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Abstract

The edit distance between two strings S and R is defined
to be the minimum number of character inserts, deletes and
changes needed to convert R to S. Given a text string t
of length n, and a pattern string p of length m, informally,
the string edit distance matching problem is to compute the
smallest edit distance between p and substrings of t. A well
known dynamic programming algorithm takes time O(nm)
to solve this problem, and it is an important open problem
in Combinatorial Pattern Matching to significantly improve
this bound.

We relax the problem so that (a) we allow an additional
operation, namely, substring moves, and (b) we approximate
the string edit distance upto a factor of O(log n log∗ n).1 Our
result is a near linear time deterministic algorithm for this
version of the problem. This is the first known significantly
subquadratic algorithm for a string edit distance problem in
which the distance involves nontrivial alignments. Our re-
sults are obtained by embedding strings into L1 vector space
using a simplified parsing technique we call Edit Sensitive
Parsing (ESP). This embedding is approximately distance
preserving, and we show many applications of this embed-
ding to string proximity problems including nearest neigh-
bors, outliers, and streaming computations with strings.

1 Introduction

String matching has a long history in computer science,
dating back to the first compilers in the sixties and before.
Text comparison now appears in all areas of the discipline,
from compression and pattern matching to computational
biology and web searching. The basic notion of string
similarity used in such comparisons is that of edit distance
between pairs of strings. If R and S are strings then
the edit distance between R and S, e(R,S), is defined as
the minimum number of character insertions, deletions or
changes necessary to turn R into S.

In the string edit distance matching problem studied in
Combinatorial Pattern Matching area, we are given a text
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1log∗ n is the number of times log function is applied to n to produce a
constant.

string t of length n and a pattern string p of length m < n.
The string edit distance matching problem is to compute the
minimum string edit distance between p and any prefix of
t[i . . . n] for each i; we denote this distance by D[i]. It is
well known that this problem can be solved in O(mn) time
using dynamic programming [Gus97]. The open problem is
whether this quadratic bound can be improved substantially
in the worst case.

There has been some progress on this open problem.
Masek and Paterson [MP80] used the Four Russians method
to improve the bound to O(mn/ log n), which remains the
best known bound in general to this date. Progress since
then has been obtained by relaxing the problem in a number
of ways.

• Restrict D[i]’s of interest.
Specifically, the restricted goal is to only determine
i’s for which D[i] < k for a given parameter k. By
again adapting the dynamic programming approach a
solution can be found in O(kn) time and space in
this case [LV86, Mye86]. An exciting improvement
was presented in [S. V96] (since improved by [CH98])
with an O(npoly(k)/m + n) time algorithm which is
significantly better. These algorithms still have running
time of Ω(nm) in the worst case.

• Consider simpler string distances.
If we restrict the string distances to exclude insertions
and deletions, we obtain Hamming distance measure.
In a simple yet significant development, [Abr87] gave a
Õ(n

√
m) time solution breaking the quadratic bound2;

since then, it has been improved to Õ(n
√

k) [ALP00].
Karloff improved this to Õ(n) by approximating the
Hamming distances to 1 + ε factor [Kar93]. Hamming
distance results however sidestep the fundamental diffi-
culty in string edit distance problem, namely, the need
to consider nontrivial alignment of the pattern against
text when characters are inserted or deleted.

In this paper, we present a near linear time algorithm for
the string edit distance matching problem. However, there is
a caveat: our result relies strongly on relaxing the problem
as described below. Since our result is the first to consider
nontrivial alignment between the text and the pattern and still
obtain significantly subquadratic algorithm in the worst case,

2The notation Õ hides polylog factors.



we believe it is of interest. Specifically, we relax the string
edit distance matching problem in two ways:
(1) We allow approximating D[i]’s.
(2) We allow an extra operation, substring move, which
moves a substring from one position in a string to another.

This modified edit distance between strings S and R
is called string edit distance with moves and is denoted
d(S,R). There are many applications where substring moves
are taken as a primitive: in certain computation biology
settings a large subsequence being moved is just as likely
as an insertion or deletion; in a text processing environment,
moving a large block intact may be considered a similar level
rearrangement to inserting or deleting characters. Note that
string edit distance with moves still faces the challenge of
dealing with nontrivial alignments. Formally, then, d(S,R)
is length of the shortest sequence of edit operations to
transform S into R, where the permitted operations affect
a string S are defined as follows:

• A character deletion at position i transforms S into
S[1] . . . S[i− 1], S[i + 1] . . . S[n].

• An insertion of character a at position i results in
S[1] . . . S[i− 1], a, S[i] . . . S[n].

• A replacement at position i with character a gives
S[1] . . . S[i− 1], a, S[i + 1] . . . S[n].

• A substring move with parameters 1 ≤ i ≤ j ≤
k ≤ n transforms S[1] . . . S[n] into S[1] . . . S[i −
1], S[j] . . . S[k − 1], S[i] . . . S[j − 1], S[k] . . . S[n].

Our main result is a deterministic algorithm for the
string edit distance matching problem with moves which runs
in time O(n log n). The output is the matching array D
where each D[i] is approximated to within a O(log n log∗ n)
factor. Our approach relies on an embedding of strings into
vectors in the L1 space. The L1 distance between two such
vectors is an O(log n log∗ n) approximation of the string edit
distance with moves between the two original strings. This
is a general approach, and can be used to solve many other
questions of interest beyond the core string edit distance
matching problem. These include string similarity search
problems such as indexing for string nearest neighbors,
outliers, clustering etc. under the metric of edit distance with
moves.

All of our results rely at the core on a few compo-
nents. First, we parse strings into a hierarchy of substrings.
This relies on deterministic coin tossing (aka local symme-
try breaking) that is a well known technique in parallel al-
gorithms [CV86, GPS87] with applications to string algo-
rithms [S. V94, S. V96, MSU97, CPS. V00, ABR00, MS. 00]. In
its application to string matching, precise methods for ob-
taining hierarchical substrings differ from one application in-
stance to another, and are fairly sophisticated: in some cases,
they produce non-trees, in other cases trees of degree 4 etc.
Inspired by these techniques we present a simple hierarchical

parsing procedure called Edit Sensitive Parsing (ESP) that
produces a tree of degree 3. ESP should not be perceived
to be a novel parsing technique; however, it is an attempt to
simplify the technical description of applying deterministic
coin tossing to obtain hierarchical decomposition of strings.
We hope that simplicity of ESP helps reveal further applica-
tions of hierarchical string decompositions.

The second component of our work is the approximately
distance preserving embedding of strings into vector spaces
based on the hierarchical parsing. This general style of
solution was taken earlier in [CPS. V00, MS. 00]. However,
the key difference between our work and previous work
is that we embed into L1 space (in contrast, these prior
works embedded into the Hamming space), allowing us to
approximate edit distance with moves and obtain a variety
of string proximity results based on this distance for the first
time (the Hamming embeddings cannot be used to obtain our
result).
Layout. We present our Edit Sensitive Parsing (ESP) and
show embedding of strings into the L1 space in Section 2.
We go on to solve problems of approximate string distance
and approximate pattern alignment in Section 3. In Section 4
we give our results for other related problems based around
approximating the string distance, and concluding remarks
are in Section 5.

2 String Embedding

In this section, we describe how to embed strings into a vec-
tor space so that d(), the string edit distance with substring
moves, will be approximated by vector distances. Consider
any string S over an alphabet set σ. We will embed it as
V (S), a vector with an exponential number of dimensions,
O(|σ|O(|S|)); however, the number of dimensions in which
the vector is nonzero will be quite small, in fact, O(|S|). This
embedding V will be computable in near linear time, and it
will have the approximation preserving property we seek.

At the high level, our approach will parse S into spe-
cial substrings, and consider the multiset T (S) of all such
substrings. We will ensure that the size of T (S) is at most
2|S|. Then, V (S) will be the “characteristic” vector for the
multiset T (S), and will be defined precisely later.

The technical crux is the parsing of S into its special
substrings to generate T (S). We call this procedure as Edit
Sensitive Parsing, or ESP for short. In what follows, we will
first describe ESP, and then describe our vector embedding
and prove its approximation preserving properties.

2.1 Edit Sensitive Parsing. We will build a parse tree,
called the ESP tree (denoted ET (S)), for string S: S will
be parsed into hierarchical substrings corresponding to the
nodes of ET (S). The goal is that string edit operations only
have a localized effect on the ET .

Given a string S, we now show how to hierarchically



i text c a b a g e h e a d b a g
ii in binary 010 000 001 000 110 100 111 100 000 011 001 000 110
iii labels - 010 001 000 011 010 001 000 100 001 010 000 011
iv labels as integers - 2 1 0 3 2 1 0 4 1 2 0 3

v final labels - 2 1 0 1 2 1 0 2 1 2 0 1

The original text, drawn from an alphabet of size 8 (i), is written out as binary integers (ii). Following one round of alphabet
reduction, the new alphabet is size 6 (iii), and the new text is rewritten as integers (iv). A final stage of alphabet reduction
brings the alphabet size to 3 (v) and local maxima and some local minima are used as landmarks (denoted by boxes)

Figure 1: The process of alphabet reduction and landmark finding

build its ESP tree in O(log |S|) iterations. At each iteration
i, we start with a string Si and partition it into blocks of
length 2 or 3. We replace each such block Si[j . . . k] by its
name, h(Si[j . . . k]), where h is a one-to-one hash function
on strings of length at most 3. Then Si+1 consists of the h()
values for the blocks in the order in which they appear in Si.
So |Si+1| ≤ |Si|/2. We assume S0 = S, and the iterations
continue until we are left with a string of length 1. The ESP
tree of S consists of levels such that there is a node at level
i for each of the blocks of Si−1; their children are the nodes
in level i − 1 that correspond to the symbols in the block.
Each character of S0 = S is a leaf node. We also denote by
σ0 the alphabet σ itself, and the set of names in Si as σi, the
alphabet at level-i.

It remains for us to specify how to partition the string
Si at iteration i. This will be based on designating some
local features as “landmarks” of the string. A landmark (say
Si[j]) has the property that if Si is transformed into S′

i by an
edit operation (say character insertion at k) far away from j
i.e., |k − j| >> 1), our partitioning strategy will ensure that
S′

i[j] will still be designated a landmark. In other words, an
edit operation on Si[k] will only affect j being a landmark
if j were close to k. This will have the effect that each
edit operation will only change k∗ = O(maxj |kj − j|)
nodes of the ESP tree at every level, where kj is the closest
unaffected landmark to j. In order to inflict the minimal
number of changes to the ESP tree, we would like k∗ as
small as possible, but still require Si’s to be geometrically
decreasing in size.

In what follows, we will describe our method for mark-
ing landmarks and partitioning Si into blocks more pre-
cisely. We canonically parse any string into maximal non-
overlapping substrings of three types:

1. Maximal contiguous substrings of Si that consist of a
repeated symbol (so they are of the form al for a ∈ σj

where l > 1 and j ≤ i),
2. “Long” substrings of length at least log∗ |σi−1| not of

type 1 above.
3. “Short” substrings of length less than log∗ |σi−1| not of

type 1.

Each such substring is called a metablock. We process each
metablock as described below to generate the next level in

the parsing.

2.1.1 Type 2: Long strings without repeats. The discus-
sion here is similar to those in [GPS87] and [MSU97], and so
some proofs are omitted for brevity. Suppose we are given
a string A in which no two adjacent symbols are identical
and is counted as a metablock of type 2. We will carry out a
procedure on it which will enable it to be parsed into nodes
of two or three symbols.

Alphabet reduction. For each symbol A[i] compute a new
label, as follows. A[i − 1] is the left neighbor of A[i], and
consider A[i] and A[i − 1] represented as binary integers.
Denote by l the index of the least significant bit in which
A[i] differs from A[i− 1], and let bit(l, A[i]) be the value of
A[i] at that bit location. Form label(A[i]) as 2l + bit(l, A[i])
— in other words, as the index l followed by the value at that
index.

Lemma 2.1 For any i, if A[i] 6= A[i+1] then label(A[i]) 6=
label(A[i + 1]).

Following this procedure, we generate a new sequence.
If the original alphabet was size τ , then the new alphabet
is sized 2 log |τ |. We now iterate (note this iteration is
orthogonal to the iteration that constructs the ESP tree of S;
we are iterating on A which is a sequence with no identical
adjacent symbols) and perform the alphabet reduction until
the size of the alphabet no longer shrinks. This takes log∗ |τ |
iterations. Note that there will be no labels for the first
log∗ |τ | characters.

Lemma 2.2 After the final iteration of alphabet reduction,
the alphabet size is 6.

Since A did not have identical adjacent symbols, neither
does the final sequence of labels on A using Lemma 2.1
repeatedly.

Finally, we perform three passes over the sequence of
symbols to reduce the alphabet from {0 . . . 5} to {0, 1, 2}:
first we replace each 3 with the least element from {0, 1, 2}
that does not neighbor the 3, then do the same for each 4
and 5. This generates a sequence of labels drawn from the
alphabet {0,1,2} where no adjacent characters are identical.
Denote this sequence as A′.



— 2 1 0 1 2 1 0 2 1 2 0 1

Figure 2: Given the landmark characters, the nodes are formed.

Finding landmarks. We can now pick out special loca-
tions, known as landmarks, from this sequence that are suf-
ficiently close together. We first select any position i which
is a local maximum, that is, A′[i − 1] < A′[i] > A′[i + 1],
as a landmark. Two maxima could still have four intervening
labels, so in addition we select as a landmark any i which is
a local minimum that is, A′[i − 1] > A′[i] < A′[i + 1], and
is not adjacent to an already chosen landmark. An example
of the whole process is given in Figure 1.

Lemma 2.3 For any two landmark positions i and j, we
have 2 ≤ |i− j| ≤ 3.

Lemma 2.4 Determining the closest landmark to position i
depends on only log∗ |τ | + 5 contiguous positions to the left
and 5 to the right.

Proof. After one iteration of alphabet reduction, each
label depends only on the symbol to its left. We repeat
this log∗ |τ | times, hence the label at position i depends on
log∗ |τ | symbols to its left. When we perform the final step
of alphabet reduction from an alphabet of size six to one of
size three, the final symbol at position i depends on at most
three additional symbols to its left and to its right. We must
mark any position that is a local maximum, and then any that
is a local minimum not adjacent to a local maximum; hence
we must examine at most two labels to the left of i and two
labels to the right, which in turn each depend on log∗ |τ |+ 3
symbols to the left and 3 to the right. The total dependency
is therefore as stated.

Now we show how to partition A into blocks of length 2
or 3 around the landmarks. We treat the leftmost log∗ |σi−1|
symbols of the substring as if they were a short metablock
(type 3, the procedure for which is described below). The
other positions are treated as follows. We make each position
part of the block generated by its closest landmark, breaking
ties to the right (see Figure 2). Consequent of Lemma 2.3
each block is now of length two or three.

2.1.2 Type 1 (Repeating metablocks) and Type 3 (Short
metablocks). Recall that we seek “landmarks” which can
be identified easily based only on a local neighborhood.
Then we can treat repeating metablocks as large landmarks.
Type 1 and Type 3 blocks can each be parsed in a regular
fashion, the details we give for completeness. Metablocks
of length one would be attached to the repeating metablock
to the left or the right, with preference to the left when both
are possible, and parsed as described below. Metablocks of
length two or three are retained as blocks without further
partitioning, while a metablock of length four is divided into

two blocks of length two. In any metablock of length five
or more, we parse the leftmost three symbols as a block and
iterate on the remainder.

2.1.3 Constructing ET (S). Having partitioned Si into
blocks of 2 or 3 symbols, we construct Si+1 by replacing
each block b by h(b) where h is a one-to-one (hash) function.
Note that blocks of different levels can use different hash
functions for computing names, so we focus on any given
level i. If we use randomization, h() can be computed for
any block (recall they are of length 2 or 3) in O(1) time using
Karp-Rabin fingerprints [KR87]; they are one-to-one with
high probability. For deterministic solutions, we can use the
algorithm in [KMR72]. Using bucket sorting, hashing can be
implemented in O(1) time and linear space. Each block is a
node in the parse tree, and its children are the 2 or 3 nodes
from which it was formed.

This generates the sequence Si+1; we then iterate this
procedure until the sequence is of length 1: this is then
the root of the tree. Let Ni(S) be the number of nodes
in ET (S) at level i. Since the first (leaf) level is formed
from the characters of the original string, N0(S) = |S|.
We have Ni(S)/3 ≤ Ni+1(S) ≤ bNi(S)/2c. Therefore,
3
2 |S| ≤

∑
i Ni(S) ≤ 2|S|. Hence for any i, |σi| ≤ |S|

(recall that h() is one-to-one) and so log∗ |σi| ≤ log∗ |S|.

Theorem 2.1 Given a string S, its ESP tree ET (S) can be
computed in time O(|S| log∗ |S|).

2.1.4 Properties of ESP. We can compute ET (S) for
any string S as described above. (see Figure 3). Each
node x in ET (S) represents a substring of S given by the
concatenation of the leaf nodes in the subtree rooted at x.

Definition 2.1 Define the multiset T (S) as all substrings
of S that are represented by the nodes of ET (S) (over all
levels). We define V (S) to be the “characteristic vector” of
T (S), that is, V (S)[x] is the number of times a substring x
appears in T (S). Finally, we define Vi(S) the characteristic
vector restricted to only nodes which occur at level i in
ET (S).

Note that T (S) comprises at most 2|S| strings of length
at most |S|. V (S) is a |σ||S| dimensional vector since its
domain is any string that may be present in T (S); however,
it is a (highly) sparse vector since at most 2|S| components
are nonzero.

We denote the standard L1 distance between two vectors
u and v by ||u − v||1. By defnition, ||V (S) − V (R)||1 =∑

x∈T (S)∪T (R) |V (S)[x] − V (R)[x]|. Recall that d(R,S)



c a b a g e h e a d b a g

Figure 3: The hierarchical structure of nodes is represented as a parse tree on the string S.
T (S) = {c, a, b, a, g, e, h, e, a, d, b, a, g, ca, ba, geh, ea, db, ag, caba, gehea, dbag, cabageheadbag}

denotes the edit distance with moves between strings R and
S. Our main theorem shows that V () is an approximation
preserving embedding of string edit distance with moves.

Theorem 2.2 For strings R and S, let n be max(|R|, |S|).
d(R,S) ≤ 2||V (R)− V (S)||1 = O(log n log∗ n)d(R,S)

2.2 Upper Bound Proof.

||V (R)− V (S)||1 = O(log n · log∗ n) · d(R,S)

Proof. To show this bound on the L1 distance, we consider
the effect of the editing operations, and demonstrate that
each one causes a contribution to the L1 distance that is
bounded by O(log n log∗ n). We give a Lemma which
is similar to Lemma 2.4 but which applies to any string, not
just those with no adjacent repeated characters.

Lemma 2.5 The closest landmark to any symbol of Si is
determined by at most log∗ |σi| + 5 consecutive symbols of
Si to the left, and at most 5 consecutive symbols of Si to the
right.

Proof. Given a symbol of Si, say Si[j], we show how to
find the closest landmark.
Type 1 Repeating metablock Recall that a long repeat of a
symbol a is treated as a single, large landmark. Si[j] is in-
cluded in such a meta-block if Si[j] = Si[j +1] or if Si[j] =
Si[j − 1]. We also consider Si[j] to be part of a repeating
substring if Si[j− 1] = Si[j− 2]; Si[j +1] = Si[j +2]; and
Si[j] 6= Si[j + 1] and Si[j] 6= Si[j − 1] — this is the special
case of a metablock of length one. In total, only 2 consecu-
tive symbols to the left and right need to be examined.
Types 2 and 3 Non-repeating metablocks If it is deter-
mined that Si[j] is not part of a repeating metablock, then we
have to decide whether it is in a short or long metablock. We
examine the substring Si[j − log∗ |σi| − 3 . . . j − 1]. If there
is any k such that Si[k] = Si[k − 1] then there is a repeat-
ing metablock terminating at position k. This is a landmark,
and so we parse Si[j] as part of a short metablock, starting
from S[k+1] (recall that the first log∗ |σi| symbols of a long
metablock get parsed as if they were in a short metablock).
Examining the substring S[j + 1 . . . j + 5] allows us to de-
termine if there is another repeating metablock this close to
position j, and hence we can determine what node to form

containing Si[j]. If there is no repeating metablock evident
in Si[j − log∗ |σi| − 3 . . . j − 1] then it is possible to apply
the alphabet reduction technique to find a landmark. From
Lemma 2.4, we know that this can be done by examining
log∗ |σi| + 5 consecutive symbols to the left and 5 to the
right.

This ability to find the nearest landmark to a symbol by
examining only a bounded number of consecutive neighbor-
ing symbols means that if an editing operation occurs outside
of this region, the same landmark will be found, and so the
same node will be formed containing that symbol. This al-
lows us to prove the following lemma.

Lemma 2.6 Inserting k ≤ log∗ n + 10 consecutive charac-
ters into S to get S′ means ||Vi(S)−Vi(S

′)||1 ≤ 2(log∗ n+
10) for all levels i.

Proof. We shall make use of Lemma 2.5 to show this.
We have a contribution to the L1 distance from the insertion
itself, plus its effect on the surrounding locality. Consider
the total number of symbols at level i that are parsed into
different nodes after the insertion compared to the nodes
beforehand. Let the number of symbols at level i which are
parsed differently as a consequence of the insertion be Mi.
Lemma 2.5 means that in a non-repeating metablock, any
symbol more than 5 positions to the left, or log∗ |σi| + 5
positions to the right of any symbols which have changed,
will find the same closest landmark as it did before, and so
will be formed into the same node. Therefore it will not
contribute to Mi. Similarly, for a repeating metablock, any
symbol inside the block will be parsed into the same node
(that is, into a triple of that symbol), except for the last 4
symbols, which depend on the length of the block. So for a
repeating metablock, Mi ≤ 4. The number of symbols from
the level below which are parsed differently into nodes as a
consequence of the insertion is at most Mi−1/2, and there
is a region of at most 5 symbols to the left and log∗ |σi| + 5
symbols to the right which will be parsed differently at level
i. Because |σi| ≤ |S| ≤ n as previously observed, we can
therefore form the recurrence, Mi ≤ Mi−1/2+ log∗ n+10.
If Mi−1 ≤ 2(log∗ n + 10) then Mi ≤ 2(log∗ n) + 10.
From the insertion itself, M0 ≤ log∗ n + 10. Finally
||Vi(S) − Vi(S

′)||1 ≤ 2(Mi−1/2), since we could lose
Mi−1/2 old nodes, and gain this many new nodes.



Lemma 2.7 Deleting k < log∗ n + 10 consecutive symbols
from S to get S′ means ||Vi(S)−Vi(S

′)||1 ≤ 2(log∗ n+10).

Proof. Observe that a deletion of a sequence of labels
is precisely the dual to an insertion of that sequence at the
same location. If we imagine that a sequence of characters
is inserted, then deleted, the resultant string is identical to
the original string. Therefore, the number of affected nodes
must be bounded by the same amount as for an insertion, as
described in Lemma 2.6.

We combine these two lemmas to show that editing
operations have only a bounded effect on the parse tree.

Lemma 2.8 If a single permitted edit operation transforms
a string S into S′ then ||V (S)−V (S′)||1 ≤ 8 log n(log∗ n+
10).

Proof. We consider each allowable operation in turn.
Character edit operations. The case for insertion follows
immediately from Lemma 2.6 since the effect of the char-
acter insertion affects the parsing of at most 2(log∗ n + 10)
symbols at each level and there are at most log2 n levels. In
total then ||V (S) − V (S′)||1 ≤ 2 log n(log∗ n + 10). Simi-
larly, the case for deletion follows immediately from Lemma
2.7. Finally, the case for a replacement is shown by noting
that a character replacement can be considered to be a dele-
tion immediately adjacent to an insertion.
Substring Moves. If the substring being moved is at most
log∗ n+10 in length, then a move can be thought of as a dele-
tion of the substring followed by its re-insertion elsewhere.
From Lemma 2.6 and Lemma 2.7, then ||V (S)−V (S ′)||1 ≤
4 log n(log∗ n + 10). Otherwise, we consider the parsing
of the substring using ESP. Consider a character in a non-
repeating metablock which is more than log∗ n + 5 charac-
ters from the start of the substring and more than 5 char-
acters from the end. Then according to Lemma 2.5, only
characters within the substring being moved determine how
that character is parsed. Hence the parsing of all such char-
acters, and so the contribution to V (S), is independent of
the location of this substring in the string. Only the first
log∗ n + 5 and last 5 characters of the substring will af-
fect the parsing of the string. We can treat these as the
deletion of two substrings of length k ≤ log∗ n + 10 and
their re-insertion elsewhere. For a repeating metablock, if
this extends to the boundary of the substring being moved
then still only 4 symbols of the block can be parsed into dif-
ferent nodes. So by appealing to Lemmas 2.6 and 2.7 then
||V (S)− V (S′)|| ≤ 8 log n(log∗ n + 10).

Lemma 2.8 shows that each allowable operation affects
the L1 distance of a transform by at most 8 log n(log∗ n +
10). Suppose we begin with R, and perform a series of
d editing operations, generating R1, R2, . . . Rd. At the
conclusion, Rd = S, so ||V (Rd) − V (S)||1 = 0. We

begin with a quantity ||V (R) − V (S)||1, and we also know
that at each step from the above argument that ||V (Rj) −
V (Rj+1)|| ≤ 8 log n(log∗ n + 10). Hence, if d(R,S) is
the minimum number of operations to transform R into S,
then ||V (R)−V (S)||1/8 log n(log∗ n+10) must be at least
d(R,S), giving a bound of d(R,S) · 8 log n(log∗ n + 10).

2.3 Lower Bound Proof.

d(R,S) ≤ 2||V (R)− V (S)||1

Here, we shall prove a slightly more general statement,
since we do not need to take account of any of the special
properties of the parsing; instead, we need only assume
that the parse structure built on the strings has bounded
degree (in this case three), and forms a tree whose leaves
are the characters of the string. Our technique is to show a
particular way we can use the ‘credit’ from ||V (R)−V (S)||1
to transform R into S. We give a constructive proof,
although the computational efficiency of the construction is
not important. For the purpose of this proof, we treat the
parse trees as if they were static tree structures, so following
an editing operation, we do not need to consider the effect
this has on the parse structure.

Lemma 2.9 If trees which represent the transforms have
degree at most k, then the tree ET (S) can be made from the
tree ET (R) using no more than (k − 1)||V (S) − V (R)||1
move, insert and delete operations.

Proof. We first ensure that any good features of R are
preserved. In a top-down, left to right pass over the tree
of R, we ‘protect’ certain nodes — we place a mark on
any node x that occurs in the parse tree of both R and S,
provided that the total number of nodes marked as protected
does not exceed Vi(S)[x]. If a node is protected, then all
its descendents become protected. The number of marked
copies of any node x is min(V (R)[x], V (S)[x]). Once
this has been done, the actual editing commences, with the
restriction that we do not allow any edit operation to split a
protected node.

We shall proceed bottom-up in log n rounds ensuring
that after round i when we have created Ri that ||Vi(S) −
Vi(Ri)||1 = 0. The base case to create R0 deals with individ-
ual symbols, and is trivial: for any symbol a, if V0(R)[a] >
V0(S)[a] then we delete the (V0(R)[a]−V0(S)[a]) unmarked
copies of a from R; else if V0(R)[a] < V0(S)[a] then at the
end of R we insert (V0(S)[a]−V0(R)[a]) copies of a. In each
case we perform exactly |V0(R)[a] − V0(S)[a]| operations,
which is the contribution to ||V0(R)−V0(S)||1 from symbol
a. R0 then has the property that ||V0(R0)− V0(S)||1 = 0.

Each subsequent case follows an inductive argument:
assuming we have enough nodes of level i−1 (so ||Vi−1(S)−
Vi−1(Ri−1)||1 = 0), we show how to make Ri using just



(k − 1)||Vi(S) − Vi(R)||1 move operations. Consider each
node x at level i in the tree ET (S). If Vi(R)[x] ≥ Vi(S)[x],
then we would have protected Vi(S)[x] copies of x and not
altered these. The remaining copies of x will be split to form
other nodes. Else Vi(S)[x] > Vi(R)[x] and we would have
protected Vi(R)[x] copies of x. Hence we need to build
Vi(S)[x] − Vi(R)[x] new copies of x, and the contribution
from x to ||Vi(S)−Vi(R)||1 is exactly Vi(S)[x]−Vi(R)[x]:
this gives us the credit to build each copy of x. To make each
of the copies of x, we need to bring together at most k nodes
from level i − 1. So pick one of these, and move the other
k − 1 into place around it (note that we can move any node
from level i − 1 so long as its parent is not protected). We
do not care where the node is made – this will be taken care
of at higher levels. Because ||Vi−1(S) − Vi−1(Ri−1)||1 we
know that there are enough nodes from level i − 1 to build
every level i node in S. We then require at most k − 1 move
operations to form each copy of x by moving unprotected
nodes.

Since this inductive argument holds, and we use at most
k − 1 = 2 moves for each contribution to the L1 distance,
the claim follows.

3 Solving the String Edit Distance Matching Problem

In this section, we present an algorithm to solve the string
edit distance problem with moves. For any string S, we will
assume that V (S) can be stored in O(|S|) space by listing
only the nonzero components of |S|. More formally, we store
V (S)[x] if it is nonzero in a table indexed by h(x), and we
store x as a pointer into S together with |x|.

The result below on pairwise string comparison follows
immediately from Theorems 2.1 and 2.2 together with the
observation that given V (R) and V (S), ||V (R) − V (S)||1
can be found in O(|R|+ |S|) time.

Theorem 3.1 Given strings S and R with n =
max(|S|, |R|), there exists a deterministic algorithm to
approximate d(R,S) accurate upto O(log n log∗ n) factor
in O(n log∗ n) time with O(n) space.

3.1 Pruning Lemma. In order to go on to solve the
string edit distance problem, we need to “compare” pattern
p of length m against t[i . . . n] for each i, and there are
O(n) such “comparisons” to be made. Further, we need to
compute the distance between p and t[i . . . k] for all possible
k ≥ i in order to compute the best alignment starting at
position i, which presents O(mn) subproblems in general.
The classical dynamic programming algorithm performs all
these comparisons in a total of O(mn) time in the worst
case by using the dependence amongst the subproblems. Our
algorithm will take a different approach. First, we make the
following crucial observation:

Lemma 3.1 (Pruning Lemma) Given a pattern p and text t,
∀l, r : l ≤ r ≤ n, d(p, t[l . . . l +m− 1]) ≤ 2 d(p, t[l . . . r]).

Proof. Observe that for all r in the lemma, d(p, t[l . . . r]) ≥
|(r− l+1)−m| since this many characters must be inserted
or deleted. Using triangle inequality of edit distance with
moves, we have for all r, d(p, t[l . . . l + m− 1])

≤ d(p, t[l . . . r]) + d(t[l . . . r], t[l . . . l + m− 1)

= d(p, t[l . . . r]) + |(r − l + 1) − m|
≤ 2d(p, t[l . . . r])

which follows by considering the longest common prefix of
t[l . . . r] and t[l . . . l + m− 1].

The significance of the Pruning Lemma is that it suffices
to approximate only O(n) distances, namely, d(p, t[l . . . l +
m − 1) for all l, in order to solve the string edit distance
problem with moves, correct upto factor 2 approximation.3

Hence, it prunes candidates away from the “quadratic” num-
ber of distance computations that a straightforward proce-
dure would entail.

Still, we cannot directly apply Theorem 3.1 to compute
d(p, t[l . . . l+m−1]) for all l, because that will be expensive.
It will be desirable to use the answer for d(p, t[l . . . l+m−1])
to compute d(p, t[l + 1 . . . l + m]) more efficiently. In what
follows, we will give a more general procedure that will help
compute d(p, t[l . . . l+m−1]) very fast for every l, by using
further properties of ESP.

3.2 ESP subtrees. Given a string S and its corresponding
ESP tree, ET (S), we show that the subtree of ET (S)
induced by the substring S[l . . . r] has the same edit-sensitive
properties as the whole tree.

Definition 3.1 Let ETi(S)j be the jth node in level i of the
parsing of R.
Define range(ETi(S)j) as the set of values [a . . . b] so that
the leaf labels of the subtree rooted at ETi(S)j correspond
to the substring S[a . . . b].
We define an ESP Subtree of S, EST (S, l, r) as the sub-
tree of ET (S) containing nodes which correspond to sub-
strings which overlap or are contained in S[l . . . r]. For-
mally, we find all nodes of ETi(S)j where [l . . . r] ∩
range(ETi(S)j) 6= ∅. The name of a node derived from
ETi(S)j is h(S[range(ETi(S)j) ∩ [a . . . b]]).

This yields a proper subtree of ET (R), since a node
is included in the subtree if and only if at least one of its
children is included (as the ranges of the children partition

3The Pruning Lemma also holds for the classical edit distance where
substring moves are not allowed since we have only used the triangle
inequality and unit cost to insert or delete characters in its proof; hence, it
may be of independent interest. However, it does not hold when substrings
may be copied or deleted, such as the “LZ distance” [CPS. V00].



the range of the parent). As before, we can define a vector
representation of this tree.

Definition 3.2 Define V S(S, l, r) as the characteristic vec-
tor of EST (S) by analogy with V (S), that is, V S(S, l, r)[x]
is the number of times the substring x is represented as a
node in EST (S, l, r).

Note that EST (S, 1, |S|) = ET (S), but in general it
is not the case that EST (S, l, r) = ET (S[l . . . r]). How-
ever, EST (S, l, r) shares the properties of the edit sensitive
parsing. We can now state a theorem that is analogous to
Theorem 2.2.

Theorem 3.2 Let d be d(R[lp . . . rp], S[lq . . . rq]). Then .
d ≤ 2||V S(R, lp, rp])− V S(S, lq, rq])||1 = O(log n log∗ n)d.

We need one final lemma before proceeding to build an
algorithm to solve the String Edit Distance problem with
moves.

Lemma 3.2 V S(S, l + 1, r + 1) can be computed from
V S(S, l, r)) in time O(log |S|).

Proof. Recall that a node is included in EST (S, l, r) if
and only if one of its children is. A leaf node corresponding
to S[i] is included if and only if i ∈ [l . . . r]. This gives
a simple procedure for finding EST (S, l + 1, r + 1) from
EST (S, l, r), and so for finding V S(S, l + 1, r + 1): (1) At
the left hand end, let x be the node corresponding to S[l− 1]
in EST (S, l, r). We must remove x from EST (S, l, r). We
must also adjust every ancestor of x to ensure that their
name is correct, and remove any ancestors which do not
contain S[l − 1]. (2) At the right hand end let y be the
node corresponding to S[r] in ET (S). We must add y to
EST (S, l, r), and set the parent of y to be its parent in
ET (S), adding any ancestor if it is not present. We then
adjust every ancestor of y to ensure that their name is correct.
Since in both cases we only consider ancestors of a leaf
nodes, and the depth of the tree is O(log |S|), it follows that
this procedure takes time O(log |S|).

3.3 String Edit Distance Matching Algorithm. Combin-
ing these results allows us to solve the main problem we
study in this paper.

Theorem 3.3 Given text t and pattern p, we can solve
the string edit distance problem with moves, that is,
compute an O(log n log∗ n) approximation to D[i] =
mini≤k≤n d(p, t[i . . . k]) for each i, in time O(n log n).

Proof. Our algorithm is as follows: given pattern p of length
m and text t of length n, we compute ET (p) and ET (t)
in time O(n log∗ n) as per Theorem 2.1. We then compute
EST (t, 1,m). This can be carried out in time at worst O(n)

since we have to perform a pre-order traversal of ET (t) to
discover which nodes are in EST (t, 1,m). From this we can
compute D̂[1] = ||V S(t, 1,m) − V S(p, 1,m)||1. We then
iteratively compute ||V S(t, i, i + m − 1) − V S(p, 1,m)||1
from ||V S(t, i − 1, i + m − 2) − V S(p, 1,m)||1 by us-
ing Lemma 3.2 to find which nodes to add or remove to
EST (t, i, i + m − 1) and adjusting the count of the dif-
ference appropriately. This takes n comparisons, each of
which takes O(log n) time. By Theorem 3.2 and Lemma
3.1, D[i] ≤ D̂[i] ≤ O(log n log∗ n)D[i].

4 Applications and Extensions of Our Techniques

Our embedding of strings into vector spaces in an approxi-
mately distance preserving manner has many other applica-
tions as such, and with extensions. In this section, we will
describe some of the important results we obtain. In con-
trast to our previous results, which have all been determin-
istic, many of these applications make use of randomized
techniques. Because of space constraints, proofs are omitted
from this version.

4.1 String Indexing. A fundamental open problem in
string matching is that of approximate string indexing (Open
problem 10 of [Gal85]). Specifically, we are given a collec-
tion C of strings that may be preprocessed. Given a query
string q, in the nearest neighbors problem, the goal is to find
the string c ∈ C closest to q under string edit distance, that
is, ∀x ∈ C.d(q, c) ≤ d(q, x). In this paper, we focus on
edit distance with moves, and let d denote this function. The
approximate version of the nearest neighbors problem is to
find c ∈ C such that ∀x ∈ C.d(q, c) ≤ f · d(q, x) where f
is the factor of approximation. Let k = |C| be the number
of strings in the collection C, and n the length of the longest
string in the collection. The challenge here is to break the
“curse” of high-dimensionality, and provide schemes with
polynomial preprocessing whose query cost is o(kn). That
is, which takes less time to respond to queries than it takes
to examine the whole collection. For vectors, randomized
answers to these questions have been given in [IM98] and
[KOR98]. By modifying the scheme in [IM98] for our large
but sparse vectors V (S), we obtain (in the spirit of [MS. 00]):

Theorem 4.1 With O(kn log n) preprocessing of a collec-
tion C, approximate nearest neighbors queries can be an-
swered in time O(n log k + k1/2 log n) finding a string from
C that is an O(log n log∗ n) approximation of the nearest
neighbor with constant probability.

4.2 String Outliers. A problem of interest in string data
mining is to find “outlier” strings, that is, those that differ
substantially from the rest. More formally, we are given a
set D of k strings each of length at most n that may be
preprocessed. Given a query string q, the goal is to find



a string s ∈ D such that d(q, s) ≥ εn, for some constant
fraction ε. We can strengthen our analysis of the embedding
to show an improved result for this problem.

Lemma 4.1 For strings R and S, let n = max(|R|, |S|) and
d = d(R,S). Then
d ≤ 2||V (R)− V (S)||1 = O(log(n/d) log∗ n)d

We note that since the approximation depends on
log n/d, the quality of the approximation actually increases
the less alike the strings are. This improved approxima-
tion helps in the outliers problem. To solve this problem,
we adapt the methodology of [GIV01] for solving approxi-
mate furthest neighbors problems with constant probability
and constant approximation factor.

Theorem 4.2 We preprocess a set C of strings in time
O(knpoly-log(kn)). For a query q, we either return an
approximate outlier s or a null value. If returned, s will
satisfy the property that d(q, s) ≥ εn/O(log∗ n) with con-
stant probability and if t is an outlier for q in C, then
d(q, s) ≥ d(q, t)/O(log∗ n); hence it is a O(log∗ n) approx-
imation. This requires time O(n log k + log3 k) per query. If
no outlier is reported, then there is no outlier for q.

4.3 Sketches in the Streaming model. We consider the
embedding of a string S into a vector space as before, but
now suppose S is truly massive, too large to be contained
in main memory. Instead, the string arrives as a stream
of characters in order: (s1, s2 . . . sn). The result of our
computations is a sketch vector for the string S. The idea of
sketches is that they can be used as much smaller surrogates
for the actual objects in distance computations.

Theorem 4.3 A sketch sk(V (S)) can be computed in the
streaming model to allow approximation of the string edit
distance with moves using O(log n log∗ n) space. For
a combining function f , then |f(sk(V (R)), sk(V (S))) −
d(R,S)| ≤ O(log n log∗ n)d(R,S) with probability 1 − δ.
Each sketch is a vector of length O(log 1/δ) that can be ma-
nipulated in time linear in its size. Sketch creation takes total
time O(n log∗ n log 1/δ).

This type of computation on the data stream is tremen-
dously useful in the case where the string is too large to be
stored in memory, and so is held on secondary storage, or is
communicated over a network. Sketches allow rapid com-
parison of strings: hence they can be used in many situations
to allow approximate comparisons to be carried out proba-
bilistically in time O(log 1/δ) instead of the O(n) time nec-
essary to even inspect both strings.

4.4 Other String Edit Distances. The ESP approach can
be adapted to handle similar string distance measures, which

allow additional operations such as substring reversals, lin-
ear scaling and copying, amongst others. We describe one
particular distance, which we call the Compression distance
because of its connection to lossless text compression meth-
ods. This distance permits substring moves, character edits,
copying an arbitrary substring, and uncopying a substring4.
It was considered previously in [CPS. V00, MS. 00], where it
is defined formally. We denote it as c(R,S).

Theorem 4.4 For strings R and S with |R|+ |S| = n,
c(R,S) ≤ 3|T (R) ∆ T (S)| = O(log n log∗ n) · c(R,S)

where T (R)∆T (S) indicates the symmetric difference of the
supporting sets of the multisets T (R), T (S).

This is currently the best approximation known for this string
edit distance. [CPS. V00] showed an O(log2 n log∗ n) ap-
proximation which was improved to O(log n(log∗ n)2) in
[MS. 00]; here, we improve it modestly to O(log n log∗ n).
This approach also allows us to apply many of the applica-
tions in this paper to this compression distance as well as the
transposition distance although we do not discuss this fur-
ther.

4.5 Dynamic Indexing. Thus far we have considered
strings to be static immutable objects. The Dynamic Index-
ing problem is to maintain a data structure on a set of strings
so that, under certain permitted editing operations on indi-
vidual strings, we can rapidly compute the (approximate)
distance between any pair of strings. A similar scenario was
adopted in [MSU97] where the problem is to maintain strings
under editing operations to rapidly answer equality queries:
this is a special case of the general dynamic indexing prob-
lem we address. The technique was developed in [ABR00]
for dynamic pattern matching: finding exact occurrences of
one string in another.

Our situation is that we are given a collection of strings
to preprocess. We are then given a sequence of requests to
perform on the collection on-line. The requests are of the
following types: (1) perform a string edit operation (inserts,
deletes, changes, substring moves) on one of the strings (2)
perform a split operation on one of the strings — split a string
S into two new strings S[1 . . . i] and S[i + 1 . . . |S|] for a
parameter i. (3) perform a join operation on two strings —
create a new string R from S1 and S2 as S1S2. (4) return an
approximation to d(R,S) for any two strings R and S in the
collection. We consider a set of strings whose total length
is n. For simplicity, we assume here that the operations of
split and join are non-persistent — their input strings are lost
following the operation.

Theorem 4.5 Following O(n log n log∗ n) preprocessing
time using O(n log n) storage, approximating the distance

4For technical reasons, deleting a substring is permitted only if a copy
of it exists in the remainder of the string.



between two strings from the collection takes O(log n) time.
This gives an O(log n log∗ n) approximation with constant
probability. Edit operations upon strings of type (1),(2) or
(3) above take O(log2 n log∗ n) time each.

5 Conclusion

We have provided a deterministic near linear time algorithm
that is an O(log n log∗ n) approximation to the string edit
distance matching problem with moves. This is the first
substantially subquadratic algorithm known for any string
edit distance matching problem with nontrivial alignment.
Our result was obtained by embedding this string distance
into the L1 vector distance; this embedding is of independent
interest since we use it to solve a variety of string proximity
problems such as nearest neighbors, outlier detection, and
stream-based approximation of string distances, etc. We
can further apply this embedding to other problems such as
string furthest neighbors, string clustering etc; details will
be in the final version of this paper. All of these results
are the first known for this string edit distance. It is open
whether the O(log n log∗ n) factor in our approximations
can be improved.

With only minor modifications, the techniques in this
paper can allow the distances being approximated to incor-
porate additional operations such as linear scalings, rever-
sals, etc. However, the outstanding open problem is to un-
derstand the standard string edit distance matching problem
(or quite simply computing the standard edit distance be-
tween two strings) where substring moves are not allowed.
We have yet to make progress on this problem.

Additional Note. We have recently learned of [S. V95] where
strings are parsed into 2-3 trees similar to our ESP method.
That paper proposes a novel approach for data compression
by parsing strings hierarchically online; their methods do not
involve embeddings, and do not yield results in this paper.
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