

p
 

B2 can be represented in terms of the T and S:  
B2 = (TSSTT)( TSSTT)  = TSS(TTT)SSTT  
     = TSSSSTT  = TS4TT     

 
An inductive proof can be used to show: 
(5)  Bn =   TS2nTT 
 
And the element bij

n can be written: 

(6)  bij
n = jp

1
ip

2n
p uu s�

=

m

p
 

 
To complete our argument, we need two lemmas 

related to the powers of the matrix B.   
Lemma 1:  Let i and j be terms in a collection, there 

is a transitivity path of order <= n between the terms, iff 
the ijth element of Bn is nonzero.    

Lemma 2:   If there is no transitivity path between 
terms i and j, then the ijth element of Bn (bij

n) is zero for 
all n. 

The proof of these lemmas can be found in [11].  We 
are now ready to present our theorem. 

Theorem 1:  If the ijth element of the truncated term 
by term matrix, Y, is nonzero, then there is a transitivity 
path between term i and term j.   

We need to show that if yij ≠ 0, then there exists terms 
q1, � , qn  n >= 0 such that bi q1 ≠ 0, bq1 q2 ≠ 0, �. bqn j ≠ 
0.  Alternately, we can show that if there is no path 
between terms i and j, then yij = 0 for all k.   

Assume the T and S matrices have been truncated to 
k dimensions and the resulting Y matrix has been 
formed.  Furthermore, assume there is no path between 
term i and term j.  Equation (4b) represents the yij 
element.  Assume that S1 > S2 > S3 > � > Sm  > 0.  By 
lemma 2, bij

n = 0 for all n.  Dividing (6) by s1
2n, we 

conclude that 

 ui1uj1 + jp
2

ip
2n

1

p uu )
s
s

(�
=

m

p
 = 0 

We take the limit of this equation as n � ∞, and note 
that (sp/s1) < 1 when 2 <= p <= m.  Then as n� ∞,  
(sp/s1) 2n � 0 and the summation term reduces to zero.  
We conclude that ui1uj1 = 0.  Substituting back into bij

n 
we have: 

jp
2

ip
2n
p uu s�

=

m

p
 = 0 

Dividing by s2
2n yields: 

ui2uj2 + jp
3

ip
2n

2

p uu )
s
s

(�
=

m

p
 = 0 for all n. 

Taking the limit as n� ∞, we have that ui2uj2 = 0.  If 
we apply the same argument m times we will obtain uipujp 
= 0 for all p such that 1 <= p <= m.  Substituting back 
into (4b) shows that yij = 0 for all k. 

The argument thus far depends on our assumption 



 

that S1 > S2 > S3 > � > Sm. When using SVD it is 
customary to truncate the matrices by removing all 
dimensions whose singular value is below a given 
threshold [5]; however, for our discussion, we will merely 
assume that, if s1 > s2 > � > sz-1 > sz = sz+1 = sz+2 = � = 
sz+w > sz+w+1 > � > sm for some z and some w >= 1, the 
truncation will either remove all of the dimensions with 
the duplicate singular value, or keep all of the dimensions 
with this value.   

We need to examine two cases.  In the first case, z > k 
and the z � z+w dimensions have been truncated.  In this 
case, the above argument shows that either ui q = 0 or uj q = 
0 for all q <=k and, therefore, yij = 0.   

To handle the second case, we assume that z < k and 
the z � z+w dimensions have not been truncated and 
rewrite equation (6) as: 

bij
n = jp

1

1
ip

2n
p uu s�

−

=

z

p
 + jpip

2n
z uu s�

+

=

wz

zp
 +  

jp
1

ip
2n
p uu s�

++=

m

wzp
 = 0 

The argument above can be used to show that uip ujp = 
0 for p <= z-1, and the first summation can be removed.   
After we divide the remainder of the equation by 2n

zs : 

bij
n =  jpipuu�

+

=

wz

zp
 + 

 jp
1

ip
2n

z

p uu )
s
s

(�
++=

m

wzp
 = 0 

Taking the limit as n � ∞, we conclude that 

jpipuu�
+

=

wz

zp
 = 0, and bij

n is reduced to: 

bij
n =  jp

1
ip

2n
p uu s�

++=

m

wzp
 = 0 

Again using the argument above, we can show that uip 
ujp = 0 for z+w+1 <= p <= m.  Furthermore, 

yij = jp

1

1
ip

2
p uu s�

−

=

z

p
 + jpip

2
z uu s�

+

=

wz

zp
 +  

jp
1

ip
2
p uu s�

++=

k

wzp
 = 0 

And our proof is complete. 
 

4. Experimental Results 
 

We chose the MED, CRAN, CISI and LISA 
collections for our study of the higher order co-occurrence 
in LSI.  MED is a commonly studied collection of medical 

abstracts.  It consists of 1033 documents and 5823 terms.  
CISI is a set of 1460 information science abstracts 
containing 5609 terms.  The MED and CISI collections 
were used for the landmark Deerwester paper [4].  
CRAN is the Cranfield collection, one of the earliest 
collections available to information retrieval researchers.  
CRAN consists of 1398 documents and 4612 terms.   

Experiments on a larger collection, LISA, were also 
performed.  The LISA (Library and Information Science 
Abstracts) test collection was developed by the 
University of Sheffield, England. The LISA collection 
was processed in two ways.  The first was an extraction 
of words only, resulting in a collection with 6004 
documents and 18429 terms.  We will refer to this 
collection as LISA Words.  Next the HDDI� Collection 
Builder [12] was used to extract maximal length noun 
phrases.  This collection contains 5998 documents (no 
noun phrases were extracted from several short 
documents) and 81,879 terms.  The experimental results 
for the LISA Noun Phrase collection were restricted to 
1000 randomly chosen terms (due to processing time 
considerations).  However, for each of the 1000 terms, 
all co-occurring terms (up to 81,879) were processed, 
giving us confidence that this data set accurately reflects 
the scalability of our result. 

 
4.1 Methodology 

 
Our experiments captured four main features of these 

data sets:  the order of co-occurrence for each pair of 
terms in the truncated term-term matrix (shortest path 
length), the order of co-occurrence for each pair of terms 
in the original (not truncated) matrix, the distribution of 
the similarity values produced in the term-term matrix, 
categorized by order of co-occurrence, and the number 
of second-order co-occurrence paths between each set of 
terms.     

In order to complete these experiments, we needed a 
program to perform the SVD decomposition.  The 
SVDPACK suite [1] that provides eight algorithms for 
decomposition was selected because it was readily 
available, as well as thoroughly tested.  The singular 
values and vectors were input into our algorithm.   

 
4.2 Results 

 
The order of co-occurrence summary from the 

TraceCo-occurrence program for all of the collections is 
shown in table 3.  Fifth order co-occurrence was the 
highest degree of transitivity observed.  In is interesting 
to note that the noun phrase collection is the only 
collection that resulted in a co-occurrence order higher 
than 3.  It is important also to note that the order 2 and 



 

order 3 co-occurrences significantly reduce the sparseness 
of the original data.  The lines labeled <Collection> 
Original indicate the number of pairs with co-occurrence 
order n determined from a trace of the original term-term 
matrix.  Note that LSI finds over 99% of term co-
occurrences present in the data for the first four 
collections, and 95% for the LISA Noun Phrase 
collection.    

Table 4 shows the weight distribution for the LISA 
Words data, for k=100.  The degree 2 pair weights range 
from -.3 to values larger than 8.  These co-occurrences 
will result in significant differences in document matching 
when the LSI algorithm is applied in a search and retrieval 
application.  However, the weights for the degree 3 
transitivity pairs are between -.2 and .1, adding a 
relatively small degree of variation to the final results.  
Also note that many of the original term-term co-
occurrences (degree 1 pairs) are reduced to nearly zero, 
while others are significantly larger.  

Table 4 also shows the average number of paths by 
term-term value range for LISA Words.  Clearly the 
degree 2 pairs that have a similarity close to zero have a 
much smaller average number of paths than the pairs with 

either higher negative or positive similarities.  MED and 
CISI showed similar trends.  This data provides insight 
into understanding the values produced by SVD in the 
truncated term-term matrix.   

Notice that the degree 1 pairs with higher average 
number of paths tend to have negative similarity values, 
pairs with few co-occurrences tend to receive low 
similarity values, and pairs with a moderate number of 
co-occurrence paths tend to receive high similarity 
values.  This explains how LSI emphasizes important 
semantic distinctions, while de-emphasizing terms that 
co-occur frequently with many other terms (reduces 
�noise�).   On the other hand, degree 2 pairs with many 
paths of connectivity tend to receive high similarity 
values, while those with a moderate number tend to 
receive negative values.  These degree 2 pairs with high 
values can be considered the �latent semantics� that are 
emphasized by LSI. 

 
5. Conclusions and Future Work 
 

Higher order co-occurrences play a key role in the 
effectiveness of systems used for text mining.  We have 

Collection First Second Third Fourth Fifth Sixth
MED Truncated 1,110,485       15,867,200         17,819              -                 -                
MED Original 1,110,491       15,869,045         17,829              -                 -                
CRAN Truncated 2,428,520       18,817,356         508                  -                 -                
CRAN Original 2,428,588       18,836,832         512                  -                 -                
CISI Truncated 2,327,918       29,083,372         17,682              -                 -                
CISI Original 2,328,026       29,109,528         17,718              -                 -                
LISA Words Truncated 5,380,788       308,556,728       23,504,606       -                 -                
LISA Words Original 5,399,343       310,196,402       24,032,296       
LISA Noun Phrase Truncated 51,350            10,976,417         65,098,694       1,089,673      3                   
LISA Noun Phrase Original 51,474            11,026,553         68,070,600       2,139,117      15,755          34                 

Table 3:  Order of Co-occurrence Summary Data (k=100 for all Collections)

Term Term 
Matrix Value

Degree 1 
Pairs

Degree 2 
Pairs

Degree 3 
Pairs Degree 2 Paths

Average No Paths 
for Degree 1 pairs 

Average No 
Paths for Degree 

2 pairs

Average No 
Paths for Degree 

3 pairs
less than -0.2 21,946           186,066         -               66,323,200       3,022                    356                    -                     

-0.2 to -0.1 10,012           422,734         2                  59,418,198       5,935                    141                    29,709,099         
-0.1 to 0.0 76,968           127,782,170  18,398,756  1,587,147,584  20,621                  12                      86                      
0.0 to 0.1 1,670,542      175,021,904  5,105,848    4,026,560,130  2,410                    23                      789                    
0.1 to 0.2 662,800         3,075,956      -               721,472,948     1,089                    235                    -                     
0.2 to 0.3 418,530         974,770         -               389,909,456     932                       400                    -                     
0.3 to 0.4 320,736         439,280         -               259,334,214     809                       590                    -                     
0.4 to 0.5 309,766         232,584         -               195,515,980     631                       841                    -                     
0.5 to 0.6 241,466         136,742         -               151,687,510     628                       1,109                 -                     
0.6 to 0.7 158,210         85,472           -               117,150,688     740                       1,371                 -                     
0.7 to 0.8 128,762         56,042           -               96,294,828       748                       1,718                 -                     
0.8 to 0.9 113,826         38,156           -               81,799,460       719                       2,144                 -                     
0.9 to 1.0 119,440         25,958           -               72,273,400       605                       2,784                 -                     
1.0 to 2.0 547,354         70,616           -               393,001,792     718                       5,565                 -                     
2.0 to 3.0 208,238         6,678             -               172,335,854     828                       25,807                -                     
3.0 to 4.0 105,332         1,112             -               98,575,368       936                       88,647                -                     
4.0 to 5.0 62,654           334                -               64,329,366       1,027                    192,603              -                     
5.0 to 6.0 40,650           78                  -               45,174,210       1,111                    579,157              -                     
6.0 to 7.0 28,264           36                  -               33,514,804       1,186                    930,967              -                     
7.0 to 8.0 21,316           24                  -               26,533,666       1,245                    1,105,569           -                     
over 8.0 113,976         16                  -               188,614,174     1,655                    11,788,386         -                     

Table 4:  Average Number of paths by term-term value for LISA Words, k=100



 

explicitly shown use of higher orders of co-occurrence in 
the Singular Value Decomposition (SVD) algorithm and, 
by inference, on the systems that rely on SVD, such as 
LSI.  Our empirical and mathematical studies prove that 
term co-occurrence plays a crucial role in LSI.  The work 
shown here will find many practical applications.  

This work is the first to study the values produced in 
the truncated term-term matrix, and we have discovered 
an explanation for why certain term pairs receive a high 
similarity value, while others receive low (and even 
negative) values.  Thus we have discovered the basis for 
the claim that is frequently made for LSI:  LSI emphasizes 
important semantic distinctions (latent semantics) while 
reducing noise in the data.  The correlation between the 
number of connectivity paths between terms and the value 
produced in the truncated term-term matrix is another 
important component in the theoretical foundation for 
LSI.    

Future plans include development of an approximation 
algorithm for LSI.  For example, we can start with a very 
simple function such as:   

 
S(A,B)  = -.1 if number of connectivity  
  paths is > 1000 
   0 if number of connectivity  
  paths is < 100 
 (.001 * number of paths), otherwise 
                         
This function would need to evaluated and modified 

based on the results and the trend data for larger 
collections.  Our goal is to approximate the LSI term-term 
matrix using a faster algorithm.  This matrix can then be 
used in place of the LSI matrix in a variety of 
applications, such as our term clustering algorithm [13]. 
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