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1 Introduction

Our modern digitized socio-technological systems have enabled dramatic changes in
our way of life, but leave us open to destructive events such as diseases, floods, terrorist
attacks, and just plain human error. While our systems are vulnerable to such events,
the key is how resilient they can become, i.e., how well they are able to recover from
disruptions to return to a “normal” state or close to it, and how quickly they can do so.
Data science has enabled the digital world of rapid communication, intelligent machines,
and instant information. Data science may also hold the key to making our systems more
resilient through the availability of massive amounts of data from sensors, satellites, and
online activities, allowing us to monitor the state of the power grid, get early warning
of emerging diseases, find ways to minimize the effect of flooding, identify looming
problems in supply chains, etc. Tools of machine learning can provide early warning
of anomalies and alert us that a system may be approaching a critical threshold, thus
allowing more time for mitigation that will minimize the effect of disruptions. However,
for tools of data science to help us createmore resilient systems,wewill need to overcome
a variety of challenges. It is these challenges we discuss in this paper.

The challenges we present arise in a multitude of applications and the paper will
illustrate them to demonstrate the opportunities to enhance resilience. Applications to
be discussed include spread of diseases such as COVID-19 and Ebola; natural and
man-made disasters such as floods, hurricanes, oil spills, and cyberattacks; counter-
terrorism; protecting infrastructure such as the electric power grid and the transportation
system; threats to ecosystems, urban systems, food systems, and agriculture; and varied
modern challenges arising from climate change, self-driving vehicles, and participatory
democracy.
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2 The Fusion Challenge

A key to the data revolution is that massive amounts of data are available from a large
number of sources. A key to using data science to enhance resilience is to find effective
ways to utilize all those data, to learn from past disruptions, and to get early warning of
potential new problems.

FusionChallenge:Many analysis tasks require the fusion of information fromnumerous
media or sources.

2.1 Urban Health and Climate Change

Many key indicators allow us to monitor the overall health of an urban system. These
include the state and spatial distribution of critical infrastructure such as the transporta-
tion, electricity, gas, and water systems; the capacity of the healthcare system; the dis-
tribution of vulnerable populations (such as those living near flood plains or without air
conditioning during a heat wave). Many of these indicators are enhanced in importance
by climate change.

Climate change affects our urban areas in a multitude of ways. We can expect more
and more severe hurricanes, heat waves, drought, and floods. Sea levels will rise. What
can urban areas do to prepare for them and mitigate their effects? Fusing data from
many sources, can we predict which subways might be flooded? (During “Super Storm”
Sandy in 2012, a massive hurricane, some of the subway tunnels in New York City
were flooded. Mathematical models developed at Columbia University had predicted
exactly which ones [46, 48]. Could we have taken precautionary measures knowing
this?) Many power plants are located in low-lying areas near bodies of water. Can we
fuse data from many sources to predict which ones might be flooded with sea level rise
andmove them in advance of those floods or otherwise protect them from flood damage?
Train tracks leading to the heart of downtown areas are also often in low-lying areas
prone to floods. Can we figure out which tracks are subject to flooding and raise them in
advance? The New York City Climate Change Adaptation Task Force set out to address
these kinds of questions and, according to a New York City Panel on Climate Change
report in 2010, this objective “will require ongoing and consistent monitoring of a set
of climate change indicators. Monitoring of key indicators can help to initiate course
corrections in adaptation policies and/or changes in timing of their implementation”
[47]. Moreover, according to the most recent such Panel on Climate Change report in
2019, “A centralized, coordinated indicators and monitoring system is essential for a
comprehensive, city-wide risk assessment of trends in climate and impacts and course
correction toward climate change adaptation and resiliency goals and targets” [76].

There are many parameters that determine the normal healthy state of a complex
system, and it is necessary to gather information from numerous sources to monitor
the health of such a system and get early warning of departures from the “normal.” For
example, in predicting floods in urban areas, one needs to consider data from rain gauges,
radar, satellite algorithms, computer models of atmospheric processes, and hydrological
models. In understanding extreme events that may trigger tidal flooding in urban areas,
one needs to monitor sea level rise, flood insurance claims from businesses and individ-
uals, urban growth trends, the capacity to restore power after a flood, and socioeconomic
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factors. Understanding factors involved in previous floods, and using them to get early
warning about new floods, can help us mitigate impacts and recover faster. To give just
one example, the Peak over Threshold approach uses multiple events to estimate return
periods for such floods [60, 82].

Urban heat is a major issue leading to adverse effects not only on public health
but also on the economy. Extreme heat events have been a major topic of concern at
the US Centers for Disease Control and Prevention for at least a decade [20]. Such
events can result in increased incidence of heat stroke, dehydration, cardiac stress, and
respiratory distress. Individuals under stress due to climate may also bemore susceptible
to infectious diseases. Among the data fusion tools designed to determine urban heat
exposure for the population in a city is the Spatial and Temporal Adaptive Reflectance
Fusion Model (STARFM), using both ground sensor temperature and satellite readings
[39, 41]. Fefferman [36] led a study of how to evacuate the most vulnerable individuals
to climate controlled environments during a major heat event in an urban area (Newark,
New Jersey, US), aimed at minimizing health effects of such an event. Her goal was to
determine where to locate evacuation centers and whom to send to which center. The
project required a major effort at fusing data as to location of potential centers, travel
routes and times to the centers, population size and demographic distribution per city
block, and at-risk groups and their likely levels of healthcare required.

2.2 Animal Health: Biodiversity and Farmyards

Biodiversity is the variability in the plant and animal life in species, total numbers of the
species, their habitat, and their distribution. Evidence about the health of ecosystems is
often obtained by measuring their biodiversity [73]. Identifying species and individual
animals or plants offers insight into the crisis of biodiversity loss on our planet. Modern
methods of data science allow for the use of a great deal of data to identify species and,
sometimes, even individual animals. Identification of individual animals is important if
we are trying to estimate the population of a given species in a given region. But how
hard is it to identify an individual lion or elephant, especially if we may only see the
animal through a “camera trap” image that may only include part of their body and
often with poor illumination? Automated methods for identification of species and of
individual animals, built on modern methods of artificial intelligence, enable us to get
early warning of disruptions to the population of ecosystems. These methods depend
upon the fusion of large amounts of biometric data, such as identification of external body
pattern, footprints, scent, acoustics,DNAbarcoding, etc. [49].Biometric techniques have
the advantage that they don’t require invasive interventions since data can be collected
without capture, instrumentation or tagging. The amounts of data can be huge. For
example, the project called Snapshot Serengeti, based in Tanzania, has collectedmillions
of camera trap images of lions, leopards, cheetahs, elephants, and other animals [63].
Recordings of animal vocalizations can produce over half a gigabyte of data per hour.
Machine learning can be very helpful in classifying animal calls. For example, it has
been used to classify and count syllables in an animal’s call, and can then be used to
distinguish between calls of different species, including types of frogs, birds, etc. [86].
We are far from being able to identify species, let alone individual animals, in the wild.
However, newmethods of artificial intelligence andmachine learning are leading to some
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successes. For instance, [63] describes the use of “deep convolutional neural networks”
to identify and count species in the Snapshot Serengeti dataset of 3.2 million images.
Identification is accurate 93.8% of the time.

Identification of individual animals is becoming important for domesticated animals.
As the number of farms decreases but the number of cattle on each farm grows, it
becomes increasingly important to identify individual animals in an efficient way for
health monitoring, adjusting feeding to enhance milk production, tracking food and
water consumption, and tracking and registration of cattle. Existing methods such as
microchip embedding or ear tagging can be expensive and are subject to forgeries or
damage. Identification of individual livestock is also important to contain spread of
disease and has become recognized as important by international organizations, e.g.,
in preventing spread of diseases such as Bovine Spongiform Encephalopathy (BSE).
Recent work shows that individual cattle can be identified through a deep learning
approach based on “primary muzzle point (nose pattern)” characteristics. This addresses
the problemofmissing or swapped animals (especially during largemovements of cattle)
and false insurance claims [52, 53]. Tools of face recognition, computer vision, animal
behavior, pain metrics, and other tools are already useful in identifying diseases of many
domesticated animals, including sheep, and pigs, and to give early warning of potentially
devastating epidemics from diseases such as BSE, a critical factor in keeping modern
farms resilient [49, 74].

3 The Decision Support Challenge

Decision science is an old subject that was once the domain of social scientists and
economists but is now also the domain of computer scientists and mathematicians who,
working with traditional decision scientists, are developing tools of modeling, simu-
lation, algorithmics, uncertainty quantification, and consensus. This new data-driven
decision support can allow comparison of a vast array of alternative solutions. While
using data tomake decisions is not new, data science has led tomany different techniques
to make better decisions, especially new algorithmic approaches. The new field of algo-
rithmic decision theory aims to exploit algorithmic methods to improve the performance
of decision makers (human or automated) [15, 67, 71, 79].

Decision Support Challenge: Today’s decision makers have available to them remark-
able new technologies, huge amounts of information, and ability to share information at
unprecedented speeds and quantities. These tools and resources will enable better deci-
sions if we can surmount concomitant challenges: Data is often incomplete or unreliable
or distributed, and involves great uncertainty; many sources of data need to be fused into
a good decision, often in a remarkably short time; interoperating/distributed decision
makers and decision-making devices need to be coordinated; decisions must be made
in dynamic environments based on partial information; there is heightened risk due to
extreme consequences of poor decisions; decision makers must understand complex,
multidisciplinary problems [71].
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3.1 Ebola and COVID-19

The 2014 Ebola outbreak in West Africa should have reminded us that the world is ill-
prepared for a severe disease epidemic. When in 2020 the COVID-19 pandemic hit, the
world was indeed poorly prepared. The successful fight to contain the Ebola outbreak
was helped by application of data analysis and mathematical models to support decision
makers. Those models accurately predicted how and where the disease was spreading
and how to contain it. The data allowed decision makers to understand things like:
how many beds and lab tests would be needed—and where and when to deploy them.
Important to the success of the Ebola containment was the sheer and unprecedented
magnitude of epidemiological data made available online to researchers and modelers
by the World Health Organization and health ministries of the most affected countries.
Though modelers had analyzed ongoing epidemics before, such as the 2003 SARS
epidemic and 2009 Swine Flu pandemic, they did not have access to such rich sources
of data. Data fed into models showed we could stop this outbreak if 70% of Ebola cases
could be placed in Ebola treatment units, had effective isolation, and had safe burials
[18].

During the COVID-19 pandemic, there has been literally a tsunami of data available
within a short time, enabling scientists and policy makers around the world to fit their
models and simulations. As models show, faster decisions to shelter in place might
have saved a great many lives [66]. However, decision makers have to balance many
considerations, which can slow down decisions at potential peril. The more we can
develop tools to make effective decisions faster, the better we can ensure resilience in
our systems.

3.2 Resilient Supply Chains

DuringCOVID-19, there have beenmajor shortages in items such as ventilators, personal
protective equipment and other medical supplies, as well as in consumer goods such as
toilet paper and disinfectant wipes and sprays. Our supply chains have been dramatically
changed in the digital age, with artificial intelligence allowing both the private sector
and the government to minimize inventories due to extremely accurate knowledge of
customer demand. However, these AI tools fail when there is an anomalous event. A
key to making supply chains more resilient is to develop tools to allow them to identify
alternative sources and change priorities in a speedy way [28, 55]. Data science will be
critical to support decisions involving changed priorities, alternative suppliers, modified
transportation routes or carriers, etc.

3.3 Precision Agriculture

Data science has led to precision agriculture, which allows the farmer to “leverage AI
and fine-grain data about the state of crops” to improve yield, helping to make decisions
as to when to plant, when to harvest, when to water, when to implement pest control or
fertilizer usage, etc. [27]. Thus, using sensors on farm equipment or in the soil can make
agricultural practices sustainable and reduce environmental impact through data-driven
farming, reducing water and fertilizer use and minimizing the use of pesticides. It can
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make farms “self-healing” and more resilient. As Daugherty and Wilson [27] observe,
“The ultimate goal with precision agriculture is that disparate systems can come together
to produce recommendations that farmers can then act on in real time,” and of course
in the future perhaps even have intelligent machines act on those data without having
the farmer in the loop. Being able to modify plans quickly on the basis of data and
corresponding models can make agriculture more resilient. However, if watering a field
is automated, based on embedded sensors and machine learning, but the crops dry out,
entirely new jobs will be needed to recreate what happened in order to improve decision
making in the future.

4 The Combinatorial Explosion Challenge

Combinatorial Explosion Challenge: Data science allows comparison of an array of
alternative solutions to problems. However, the number of alternatives is often so large
that we cannot take all into account in a timely way. We may not even be able to express
all possible preferences among alternatives.

4.1 Counterterrorism: Nuclear Detection

Terrorist attacks are a major potential source of disruption to modern societies. One
challenge is to minimize the effect of terrorism by doing thorough screening and testing,
but designing the most efficient screening protocols can be difficult due to the number of
possibilities. Consider inspecting containers at ports for nuclear materials. There are a
variety of tests that can be performed on containers, for example determining whether or
not the ship’s manifest sets off an alarm in an “anomaly detection” program; whether or
not the container gives off neutron or Gamma emissions that are above some threshold;
whether or not a radiograph image recognition test comes up positive; whether or not an
induced fission test comes up positive. One can look at tests sequentially, choosing the
next test to perform based on the outcome of the previous test. This kind of sequential
diagnosis is common in many fields such as medicine. In container inspection, one can
represent the possible tests in a binary decision tree (BDT), where the nodes are tests
and we take the right arrow after a given test if the result is positive and left arrow if it is
negative. Ultimately, the container is either allowed through or designated for complete
unpacking. One seeks a BDT that is optimal in some sense. However, even with five
tests, there are 263,515,920 possible BDTs, and the number of possibilities makes it
computationally impossible to find an optimal one. Among promising approaches to
this problem is specialization of the class of BDTs and development of new search
algorithms to move from one tree to better ones [6, 58, 59].

Another example of Combinatorial Explosion also arises from counter-terrorism
applications, the problem of comparing the performance of alternative nuclear detection
algorithms. The problem is to design experiments to compare algorithm performance,
taking into account many relevant factors such as type of special nuclear material being
tested, shielding, masking, altitude, humidity, temperature, and speed of vehicle being
screened. For each of these factors, there are several possible values, and there are too
many combinations to test all of them in experiments. This requires development of tools
to design experiments that test together all significant pairs of values [26, 50].
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4.2 Testing for Disease: COVID-19

An alternative approach to the container inspection problem is a tool called SNSRTREE
[12, 13]. This tool involves a large-scale linear programmingmodel for sequential inspec-
tion of containers that allows for mixed strategies, accommodates realistic limitations
on budget and testing capacity and time limits, and is computationally more tractable.
Recently, research has begun on applying this tool to testing for COVID-19. The goal
is to determine how to optimally select from among the available tests for COVID-19
according to the person, their work, the results of any prior tests, and current, dynamic
test availability. The goal is to use SNSRTREE to determine the probability that a specific
individual is, or is not, “infective.” Tests for the COVID-19 infection include self-reports
of symptoms, thermometer readings, clinical observations, nasal swab tests, saliva tests,
etc. Tests vary as to cost, reliability, and assay time to get a result. To develop optimal
testing policies, we first ask for the result of a first test, and depending on that result,
we may reach a decision or choose a second test. After a second test, we may reach
a decision, or choose a third test, etc. Every such policy has a cost, integrating the
expected cost of the tests with the economic and human costs of false positives and false
negatives. SNSRTREE finds the entire set of “optimal” testing policies for all possible
budgets. Read in one way, it provides least estimated infection at a given cost; read the
other way, it provides lowest estimated cost for a given infection control. What makes
the modification of SNSRTREE or any other algorithm for application to COVID-19
testing complicated is that infection is a moving (time dependent) target rather than a
fixed property; tests may have different assay times and availabilities over time; and test
results may not be stochastically independent – all of which add to the combinatorial
explosion of possibilities.1

4.3 Ecological Monitoring

Still another example of the Combinatorial Explosion Challenge comes from NEON
(National Ecological Observatory Network), a project that involves gathering data from
20 sites across the US to get a continent-wide picture of the impacts on natural resources
and biodiversity of climate change, land use change, and invasive species. The under-
standing gained from NEON can contribute to the resilience of the ecosystem in numer-
ous ways. How are those 20 sites chosen? NEON divides the country into 8 million
patches. For each patch, the project collects 9 pieces of information about its ecology
and climate, clusters the patches, and chooses a representative patch for each cluster.
But why limit this to 9 pieces of information when one could easily come up with
100 pieces of information about each patch? The problem is that it would then become
combinatorially impossible to do the clustering [23].

1 Thanks to Endre Boros, Dennis Egan, Nina Fefferman, Paul Kantor, and Vladimir Menkov for
discussions and the specific ideas in this paragraph.
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5 The Real-Time Analytics Challenge

Near-real-time situational awareness (real-time analytics) is becoming increasingly fea-
sible, based on massive amounts of data from simulation and modeling, mobile appli-
cations, and sensors. Such data can be too rapid for real-time human consumption or
exploration.

Real-Time Analytics Challenge: Some data rates are so large that not all the data can
be saved and yet real-time or almost real-time decisions must be made.

5.1 Resilience in the Electric Power Grid

The electric power grid provides an example where real-time analytics can dramatically
improve resilience.2 Today’s electric power systems operate under considerable uncer-
tainty. Cascading failures can have dramatic consequences [3]. Algorithmic methods
are needed to improve security of the energy system in light of its haphazard con-
struction and dynamically changing character and to find early warning of a changed
state, i.e., to rapidly detect anomalies. “Smart grid” data sources enable real-time pre-
cision in operations and control previously unobtainable (see e.g., [2, 4, 5, 23, 25, 88]):
Time-synchronous phasor data, linked with advanced computation and visualization,
will enable advances in state estimation, real-time contingency analysis, and real-time
monitoring of dynamic (oscillatory) behaviors in the system; sensing and measurement
technologies will support faster and more accurate response, e.g., through remote mon-
itoring; advanced control methods will enable rapid diagnosis and precise solutions
appropriate to an “event.” Status updates that used to come in every two to four seconds
are now approaching ten times a second using new phasor technologies. That rate may
be too rapid for a human alone to absorb the presence of an anomaly in time to act upon
the information, thereby requiring software agent or algorithmic support.

5.2 Smart Transportation Systems

Traffic management in “smart cities” presents many examples of the Real-time Ana-
lytics Challenge.3 “Intelligent transportation systems” involve integrated fare manage-
ment, variable road usage charging, and traffic information made available in real time,
all requiring fusion of a great deal of information. Real-time traffic management takes
account of sensors of all kinds, ability to monitor the actual traffic situation (volumes,
speeds, incidents), and the ability to control or influence the flow using that informa-
tion to reduce traffic congestion, deal with incidents, and provide accurate information
to drivers and authorities. Sensor data depends heavily on GPS data that needs to be
related to the underlying network by map matching algorithms that are computationally

2 Much of the following discussion is based on a white paper [1] in [23] and a presentation by
Gilbert Bindewald of the US Department of Energy to the SIAM Science Policy Committee on
October 28, 2009.

3 Many of the ideas on traffic management here are taken from the talk “Smart Cities – How can
Data Mining and Optimization Shape Future Cities,” by Francesco Calabrese of IBM Ireland,
at the DIMACS/LAMSADE workshop on Smart Cities, Paris, Sept. 2011.
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expensive. GPS data is sampled at irregular intervals, possibly with large gaps – which
requires advanced analytics to reconstruct GPS trajectories. Also, GPS data is inac-
curate, needs “cleaning.” Additional complexity arises from the need to combine the
“hard” numerical readings of sensors monitoring vehicle movements with the “soft”
natural language utterances of drivers and tweets of the public. Understanding human
transit demands/needs in real-time involves challenges to help design adaptive urban
transportation systems, help citizens navigate the city, detect and predict travel demand,
and offer real-time alternative routings in case of problems. The ability to offer such
real-time adjustments can make today’s smart transportation systems more resilient. For
some relevant references, see [8, 40].

5.3 Food Security

The food system has multiple components: producers of food, those who process, ship,
or sell food products, and thosewho shop for food and consume it. At all steps “from farm
to fork” there are possible disruptions [83]. Such disruptions include extreme weather
events, animal diseases, terrorist attacks, and disease events such as COVID-19, which
has both closed down meat packing plants, leading to shortages, and rapidly changed
demand, leading to farmers plowing under crops and pouring out milk. Today’s sensing
and computing capacities allow us to monitor the food system in real time and to take
action to maintain security of the food supply. Such monitoring includes observational
data (soil conditions, land use) and data on social processes and preferences. Automatic
image processing of satellite data [56], information from crop and soil sensors, and
real-time reports of changing supply chain conditions, can be used to gain real-time
awareness and make changes. Such methods have been used for example to estimate the
resilience of the wheat market to potential ruptures in the global transportation system
[34]. For more on real-time monitoring of the food system, see [51]4.

5.4 Resilient Ecosystems

Ecosystems are subject to increasing disturbances in the face of global change (climate
change, land use change, migration patterns, increasing urbanization, etc.). Resilience
of ecosystems allows them to bounce back from perturbations [85]. Is it possible to
judge in real-time when an ecosystem is at the brink of suffering a perturbation that
would irreversibly disrupt it, i.e., when it is on the edge of collapse [9, 11]? Examples
of such dramatic “state changes” in an ecosystem are desertification of certain parts of
the earth [21, 33], coral bleaching [10], lake eutrophication [16], major disruption of the
atmospheric chemistry as a result of agriculture [38], and the transformation of tropical
forests under slash and burn agriculture [54]. One approach is to study satellite images
over a long period of time (many years) and use “deep learning” methods to identify
ecosystems that are stressed and that might have undergone a shift from a stable state
to another. By identifying general characteristics of an ecosystem including climate
fluctuations, biogeochemical cycles or vegetation-atmosphere interactions, it may be
possible to identify those characteristics that indicate a shift is about to occur.5

4 Thanks to Hans Kaper for many of the ideas in this paragraph.
5 Many of the ideas in this paragraph are due to Paolo D’Odorico and Wayne Getz.
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6 The Vulnerabilities Challenge

Modern society is critically dependent upon data from manufacturing and production
systems, power and water, transportation, financial transactions, medicine, etc. Vulnera-
bilities are ever present, enhancing cyberattacks on our infrastructure, causing cascading
failures, leading to rapid spread of anomalies and exacerbating the impacts of all kinds
of failures. It is the very ability to utilize and benefit from large amounts of data that
sometimes creates vulnerabilities.

Vulnerabilities Challenge: How do we identify new vulnerabilities caused by usage of
data? How do we develop tools for monitoring and minimizing such vulnerabilities?

6.1 Medical Facilities

Electronic medical records are a case in point. They lead to being able to share data about
a person’s medical condition rapidly and with a variety of medical personnel. However,
these electronic medical records lead to vulnerabilities. Recently several hospitals have
had to postpone surgeries after having lost access to electronic medical records in a
cyberattack, and had to pay ransom to regain access to these records [61]. During times
of uncertainty and confusion, especially disasters, criminals take full advantage. That
is particularly true of the COVID-19 pandemic. An FBI release says that criminals are
“using COVID-19 as a lure to deploy ransomware…designed to lock” hospital or public
health department computers [35]. There have already been examples of ransomware
attacks on hospitals and labs treating COVID-19 patients or working on treatments,
vaccines, etc. [37]. Numerous other frauds and scams by criminals during the COVID-
19 pandemic also seek to take advantage of the situation. The FBI release describes offers
of sham treatments and vaccines, bogus investment opportunities in medical companies,
and people impersonating doctors demanding payment for treatment.

6.2 Cybersecurity of Supply Chains

Information and communication devices have enabled rapid information sharing, cre-
ated the ability to make financial transactions from anywhere, and provided access from
the workplace to markets worldwide. However, the very nature of these devices as tools,
which use, process and share huge amounts of data rapidly, has led to vulnerabilities. In
recent years, there has been a major concern about cyber threats to information and com-
munication devices and processes. A report of the USDepartment of Homeland Security
Cybersecurity and Infrastructure Security Agency (CISA) Information and Communi-
cations Technology (ICT) Supply Chain Risk Management (SCRM) Task Force [22]
gives a great deal of detail about the importance of and new approaches to supply chain
risk assessment in the information and communication technology (ICT) domain, as do
reports from the US National Institute of Standards and Technology (NIST) [14] and the
US National Counterintelligence and Security Center, Supply Chain Directorate [62].
The CISA report makes it clear that cyber is a key issue. As a supply chain is only as
strong as its weakest link, all components of the supply chain have to be engaged in
cybersecurity issues, but how to achieve this goal is a major challenge. A disruption in
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one device connected to the supply chain can cascade through the entire system, and the
development of protection against such cascading effects of cyberattacks is of central
importance. The maritime transportation system is key to the world’s supply chains.
See Rose [75] for some work on models of cascading impacts of cyberattacks on the
maritime transportation system. Some of those cascading effects on supply chains result
from supply substitutions. How can the potential for supply substitutions to lead to cas-
cading failures be minimized? Models such as those of [31, 32] of how to control the
cascading impact of power grid disruptions are very relevant here, and could lead to
improved resilience of many types of supply chains.

6.3 Autonomous Vehicles

Due to the ready availability of data, there is a huge increase in number of cyber-physical
systems. Today’s cars are more like computers on wheels. Yet, the very ability to utilize
large amounts of data to perform better leads to vulnerabilities. Cyber-physical systems
control much of how a car operates. This makes today’s cars already semiautonomous,
taking decisions away from the driver, and thereby frequently aiding in preventing acci-
dents. But could a criminal or terrorist take control of a car remotely through a cyberattack
and use it to cause damage? This seems to be a serious challenge as in-car technology
becomes more sophisticated. And it is likely to become even more of a challenge as
we develop fully autonomous vehicles. In 2013, Miller (Twitter) and Valasek (IOAc-
tive) demonstrated they could take control of a Toyota Prius and a Ford Escape from a
laptop [42]. They were able to remotely control the smart steering, braking, displays,
acceleration, engine, horn, lights, and so on. As we move to self-driving cars, similar
vulnerabilities might exist. This is not just hypothetical. Already in our seaports, trucks
and cranes operate in driverless mode, and there have been cyberattacks on cranes in
ports [29, 30]. One approach to minimizing the impact of attacks on self-driving cars
begins with risk assessment of different kinds of attacks. See [72] for an approach.

6.4 Oil Rigs

The failure of a blowout preventer on an oil rig in the Gulf of Mexico in 2010 led to
the devastating Deepwater Horizon oil spill, the largest oil spill in US history. That was
not due to a cyberattack. However, there have been cyberattacks on oil rigs. According
to security company ThetaRay, a cyberattack on a floating oil rig off the coast of Africa
managed to tilt the rig slightly and as a result it was forced to shut down. It took a week to
identify and fix the problem [87]. In another drilling rig event, in 2010, a drilling rig being
moved at sea from South Korea to South America was infected by malicious software.
Its critical control systems could not operate and it took 19 days to fix matters [24, 87].
The cyberattack infected the computers controlling the blowout preventer, the system
at fault for the Deepwater Horizon accident. The results could have been disastrous.
Oil rigs are critically dependent on GPS for stability, yet hackers have been able to tilt
an oil rig, putting it out of commission for days at high cost. Modern GPS, dynamic
positioning systems, and other technologies that depend on large amounts of data have
made it possible to manipulate oil rigs in efficient ways, yet open them up to attacks and
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outages [29]. How can we minimize the impact of such attacks? That will be crucial to
make oil rigs and other systems more resilient.

7 The Information Sharing Challenge

Secure information sharing is a key to enable organizations and individuals to work
together on a wide range of issues. Such information sharing is a critical component of
ensuring resilience of systems and networks.

Information Sharing Challenge: Information sharing requires appropriately safeguard-
ing both systems and information; selecting the most trusted information sources; and
maintaining secure systems in potentially hostile settings. How can one best accomplish
these things?

7.1 The Terror Attacks of September 11, 2001

Failure to detect and prevent the September 11th, 2001 attacks in New York City was,
in many ways, a result of an intelligence failure due to lack of information sharing.
At the time, there was no coordinated way to “connect the dots.” Subsequent analyses,
detailed in the Report of the National Commission on Terrorist Attacks Upon the United
States, also known as the 9/11 Commission Report [84], resulted in an emphasis on
information sharing to facilitate situational awareness and understanding. In addition to
the loss of life, the 9/11 attacks had a major economic impact in the US, in particular
on the transportation system, from which it took a long time to recover. The hope is
that information sharing will prevent successful terrorist attacks or criminal behavior,
or at least minimize their impacts, i.e., make the country and its various systems more
resilient.

In order to gain situational understanding when there are many organizations or
individuals each having some relevant information, one can create an ‘information shar-
ing environment’ (ISE) - a decentralized, distributed, coordinated milieu that connects
existing systems and builds on their capabilities, while protecting individuals’ privacy
[19]. In the US, for example, “fusion centers” were created to share information among
numerous agencies and the private sector following the September 11th attacks. They
can have thousands of federal, state and local partners, and utilize information from
numerous government agencies and the private sector, to aid in counter-terrorism and
anti-crime efforts. Successful creation of an ISE requires implementation of both techni-
cal and operational components. Technical components (like interoperability and rules
as to who can gain access and how) are necessary, but also fundamental are the human
components and procedures that ultimately allow an ISE to succeed. An ISE requires
coordination and integration of information-sharing through collaboration and coopera-
tion. However, there have to be shared standards for identification, access, and utilization
of information, there have to be policy, procedures, and technical solutions for safeguard-
ing information, and there need to be standards and accountability procedures for the
protection of privacy, civil rights, and civil liberties.
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7.2 “Participatory Democracy”

Information sharing is coming to be a key component of what some people are call-
ing “participatory democracy.” Here, the idea is that participation by all stakeholders,
including the public, can lead to better policies for governments. While the concept of
participatory democracy goes back to Athenian days [7] it is becoming more and more
important in this digital age. The book [70] develops the concept of “e-democracy,”
which, among other things, includes web-based participation leading to changes in pub-
lic policy. The underlying assumption is that decisions reached through public participa-
tion can lead to more stable societies, smarter cities, etc. Such participatory democracy
has been explored in the context of water usage, power supply, health care, and other
applications, but it requires the development of methods of sharing information and
views, beliefs, and preferences. Tools for reaching good decisions using participatory
methods have been explored by various authors, for example [69]. The goal is to develop
tools to facilitate stakeholders’ participation and achieve collective commitment, which
in turn would seem to lead to greater stability and resilience.

7.3 “Super Storm” Sandy

After “Super Storm” Sandy, the massive hurricane that hit New York City in 2012, the
port of New York/New Jersey was left dramatically damaged. Yet, it was very resilient
and recovered quickly. In a report on the resilience of the port [81], the authors point out
that “soft” resilience strategies were vital in its recovery after Hurricane Sandy. Such
strategies “include ways to reduce vulnerability and improve response and recovery
capability through planning, people, partnerships and policy” and “planning for response
and recovery; increasing access to high quality data; and developing a web of bonds,
ties and relationships across sectors - that is, building what scholars have called ‘social
capital’ through collaboration.” Thus, a stronger social infrastructure (keyed by good
information sharing) led to a more resilient port.

7.4 Secure Multi-party Computation

One theoretical approach of note has come to be called “SecureMultipartyComputation”
[89], an area aiming at allowing parties to jointly compute something over their inputs
while keeping those inputs private. It is a model for “secure information sharing.” We
have begun to see a new effort in systematizing secure computation to allow decision
makers to understand essential strengths andweaknesses of different secure computation
solutions (e.g., whether or not they guarantee fairness and their prerequisites regarding
correctness, auditability, and compliance) and determine which best applies in a given
scenario [68].

8 The Trustworthiness Challenge

Data comes from multiple sources and some are more accurate than others. Multiple
information sources often provide inconsistent or conflicting information – whether



Chapter 7 Data Science and Resilience 131

maliciously, or due to noise. This is especially so in emergency situations where hetero-
geneous information streams describe damage, physical needs, information needs, etc.
in different locations. To utilize the vast amounts of data available to us in this age of
Big Data, we have to understand what sources we can trust. We need precise definitions
of factors contributing to trustworthiness: accuracy, completeness, bias. For work along
these lines, see for example [64, 65]. Work is also needed to develop claim verification
systems,with automated claimverification by finding supporting and opposing evidence.

The Trustworthiness Challenge: How can we develop computational frameworks and
other tools that address the problem of trustworthiness in disasters and other situations?

8.1 Trust in Authorities During Disasters

Responses to disasters will work better if people trust those in charge and comply with
instructions, thus allowing more rapid and effective response to disasters and making
society more resilient. Greenberg [44] argues that there are two factors that determine
whether individuals trust organizations, in particular government organizations. One is
perception of the competence of the organization and the second is the perception that the
organization possesses values and intentions consistentwith those of the individual asked
to trust it, things like fairness or non-bias or willingness to listen and communicate. In
2013, after Super Storm Sandy, Greenberg [43, 44] investigated the New Jersey public’s
willingness to support rebuilding of devastated parts of the state. He asked residents
if they were willing to contribute to a special fund for rebuilding. “The vast majority
were unwilling, and we found that mistrust of the state was a strong predictor of their
unwillingness to contribute. Many did not trust state government to use a dedicated
fund for the designated purpose” [44]. In the midst of a disaster such as the COVID-19
pandemic, many technologies are being touted as helpful, e.g., for screening, testing,
contact tracing, enforcing social distancing, etc. If Greenberg is right, issues of fairness
and ethics involving the government agencies that will deploy the technologies will enter
just as significantly as issues of technical competence of those agencies and technical
performance of the technologies.

8.2 Risk Communication and Human Perception During a Pandemic

COVID-19 reminded us that communications and human behavior are important factors
to consider when preparing for and during a disaster, e.g., a pandemic. How does human
behavior such as panic hoarding of toilet paper, hand sanitizer, and pasta, which we
have seen during the COVID-19 pandemic, arise? To some extent, hoarding is a rational
response to being told not to venture out a lot, in which case it makes sense to stock up
on a lot of goods when you do [57]. How do communications impact hoarding behavior?
Among other things, they can impact our trust in the supply system. In the US, there
were some early inconsistencies in suchmessaging. For example, the Centers forDisease
Control and Prevention recommended keeping a 2-week supply of food at hand and the
Federal Drug Administration recommended that people should only buy enough for the
week ahead [57]. Good risk communication is a key to resilience in the case of a disaster.
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One critical element involved in reopening an economy after people are required to
stay home at the height of a disease outbreak such as COVID-19 is the availability of
healthy and willing workers. It is important to understand the workers’ mental models of
the risk of infection, and how they frame decisions related to the safety of the workplace.
This will involve questions relating to workers’ concerns about competence of those
laying out guidelines about workplace safety. For relevant research on how workers
might make such decisions after disasters, see [77, 78], where the authors studied flu
epidemics and an urban biological catastrophe involving anthrax and explored people’s
decisions about returning to work. Their work demonstrates the importance of risk
communication in making the economy more resilient.

8.3 Identity and Access Management

To return to the topic of information sharing discussed in Sect. 7, another critical principle
underlying a successful information sharing environment (ISE) is trust. This is both a
human and a technical issue. ISEs only work when, over time, participants learn to work
together and trust each other. On the technical side, trust can be accomplished through
identity credential access management solutions, which are a means for participants
to have confidence in the identity of collaborators. “Trustmarks” are digitally-signed
assertions by a third party assessor that are shared between parties seeking to share
information. The parties treat a third party verification as evidence that the trustmark
recipient meets the trust and requirements as set forth in some agreement. For more
information on trustmarks, see [45]. For more on the subject that is coming to be called
identity and access management, see [80].

Proving your identity is part of information sharing. Proving that you have the author-
ity to do something is another component of identity and access management [17], and
this subject can play a role in enhancing recovery during a disaster. Consider a firefighter
from New Jersey who goes to Florida to help in the recovery from a hurricane, an emer-
gency management technician from New Jersey who goes to California to help treat
earthquake victims, or a policeman from New Jersey who goes to New York City to help
control a terrorist standoff. How can these people convince the responsible people at the
disaster scene that they are who they are, but more importantly that they have official
credentials such as a security clearance or a permit to carry a weapon or a hazardous
materials cleanup certificate? The tools of identity and access management can enable
their smart phones to carry encrypted information about their credentials that will speed
up the approval for their involvement by the local authorities [17]. This is an important,
growing field that will help enhance trust and as a result enhance resilience in disaster
situations.

9 Closing Comments

Today’s world of big data, massive computing capacity, artificial intelligence, and
machine learning makes it possible to learn how to build resilience into systems. The
deluge of data from in-situ sensors, remote sensing, images, videos, recordings, makes
it possible to observe changes in systems across temporal and spatial scales. These same
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sources of data should make it possible to develop tools for characterizing resilience.
However, in addition to the challenges discussed in this paper, another critical one is
that there are no agreed-upon metrics to measure whether a system has become more
(or less) resilient, or many tools for improving a system’s resilience.

Aswehave observed, resilience of a systemcanbe enhancedby learning from the past
to sense emerging risks. As more data becomes available, this learning can benefit. We
can fuse massive amounts of data of different kinds, combining with machine learning
tools for anomaly detection, to provide early warning that a system might be in danger.
By providing tools for faster awareness of problems, data science can give systems time
to take mitigating actions. This learning can only be useful, however, if we can identify
appropriate features and indicators, determine how to measure them, and use them as
input into tools of data science to learn which parameter configurations allow a system
to recover to a healthy state if it has been disrupted.
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