
Annotations in Data Streams

Amit Chakrabarti1, Graham Cormode2, and Andrew McGregor3

1 Dartmouth College, ac@cs.dartmouth.edu
2 AT&T Labs–Research, graham@research.att.com

3 University of Massachusetts, Amherst, mcgregor@cs.umass.edu

Abstract. The central goal of data stream algorithms is to process massive streams
of data using sublinear storage space. Motivated by work in the database com-
munity on outsourcing database and data stream processing, we ask whether the
space usage of such algorithms be further reduced by enlisting a more powerful
“helper” who can annotate the stream as it is read. We do not wish to blindly
trust the helper, so we require that the algorithm be convinced of having com-
puted a correct answer. We show upper bounds that achieve a non-trivial trade-
off between the amount of annotation used and the space required to verify it.
We also prove lower bounds on such tradeoffs, often nearly matching the upper
bounds, via notions related to Merlin-Arthur communication complexity. Our re-
sults cover the classic data stream problems of selection, frequency moments,
and fundamental graph problems such as triangle-freeness and connectivity. Our
work is also part of a growing trend — including recent studies of multi-pass
streaming, read/write streams and randomly ordered streams — of asking more
complexity-theoretic questions about data stream processing. It is a recognition
that, in addition to practical relevance, the data stream model raises many inter-
esting theoretical questions in its own right.

1 Introduction

The data stream model has become a popular abstraction when designing algorithms
that process network traffic and massive data sets [4, 21]. The computational restric-
tions that define this model are severe: algorithms must use a relatively small amount
of working memory and process input in whatever order it arrives. This captures con-
straints in high-throughput data processing settings. For example, network monitoring
often requires (near) real-time response to anomalies and hence traffic must be pro-
cessed as it arrives, rather than being stored and processed offline. For massive data sets
stored in external memory, being able to process the data in any order avoids the I/O
bottlenecks that arise with algorithms that assume random access. Unfortunately, while
some problems admit efficient streaming algorithms, many others provably require a lot
of working memory or multiple passes over the data, which is typically not feasible.

This paper considers the potential for off-loading stream computation to a more
powerful “helper” so that single pass, small-space stream computation is possible even
for such “hard” functions. The additional power of the helper can arise in a variety of
situations, e.g., multiple processing units, special purpose hardware, or a third party
who provide a commercial stream processing service. This last case has recently gar-
nered attention in the context of outsourcing database processing [27, 29, 34]. A key

issue is that we do not want to blindly trust the helper: hardware faults or outright de-
ception by a third-party would lead to incorrect results. So our protocols must have
sufficient information contained in the help to allow the “verifier” to be convinced that
they have obtained the correct answer. We think of this help as annotations augmenting
the original stream. Our goal is to design protocols so that the verifier finds the correct
answer with an honest helper, and is likely not fooled by a dishonest helper. The pri-
mary metrics are the amount of annotations provided by the helper and the amount of
working space used by the verifier.

Our approach is naturally related to Interactive Proofs and Merlin-Arthur commu-
nication protocols [1, 5, 25] but differs in two important regards. Firstly, the verifier
must process both the original data and the advice provided by the helper under the
usual restrictions of the data stream model. Secondly, we focus on annotations that can
be provided online. Note that in Merlin-Arthur communication, it is assumed that the
helper is omniscient and that the advice he provides can take into account data held
by any of the players. In the stream model, this would correspond to prescience where
the annotation in the stream at position t may depend on data that is yet to arrive. In
contrast we are primarily interested in designing algorithms with online annotation, i.e.,
annotation that only depends on data that has arrived before the annotation is written.
This corresponds to a helper who sees the data concurrently with the verifier.
Our Contributions: We first formally define the relevant models: traditional and online
Merlin-Arthur communication, and streaming models with either prescient or online
annotations. We then investigate the complexity of a range of problems in these models,
including selection, frequency moments, and graph problems such as triangle-counting
and connectivity. Estimating frequency moments in particular has become a canonical
problem when exploring variants of the data stream model such as random order streams
[10] and read/write streams [7]. Our results include:

– Selection. The problem of finding the median of m values in the range [n] high-
lights the difference between prescient and online annotation. For any h,v such
that hv ≥ m we present an O(v logm)-space algorithm that uses O(h logm logn)
bits of online annotation. Furthermore, we show that this trade-off is optimal up to
polylogarithmic factors. In contrast, a trivial O(logmn) space algorithm can verify
O(logn) bits of prescient annotation.

– Frequency Moments and Frequent Items. We next consider properties of { fi}i∈[n]
where fi is the frequency of the token “i”. For any h,v such that hv≥ n, we present
an O(h logm)-space algorithm that uses (φ−1v logm) bits of online annotation and
returns exactly the tokens whose frequency exceeds φm. We also show an O(logm)
space algorithm that uses O(ε−1 log2 m) bits of online annotation and returns a set
of tokens containing {i : fi ≥ φm} and no elements from {i : fi ≤ (φ − ε)m}. This
algorithm relies on a powerful way that annotation can be used in conjunction with
sketch-based algorithms. For any h,v such that hv≥ n, we present an O(kv logm)-
space algorithm that uses O(k2h logm) bits of online annotation and computes Fk =
∑i f k

i exactly (k ∈ Z+). The trade-off is optimal up to polylogarithmic factors even
if the algorithm is allowed to use prescient annotation. To prove this we present the
first Merlin-Arthur communication bounds for multi-party set-disjointness.

– Graph Problems. For graphs defined by streams of m edges on n nodes, we show
that only O(logn) space is needed by the verifier to determine whether a graph is
connected, contains a perfect matching, or is triangle-free, with annotation propor-
tional to the input size. We show that our algorithms are optimal in many cases. For
any h,v such that hv ≥ n3, we also present an Õ(v) space algorithm for counting
triangles that uses Õ(h) bits of annotation where Õ hides poly-logarithmic factors.

Related Work: When multiple passes over the input are allowed, it is natural to con-
sider annotations that can be written to the “input tape” and are available to the stream
algorithm in subsequent passes [3,14,15]. The read/write stream model, which provides
both multiple passes and multiple working tapes, can be viewed as a natural extension
of the multi-pass annotation model [7, 8, 20]. However, such annotations are of no use
if only a single pass over the input is allowed.

Few examples of prior work have explicitly considered annotations that are pro-
vided by an (untrusted) third party. Gertner et al. [19] showed that the set of languages
recognized by a verifier with logarithmic space given annotation polynomial in the in-
put size is exactly NP. In contrast, our focus is on the case where the annotation is
(sub)linear in the input size and can be provided online; the distinction between pre-
scient and online annotation was not relevant in their results because with polynomial
annotation, the entire input could be repeated. Feigenbaum et al. [17] observe that a log-
arithmic space verifier can check a linear space annotation for the disjointness problem.
In communication complexity, the role of non-deterministic advice has been studied
more extensively, see e.g., [5, 26]. Recent works of Aaronson and Widgerson [1] and
Klauck [25] are particularly relevant. They resolve the MA complexity of two-party set
disjointness — we extend some of their techniques to our streaming model.

There has also been more applied work which implicitly defines annotation proto-
cols. The notion of stream punctuations are, in our terminology, simple prescient anno-
tations, indicating facts such as that there are no more tuples relevant to timestamp t in
the remainder of the stream [33]. Work on stream outsourcing studies the problem of
verifying that a claimed “grouping” corresponds to the input data [34]. They solve exact
and approximate versions of the problem by using a linear amount of annotation. Lastly,
work on proof infused streams answers various selection and aggregation queries over
sliding windows [27] with logarithmic space and linear annotation. However, a critical
difference is that this work requires that the helper and verifier agree on a one-way hash
function, for which it is assumed the helper cannot find collisions. Our results are in a
stronger model without this assumption.

2 Models and Definitions

2.1 Communication Models

Let f : X1×·· ·×Xt →{0,1} be a function, where each Xi is a finite set. This naturally
gives a t-player number-in-hand communication problem, where Player i holds an input
xi ∈ Xi and the players wish to output f (x1, . . . ,xt) correctly, with high probability.
MA Communication: We first consider a variant of this communication model. A
Merlin-Arthur protocol (henceforth, “MA protocol”) for f is one that involves the

usual t players, plus a “super-player,” called Merlin, who knows the entire input x =
(x1, . . . ,xt). The protocol works as follows: first Merlin deterministically writes a help
message h on the blackboard, and then Players 1 through t run a randomized protocol
P , using a public random string R, eventually outputting a bit out(P;x,R,h). To clar-
ify, R is not known to Merlin at the time he writes h. An MA protocol is δ -error if there
exists a function h : X1× . . .×Xt →{0,1}∗, such that:

1. If f (x) = 1 then PrR[out(P;x,R,h(x)) = 0]≤ δ .
2. If f (x) = 0 then ∀h′ PrR[out(P;x,R,h′) = 1]≤ δ .

We define err(P) to be the minimum δ such that the above conditions are satis-
fied. We also define the help cost hcost(P) to be the maximum length of h, over all
x, and the verification cost vcost(P) to be the maximum number of bits communi-
cated by Players 1 through t over all x and R. Finally, we define the cost of P to be
cost(P) = hcost(P)+ vcost(P). We then define the δ -error MA-complexity of f as
MAδ (f) = min{cost(P) : P is an MA protocol for f witherr(P) ≤ δ} . Further, we
define MA(f) = MA1/3(f).
Online-MA Communication: We also consider a variant of the above model, specific
to one-way protocols (i.e., protocols where the players speak once each, in increasing
order), where Merlin constructs t help messages h1, . . . ,ht so that the ith message is
only a function of the first i inputs. To make this precise we need to amend the definition
of δ -error: An online-MA protocol is δ -error if there exists a family of functions hi :
X1× . . .×Xi→{0,1}∗, such that:

1. If f (x) = 1 then PrR[out(P;x,R,h1(x1),h2(x1,x2), . . . ,ht(x1, . . . ,xt)) = 0]≤ δ .
2. If f (x) = 0 then ∀h′ = (h′1,h

′
2, . . . ,h

′
t) PrR[out(P;x,R,h′) = 1]≤ δ .

The message hi is revealed privately to the ith player. We define the help cost,
hcost(P), to be the maximum length of ∑i∈[t] |hi|. We define err(P),vcost(P), and
cost(P) as for MA. Define MA→

δ
(f) = min{cost(P) : P is an online MA protocol

for f with err(P)≤ δ} and write MA→(f) = MA→1/3(f).

2.2 Data Stream Models

The annotated data-stream models are most conveniently defined relative to the above
communication models. Again we consider the computation of a function f on a t-
tuple x ∈ U t for some universe U , e.g., {0,1} or [n]. The main difference from the
communication model is that we further insist that the message sent by player i must
be computed with limited memory and only sequential access to xi and hi. Without
advice, this is equivalent to the usual definition of the single-pass data stream model.
We will also consider non-Boolean functions f and a notion of approximation: we say
f is computed correctly if the answer returned is in some pre-defined set C(f (x)), e.g.,
{a : |a− f (x)| ≤ ε f (x)}.
Stream Model with Prescient Annotations: In the context of the stream model we
consider the help h provided by Merlin to be decomposed into t (deterministic) func-
tions that map the input to binary help strings: h1 : U t→{0,1}∗, . . . ,ht : U t→{0,1}∗.
Let h(x) := (h1(x), . . . ,ht(x)). We then consider a randomized protocol, A , with ora-
cle access to a random string R, where Player i computes a message of size at most

w given only w bits of working memory and only sequential access to the bit stream
〈xi,hi(x)〉. The output of this protocol is allowed to include the special symbol ⊥ if
the verifier is not convinced of the validity of the annotation. Such a protocol is said
be δ -error if PrR[out(A ;x,R,h) 6∈C(f (x))]≤ δ and PrR[out(A ;x,R,h′) 6=⊥]≤ δ for
any h′ = (h′1,h

′
2, . . . ,h

′
t) 6= h(x). We define err(A) to be the minimum δ such that the

above conditions are satisfied. We define the help cost hcost(A) to be the maximum
length of ∑i |hi|, over all x, and the verification cost vcost(A) = w. We say that A and
h forms an (h,v) prescient scheme if hcost(A) = O(h + 1), vcost(A) = O(v + 1) and
err(A) < 1/3.
Stream Model with Online Annotations: For online annotations we insist that the
ith help function is only a function of (x1, . . . ,xi). The other definitions are as above.
We say that A and h form an (h,v) online scheme as above if hcost(A) = O(h + 1),
vcost(A) = O(v+1) and err(A) < 1/3.

2.3 Preliminary Lemmas

In multiple places we make use of basic fingerprinting techniques which enable a veri-
fier to test whether two large streams represent the same object using small space. Let
Z+ denote the set of non-negative integers, and let Fq denote the finite field with q ele-
ments (whenever it exists). Let A = 〈a1, . . . ,am〉 denote a data stream, with each ai ∈ [n].
Then A implicitly defines a frequency distribution f(A) := (f1, . . . , fn), where f j =
|{i ∈ [m] : ai = j}|. Fingerprints are formed by computations over Fq, as BFq(r, f) :=
∏

n
j=1(r− j) f j . To make fingerprints, we choose q based on an a priori bound m on ‖f‖1.

Lemma 1. Let q≥m be a prime, and choose r uniformly at random from Fq. Given an
input stream A of length m, the fingerprint BFq(r, f(A)) can be computed using O(logq)
storage. Suppose f′ ∈ Zn

+ is a vector with f′ 6= f(A) and ‖f′‖1 ≤ m. Then the “collision
probability” Prr∈RFq [BFq(r, f′) = BFq(r, f(A))]≤ m/q.

The proof of this fact, along with other proofs, is deferred to the full version. This
fingerprint implies a prescient protocol for a multi-set inclusion problem:

Lemma 2. Let A⊂U be a set of size n and let B⊂U be multi-set of size t. Let B′ be
the set formed by removing all duplicate elements from B. Then, given a stream which
begins with the elements of A followed by the elements of B, there is a (t log t, log t)
prescient scheme that establishes whether B′ = A.

3 Warm-Up: Index and Selection

In this section, we present an online scheme for the SELECTION problem: Given desired
rank ρ ∈ [m], output an item ak from the stream A = 〈a1, . . . ,am〉 ∈ [n]m, such that
|{i : ai < ak}| < ρ and |{i : ai > ak}| ≤ m−ρ . We assume m = Θ(n) to simplify the
statement of bounds. An easy (logm, logm) prescient scheme is for the helper to give an
answer s as annotation at the start of the stream. The verifier need only count how many
items in the stream are (a) smaller than s and (b) greater than s. The verifier returns s

if the rank of s satisfies the necessary conditions. Next, we present (almost) matching
upper and lower bounds when only online annotation is allowed.

To do this, we first consider the online MA complexity of the communication prob-
lem of INDEX: Alice holds a string x ∈ {0,1}N , Bob holds an integer i ∈ [N], and the
goal is for Bob to output INDEX(x, i) := xi. The lower bound for SELECTION will fol-
low from the lower bound for INDEX and a key idea for the SELECTION upper bound
follows from the communication protocol for INDEX.

Theorem 1 (Online MA complexity of INDEX). Let h and v be integers such that hv≥
N. There is a online MA protocol P for INDEX, with hcost(P) ≤ h and vcost(P) =
O(v logh); and any online MA protocol Q for INDEX must have hcost(Q)vcost(Q) =
Ω(N). So, in particular, MA→(INDEX) = Θ̃(

√
N).

Proof. For the lower bound, we use the given online MA protocol Q to build a ran-
domized one-way INDEX protocol Q′. Let h = hcost(Q). Let B(n, p) denote the bi-
nomial distribution with parameters n and p, and let k be the smallest integer such that
X ∼B(k,1/3)⇒ Pr[X > k/2] ≤ 2−h/3. A standard tail estimate gives k = Θ(h). Let
a(x,R) denote the message that Alice sends in Q when her random string is R, and
let b(a, i,h) be the bit Bob outputs upon receiving message a from Alice and h from
Merlin. In the protocol Q′, Alice chooses k independent random strings R1, . . . ,Rk
and sends Bob a(x,R1), . . . ,a(x,Rk). Bob then outputs 1 iff there exists a h-bit string
h such that MAJORITY (b(a(x,R1), i,h), . . . ,b(a(x,Rk), i,h)) = 1. Clearly, cost(Q′) ≤
k · vcost(Q) = O(hcost(Q)vcost(Q)). We claim that Q′ is a 1

3 -error protocol for IN-
DEX whence, by a standard lower bound (see, e.g., Ablayev [2]), cost(Q′) = Ω(N).

To prove the claim, consider the case when xi = 1. By the correctness of Q there
exists a suitable help message h from Merlin that causes Pr[b(a(x,R), i,h) = 0] ≤ 1/3.
Thus, by construction and our choice of k, the probability that Bob outputs 0 in Q′ is at
most 2−h/3. Now suppose xi = 0. Then, every possible message h from Merlin satisfies
Pr[b(a(x,R), i,h) = 1] ≤ 1/3. Arguing as before, and using a union bound over all 2h

possible messages h, we see that Bob outputs 1 with probability at most 2h ·2−h/3 = 1
3 .

The upper bound follows as a special case of the two-party set-disjointness protocol
in [1, Theorem. 7.4] since the protocol there is actually online. We give a more di-
rect protocol which establishes intuition for our SELECTION result. Write Alice’s input
string x as x = y(1) · · ·y(v), where each y(j) is a string of at most h bits, and fix a prime q
with 3h < q < 6h. Let y(k) be the substring that contains the desired bit xi. Merlin sends
Bob a string z of length at most h, claiming that it equals y(k). Alice picks a random
r ∈ Fq and sends Bob r and the strings BFq(r,y(1)), . . . ,BFq(r,y(v)), thus communicat-
ing O(v logq) = O(v logh) bits. Bob checks if BFq(r,z) = BFq(r,y(k)), outputting 0 if
not. If the check passes, Bob assumes that z = y(k), and outputs xi from z under this
assumption. By Lemma 1, the error probability is at most h/q < 1/3.

Remark 1. The above lower bound argument in fact shows that an online MA protocol
P for an arbitrary two-party communication problem f satisfies hcost(P)vcost(P)=
Ω(R→(f)). Thus, MA→(f) = Ω(

√
R→(f)) where R→(f) is the one-way, randomized

communication complexity of f .

Theorem 2. For any h,v s.t. hv ≥ m there is a (h logm,v logm) online scheme for SE-
LECTION and any (h,v) online scheme for SELECTION must have hv = Ω(m).

Proof. Conceptually, the verifier builds a vector r = (r1, . . . ,rn) ∈ Zn
+ where rk = |{ j ∈

[m] : a j < k}|. This is done by inducing a new stream A′ from the input stream A: each
token a j in A causes virtual tokens a j + 1,a j + 2, . . . ,n to be inserted into A′. Then
r = f(A′); note that ‖r‖1 = O(m2). As in the INDEX protocol, the vector r is arranged
into v subvectors of dimension h, and the verifier retains only fingerprints — based on
a prime q = O(m2) — on each subvector. After the stream is seen, the helper claims
that the answer is s, by providing the values of ri for all i in the subvector containing s.
The verifier fingerprints the provided block, and outputs s if it agrees with their stored
fingerprint, otherwise it returns ⊥. For the lower bound, we use a standard reduction
from the INDEX problem and this is deferred until the full version.

4 Frequency Moments and Frequent Items

In this section we consider properties of f = { fi : i ∈ [n]} where fi is the frequency of
the token “i” in the stream. In particular, the kth frequency moment is defined as Fk =
∑i∈[n] f k

i and the frequent items are defined as the set {i : fi > T}, for some threshold T .
Both problems have a long history in the data streams literature. It is well known that in
the traditional data stream model, exact computation of Fk (k 6= 1) requires Ω(n) space.
Even constant factor approximation requires Ω(n1−2/k) space [11].
Frequent Items. We prove results on finding exact and approximate frequent items. The
approximate result relies on a powerful way that annotation can be used in conjunction
with sketch based algorithms (such as Count-Sketch [12] and Count-Min [13]) and we
expect this will have other applications. The approximate case is more complicated than
the exact case and further discussion is deferred to the full version.

A prescient helper can list the set of claimed frequent items, along with their fre-
quencies, for the verifier to check against the stream. But we must also ensure that the
helper is not able to omit any items that exceed the threshold. Our result shows a com-
pact witness set for the exact case, which leads to online schemes for the exact and
approximate versions of the problem.

Theorem 3. There exists a (φ−1 log2 m,φ−1 log2 m) prescient scheme and a (φ−1nα logm,
n1−α logm) online scheme (α ∈ [0,1]) for finding {i : fi > T := φm}. Any (h,v) online
scheme for this must have hv = Ω(n).

Proof. The lower bound follows from the hardness of INDEX and we omit the simple re-
duction from this presentation. For the upper bound consider a binary tree whose leaves
are the elements of the universe [n]. Associate each node v with the set of elements at the
leaves of the the subtree rooted at v. Call this set S(v) where S(u) = {i} if u is the ith leaf.
Let g(v) = ∑i∈S(v) fi. Note that if u is a node and v is any ancestor of u, then g(u)≤ g(v).
Now observe that there is a witness set of size O(φ−1 logn) to identify all leaves i with
fi > T : this consists of the set W of all such is in addition to pairs of nodes (u,v) such
that u is the child of v, and g(u)≤ T but g(v) > T . Here, each pair (u,v) ∈W is witness
to the fact that no leaves i ∈ S(u) can have fi > T . The sets S(u) for such u together
with {i : fi > T} form a partition of [n]. Further, there can be at most φ−1 such nodes
v at any level of the binary tree, as the sum of g(v) is at most m. This bounds the size
of this witness set to |W | = O(φ−1 logn). This leads to two schemes for the problem.

In the first,prescient scheme, the helper lists the members of W and their corresponding
frequencies. The verifier remembers this information, and ensures that it agrees with
the frequencies in the stream. Assuming m = Ω(n) gives hcost = vcost = φ−1 log2 m.
In the second, online scheme, the 2n−1 nodes in the tree are divided into v groups of
h such that hv ≥ 2n. The verifier keeps a fingerprint of the frequency vector of each
group. After the stream is seen, the helper provides the witness set W , sorted by the
natural order on nodes, plus the frequency vector of all groups containing items named
in W . This totals min{O(|W |h),n} items, yielding a (min{n logm,hφ−1 logm},v logm)
online scheme. A subtlety here is that the output size can exceed the verifier’s memory,
so the verifier may output a partial result before returning ⊥.

Frequency Moments. We now show a family of algorithms that exhibit an optimal ver-
ification/annotation trade-off for the exact computation of Fk. Our algorithm is inspired
by the “algebrization” results of Aaronson and Wigderson [1] but the key idea can be
traced back to classic interactive proof protocols of Lund et al. [28] and Shamir [31].

Theorem 4. Suppose h and v are positive integers with hv≥ n. Then, for integers k≥ 1,
there exists a (k2h logm,kv logm) online scheme for computing Fk exactly.

Proof. Let A be the input stream. We map the length n vector f(A) into an h× v matrix
(f (x,y))x∈[h],y∈[v], using any canonical bijection between [n] and [h]× [v]. Pick a prime
q≥max{mk,3kh}; since m≥ n, this can be done while ensuring that logq = O(k logm).
We shall work in the field Fq, which is safe because q exceeds the maximum possible
value of Fk(A). Let f̃ (X ,Y) ∈ Fq[X ,Y] be the unique polynomial satisfying degX (f̃) =
h−1, degY (f̃) = v−1 and f̃ (x,y) = f (x,y) for all (x,y) ∈ [h]× [v]. The verifier picks a
random r ∈ Fq. As the stream is read, the verifier maintains a sketch consisting of the v
quantities f̃ (r,1), . . . , f̃ (r,v). Clearly, this sketch fits in O(v logq) bits of storage.

At the end of the stream, the annotator provides a polynomial s′(X) ∈ Fq[X] that
is claimed to be equal to s(X) := ∑y∈[v] f̃ (X ,y)k, which has degree at most k(h− 1),
thus using O(kh logq) bits of annotation. The verifier evaluates s′(r) from the supplied
annotation and computes s(r) = ∑y∈[v] f̃ (r,y)k from his sketch, checks that s′(r) = s(r)
and outputs ⊥ if not. If the check passes, the verifier outputs ∑x∈[h] s′(x) as the final
answer. Clearly, this answer is correct if the annotation was honest. Further, the verifier
is fooled only if s′ 6= s, but s′(r) = s(r); the probability of this is at most k(h−1)/q≤ 1

3 ,
by choice of q.

It remains to show that the sketch can be computed incrementally in O(v logq)
space. To maintain each f̃ (r,y) for y ∈ [v], note that upon reading a new token i ∈ [n]
that maps to (a,b) ∈ [h]× [v], the necessary update is of the form f̃ (r,y)← f̃ (r,y) +
pa,b(r,y) , where pa,b(X ,Y) = ∏i∈[h]\{a}(X − i)(a− i)−1 ·∏ j∈[v]\{b}(Y − j)(b− j)−1.
Since pa,b(r,y) = 0 for any y ∈ [v]\{b}, the verifier need only update the single value
f̃ (r,b), by adding pa,b(r,b), upon reading this token. Note that using a table of O(v) ap-
propriate precomputed values, this update can be computed efficiently. For h = v =

√
n,

this takes a constant number of arithmetic operations per update.

Numerous problems such as computing Hamming distance and Inner Product, and ap-
proximating F2 and F∞, can be solved using Fk as a primitive or using related techniques.
We defer discussion to the full version. We next present lower bounds on the trade-off
possible for computation of Fk.

Theorem 5. Any (h,v) scheme that exactly computes Fk requires hv = Ω(n) and any
(h,v) scheme that approximates Fk up to a constant factor requires hv = Ω(n1−5/k).

These bounds are based on bounds we prove on the MA complexity of DISJn,t :
{0,1}nt → {0,1}, the t-party communication problem defined as follows. The input
is a t × n Boolean matrix, with Player i holding the ith row, for i ∈ [t]. The desired
output is ∧t

i=1∨n
j=1¬xi j, i.e., 1 iff the subsets of [n] represented by the rows are disjoint.

We call an input x = (xi j)i∈[t], j∈[n] valid if every column of x has weight either 0 or
1 or t, and at most one column has weight t. Note that DISJn,t is naturally related to
frequency moments: for any valid input x, Fk(S)≥ tk if DISJn,t(x) = 0 and Fk(S)≤ n if
DISJn,t(x) = 1 where S is the multi-set { j : xi j = 1}. The next theorem, a generalization
of a result by Klauck [25], and reductions from DISJn,2 or DISJn,O(n1/k) establish the
first and second parts of Theorem 5 respectively in a straightforward manner. The next
theorem also resolves a question of Feigenbaum et al. [17].

Theorem 6. Let P be an ε-error MA protocol for DISJn,t , where ε ≤ 1/3. Then hcost(P)
·vcost(P) = Ω(n/t4). In particular, MA(DISJn,t) = Ω(

√
n/t2).

Proof. A rectangle is defined as a subset of inputs of the form X1× ·· ·×Xt , where
each Xi ⊆ {0,1}n is a subset of all possible inputs for Player i. In deterministic com-
munication protocols, the inverse image of any transcript of such a protocol must be a
rectangle. Let A = DISJ−1

n,t (1) and B = DISJ−1
n,t (0).

Lemma 3 (Alon-Matias-Szegedy [4], generalizing Razborov [30]). There exists dis-
tribution µ over valid inputs with 1) µ(A)= µ(B)= 1/2 and 2) µ(T ∩B)= (2e)−1µ(T ∩
A)− t2−n/2t4

for each rectangle T . ut

Assume t = ω(n1/4) since otherwise the bound is trivial. Put h = hcost(P) and
v = vcost(P). An input x ∈ A is said to be covered by a message h from Merlin if
PrR[out(P;x,R,h) = 0]≤ ε . By correctness, every such input must be covered, so there
exists a help message h∗ that covers every input in a set G⊆ A, with µ(G)≥ 2−hµ(A) =
2−h−1. Fix Merlin’s message in P to h∗ and amplify the correctness of the resulting
randomized Merlin-free protocol by repeating it O(h) times and taking the majority of
the outputs. This gives us a randomized protocol P ′ for DISJn,t with communication
cost c = O(hv) whose error, on every input in G∪B, is at most 2−2h. Let µ ′ denote the
distribution µ conditioned on G∪B. Note that, by condition (1) of Lemma 3,

∀x ∈ {0,1}nt : either µ
′(x) = 0 or µ(x)≤ µ

′(x)≤ 2µ(x) . (1)

By fixing the random coins of P ′ we can obtain a deterministic protocol Q, for DISJn,t ,
such that errµ ′(Q) ≤ 2−2h and cost(Q) = c. By the rectangle property, there exist
disjoint rectangles T1,T2, . . . ,T2c such that out(Q;x) = 1 iff x ∈

⋃2c

i=1 Ti. Therefore
2c

∑
i=1

µ
′(Ti∩B)≤ 2−2h (2) and µ

′

(
A\

2c⋃
i=1

Ti

)
≤ 2−2h (3)

By (1), µ ′(A) = µ ′(G)≥ µ(G)≥ 2−h−1. Using (1), and a rearrangement of (3):

2c

∑
i=1

µ(Ti∩A) ≥ 1
2

2c

∑
i=1

µ
′(Ti∩A) ≥ 1

2

(
µ
′(A)−2−2h

)
≥ 2−h−3 .

Suppose c ≤ n/5t4 and n is large enough. Applying condition (2) of Lemma 3 we get
∑

2c

i=1 µ(Ti ∩B) ≥ 2−h−3/(2e)− 2ct2−n/2t4 ≥ 2−h−6. However, by (1) and (2), we have
∑

2c

i=1 µ(Ti∩B)≤ 2−2h, a contradiction. Hence hv = Ω(c) = Ω(n/t4).

5 Graph Problems
In this section we consider computing properties of graphs on n nodes, determined by
a stream of m edges [16, 21]. We present tight results for testing connectivity of sparse
graphs, determining if a bipartite graph has a perfect matching, and counting triangles.
Almost all proofs are deferred to the full version.
Triangles via Matrix Multiplication. Estimating the number of triangles in a graph
has received significant attention because of its relevance to database query planning
(knowing the degree of transitivity of a relation is useful when evaluating relational
queries) and investigating structure properties of the web-graph [6,9,23]. In the absence
of annotation, any single pass algorithm to determine if there is a non-zero number of
triangles requires Ω(n2) bits of space [6]. We show that the answer can be verified
with O(n2) annotation in logarithmic space. The following theorem, proved using ideas
from [6] coupled with Theorem 6, shows that this is best possible.

Theorem 7. Any (h,v) scheme for counting triangles must have hv = Ω(n2).

We now outline an online scheme with vcost = O(logn) and hcost = O(n2). A major
subroutine of our algorithm is the verification of matrix multiplication in our model.
That is, given n×n matrices A,B and C, verify that AB = C. Our technique extends the
classic result of Frievalds [18] by showing that if the helper presents the results in an
appropriate order, the verifier needs only O(logn) bits to check the claim. Note that this
much annotation is necessary if the helper is to provide C in his stream.

Theorem 8. There exists a (n2, logn) online scheme for matrix multiplication.

With this primitive, arbitrary matrix products A`,A`−1 . . .A2A1 are verified with O(`n2)
annotation by verifying A2,1 := A2A1, then A3,2,1 := A3A2,1, etc. Matrix powers A` are
verified with O(n2 log`) annotation.

Theorem 9. There is a (n2, logn) online scheme for counting triangles.

Proof. Denote the graph adjacency matrix by A, with Ai,i := 0. The helper lists Av,w
and A2

v,w for all pairs (v,w) in some canonical order. The verifier computes ∑v,w Av,wA2
v,w

as the number of triangles. The verifier uses fingerprints to check that A matches the
original set of edges, and the protocol in Theorem 8 to ensure that A2 is as claimed.

We also show that it is possible to trade-off the computation with the helper in a
“smooth” manner. The approach is based on an observation of Bar-Yossef et al. [6]:
The frequency moments of a derived stream can be expressed in terms of the num-
ber of triples of nodes with exactly {0,1,2,3} edges between them. In small space we
can induce a length m(n− 2) stream by replacing each edge (u,v) by the set of triples
{(u,v,w) : w 6= u,v}. It follows that the number of triangles can be expressed in terms
of the frequency moments of this derived stream, as (F3− 2F2 + F1)/12. By using the
protocol of Theorem 4, we obtain the following theorem.

Theorem 10. There is a (n3α ,n3−3α) online scheme for counting triangles (α ∈ [0,1]).

Bipartite Perfect Matchings. We now present an online scheme for testing whether a
bipartite graph has a perfect matching. Graph matchings have been considered in the
stream model [16,35] and it can be shown that any single pass algorithm for determining
the exact size of the maximum matching requires Ω(n2) space. We show that we can
off-load this computation to the helper such that, with only O(n2) annotation, the answer
can be verified in O(logn) space. This is shown to be best possible by combining a
reduction from [16] coupled with Theorem 1.

Theorem 11. There exists a (m, logn) online scheme for bipartite perfect matching and
any (h,v) online scheme for bipartite perfect matching requires hv = Ω(n2).

Connectivity. The problem of determining if a graph is connected was considered in
the standard stream model [16, 21] and the multi-pass W-stream model [15]. In both
models, it can be shown that any constant pass algorithm without annotations needs
Ω(n) bits of space. In our model, the helper can convince a verifier with O(logn) space
whether a graph is connected with only O(m) annotation. This is the best possible for
sparse graphs where m = O(n) by combining a reduction from [16] with Theorem 1.

Theorem 12. There exists a (m, logn) online scheme for connectivity and any (h,v)
online scheme for connectivity requires hv = Ω(n) even when m = O(n).

Acknowledgements: We thank Yael Gertner, Sampath Kannan, and Mahesh Viswanathan
for sharing [19]. We also thank Sudipto Guha and T. S. Jayram for helpful discussions.

References

1. S. Aaronson and A. Wigderson. Algebrization: a new barrier in complexity theory. In ACM
STOC, 2008.

2. F. Ablayev. Lower bounds for one-way probabilistic communication complexity and their
application to space complexity. Theoretical Computer Science, 175(2):139–159, 1996.

3. G. Aggarwal, M. Datar, S. Rajagopalan, and M. Ruhl. On the streaming model augmented
with a sorting primitive. In IEEE FOCS, 2004.

4. N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency
moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.

5. L. Babai, P. Frankl, and J. Simon. Complexity classes in communication complexity theory
(preliminary version). In IEEE FOCS, 1986.

6. Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in streaming algorithms, with an
application to counting triangles in graphs. In ACM-SIAM SODA, 2002.

7. P. Beame and D.-T. Huynh-Ngoc. On the value of multiple read/write streams for approxi-
mating frequency moments. In IEEE FOCS, 2008.

8. P. Beame, T. S. Jayram, and A. Rudra. Lower bounds for randomized read/write stream
algorithms. In ACM STOC, 2007.

9. L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, and C. Sohler. Counting
triangles in data streams. In ACM PODS, 2006.

10. A. Chakrabarti, G. Cormode, and A. McGregor. Robust lower bounds for communication
and stream computation. In ACM STOC, 2008.

11. A. Chakrabarti, S. Khot, and X. Sun. Near-optimal lower bounds on the multi-party commu-
nication complexity of set disjointness. In IEEE CCC, 2003.

12. M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams. Theor.
Comput. Sci., 312(1):3–15, 2004.

13. G. Cormode and S. Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. J. Algorithms, 55(1):58–75, 2005.

14. C. Demetrescu, B. Escoffier, G. Moruz, and A. Ribichini. Adapting parallel algorithms to
the w-stream model, with applications to graph problems. In MFCS, 2007.

15. C. Demetrescu, I. Finocchi, and A. Ribichini. Trading off space for passes in graph streaming
problems. In ACM-SIAM SODA, 2006.

16. J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph problems in a
semi-streaming model. Theoretical Computer Science, 348(2-3):207–216, 2005.

17. J. Feigenbaum, S. Kannan, and J. Zhang. Annotation and computational geometry in the
streaming model. Technical Report YALEU/DCS/TR-1249, Yale University, 2003.

18. R. Freivalds. Fast probabilistic algorithms. In MFCS, 1979.
19. Y. Gertner, S. Kannan, and M. Viswanathan. NP and streaming verifiers. Manuscript, 2002.
20. M. Grohe, A. Hernich, and N. Schweikardt. Randomized computations on large data sets:

tight lower bounds. In ACM PODS, 2006.
21. M. R. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams. External

memory algorithms, 1999.
22. W. Johnson and J. Lindenstrauss. Extensions of Lipshitz mapping into Hilbert space. Con-

temporary Mathematics, 26:189–206, 1984.
23. H. Jowhari and M. Ghodsi. New streaming algorithms for counting triangles in graphs. In

COCOON, 2005.
24. T. Kimbrel and R. K. Sinha. A probabilistic algorithm for verifying matrix products using

o(n2) time and log2 n+o(1) random bits. Inf. Process. Lett., 45(2):107–110, 1993.
25. H. Klauck. Rectangle size bounds and threshold covers in communication complexity. In

IEEE CCC, 2003.
26. E. Kushilevitz and N. Nisan. Communication Complexity. CUP, 1997.
27. F. Li, K. Yi, M. Hadjieleftheriou, and G. Kollios. Proof-infused streams: Enabling authenti-

cation of sliding window queries on streams. In VLDB, 2007.
28. C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof

systems. J. ACM, 39(4):859–868, 1992.
29. S. Papadopoulos, Y. Yang, and D. Papadias. Cads: Continuous authentication on data

streams. In VLDB, 2007.
30. A. Razborov. On the distributional complexity of disjontness. In ICALP, 1990.
31. A. Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.
32. M. Thorup and Y. Zhang. Tabulation based 4-universal hashing with applications to second

moment estimation. In ACM-SIAM SODA, 2004.
33. P. A. Tucker, D. Maier, L. M. L. Delcambre, T. Sheard, J. Widom, and M. P. Jones. Punctu-

ated data streams, 2005.
34. K. Yi, F. Li, M. Hadjieleftheriou, G. Kollios, and D. Srivastava. Randomized synopses for

query assurance on data streams. In IEEE ICDE, 2008.
35. M. Zelke. Weighted matching in the semi-streaming model. In STACS, pages 669–680, 2008.

