
1 23

The Visual Computer
International Journal of Computer
Graphics

ISSN 0178-2789

Vis Comput
DOI 10.1007/s00371-019-01761-z

Generation of crowd arrival and
destination locations/times in complex
transit facilities

Brian Ricks, Andrew Dobson,
Athanasios Krontiris, Kostas Bekris,
Mubbasir Kapadia & Fred Roberts

1 23

Your article is published under the Creative

Commons Attribution license which allows

users to read, copy, distribute and make

derivative works, as long as the author of

the original work is cited. You may self-

archive this article on your own website, an

institutional repository or funder’s repository

and make it publicly available immediately.

The Visual Computer
https://doi.org/10.1007/s00371-019-01761-z

ORIG INAL ART ICLE

Generation of crowd arrival and destination locations/times
in complex transit facilities

Brian Ricks1 · Andrew Dobson2 · Athanasios Krontiris3 · Kostas Bekris4 ·Mubbasir Kapadia4 · Fred Roberts4

© The Author(s) 2019

Abstract
In order to simulate virtual agents in the replica of a real facility across a long time span, a crowd simulation engine needs
a list of agent arrival and destination locations and times that reflect those seen in the actual facility. Working together
with a major metropolitan transportation authority, we propose a specification that can be used to procedurally generate
this information. This specification is both uniquely compact and expressive—compact enough to mirror the mental model
of building managers and expressive enough to handle the wide variety of crowds seen in real urban environments. We
also propose a procedural algorithm for generating tens of thousands of high-level agent paths from this specification. This
algorithm allows our specification to be used with traditional crowd simulation obstacle avoidance algorithms while still
maintaining the realism required for the complex, real-world simulations of a transit facility. Our evaluation with industry
professionals shows that our approach is intuitive and provides controls at the right level of detail to be used in large facilities
(200,000+ people/day).

Keywords Crowd simulation · Crowd generation · Building simulation

1 Introduction

Crowd simulation has long been seen as a means of improv-
ing the quality of a building by increasing the flow of
pedestrian traffic on a day-to-day basis or by reducing the
chance of injury or death in an emergency. With these goals
inmind,we engaged in amulti-year collaborationwith one of
the busiest transportation facilities in the world to model and
simulate the pedestrian traffic within their structure. Based
on our experience with previous crowd simulation research,
we knew that we could rely on robust obstacle avoidance
algorithms and global navigation algorithms (see our previ-
ous work section). In practice, these algorithms did indeed
provide the agent motion planning needed. However, due to

B Brian Ricks
bricks@unomaha.edu

1 University of Nebraska at Omaha, 6001 Dodge Street,
Omaha, NE 68182-0500, USA

2 California Department of Healthcare Services, California,
USA

3 Samsung Semiconductor, Inc., San Jose, California, USA

4 Rutgers, The State University of New Jersey, Piscataway,
USA

the size of the structure and the length of time to be simulated,
we needed a new procedural generation method to create the
arrival and destination locations and times for the large and
diverse set of people that use such a large transit facility.Other
researchers have studied the generation of high-level crowd
paths to some degree (see, for example, Rogla et al.’s [1]
referring to a similar problem to this as “Procedural Crowd
Generation”). Unlike previous recent work in this area, our
work is uniquely focused on generating crowd paths that
match the arrival and departure rates of multiple modes of
mass transportation in a complex indoor structure. Addition-
ally, our specification for this procedural generation is the
result of a multi-year collaboration and is designed to match
the mental model of industry professionals. In this work, we
discuss our approach to (1) specifying the arrival and desti-
nation places and times for large crowds, and (2) generating
individual arrival and destination information based on this
specification. Once we generated these paths, we then used
traditional global path planning and obstacle avoidance algo-
rithms to simulate crowds in a large structure for our industry
partners.

Specific challenges in generating this specification and
attendant algorithm included:

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-019-01761-z&domain=pdf
http://orcid.org/0000-0001-7015-3182

B. Ricks et al.

– Creating a specification that mirrored the mental model
of the building designers and managers.

– Capturing the wide range of ways people arrive and leave
a facility, the wide range of demographics seen in a facil-
ity, and the wide range of vendors seen in a facility while
keeping our specification compact.

– Allowing for global changes in behavior (such as evacu-
ations and delays in departures).

– Handling the mass arrivals and departures commonly
seen with mass transit.

– Making all the above specification components time-
specific to capture the changes seen in crowds throughout
the day.

The contributions of thiswork are (1) our specification and
(2) our algorithm for generating arrival and destination infor-
mation that resolves these challenges. We validate our work
by documenting our feedback from our industry partners and
the results of an informal user study.

2 Related work

In working with industry collaborators on this lengthy sim-
ulation project, we relied heavily on previous research both
in the crowd simulation engine we used and as we developed
our novel procedural generation specification and algorithm.

2.1 Crowd simulation research

After we generate the arrival and destination times and loca-
tions of our virtual agents, our algorithm relies on a traditional
crowd simulation algorithm to simulate agents in a virtual
replica of our structure. To do this, we relied on traditional
obstacle avoidance techniques. Our simulation needed to run
at the detail of virtual agents doing obstacle avoidance (as
opposed to non-simulation techniques such as [2]) since the
crowds in our facility created large lines. The presence of
these queues would force people to take longer routes to their
destinations, thus changing the time it took to get to where
they were going. These dynamics were an inherent part of
the facility’s nature, and needed to modeled at the level of
individual obstacle avoidance.

Most of obstacle avoidance techniques grew out of
Reynolds’ work on flocks and herds [3] and Helbing and
Molnar’s [4] social forces crowd model. Fiorini and Shiller’s
[5] velocity-based approach (notably refined by reciprocal
velocity obstacles [6]) significantly advanced the field closer
to where it is today.

Recent years continue to see improvements in crowd sim-
ulation algorithms. Wolinski et al. [7] created extremely
precise local obstacle avoidance using probabilistic motion
prediction, and Lu et al. [8] improved the performance of

potential field-based crowds. Similarly, improvements have
been seen with agents that realistically turn corners [9] and
show appropriate etiquette when opening doors [10].

Other work focuses on agent-grouping behavior. Schuer-
man et al.’s work [11] added meta-data to locations in a
structure or to a group of agents to avoid agent stalling
and maintaining coherent agent groups. Other approaches
include Kapadia et al.’s [12] framework focused on multi-
agent scenarios.

At an even higher level, work has also been done at the
level of agent desires or behaviors. Notable among these is
Li and Allbeck’s [13] work that gives agents social roles.
Our underlying behavioral engine is based on the work of
Krontiris et al. [14].

2.2 Large crowds

Leveraging early work in crowd simulation, researchers have
used many of the above techniques to simulate crowds in
large areas. Much of this research has focused on exterior
environments. One of the clearest examples of this is that
done in the area of crowd patches. Yersins et al. [15] put
“crowd patches” together to populate a potentially infinite
exterior environment made of local, pre-computed crowd
simulations. This approach was further refined by Jordao et
al. [16,17]. Another example of this kind of work is that done
by de Paiva et al. [18].

A more recent exterior-focused crowd simulation work
thatmore closely alignswith our contribution is that byRogla
et al. [1]. In this work, the authors combine city generation
with crowd generation to both create a city and populate
it. Their work successfully fills the gap often seen in video
games betweenmain characters that “tend to have rich behav-
iors manually defined using techniques such as Behavior
Trees” and “background characters [that] tend to just use
simple simulation methods.” Their approach follows three
major steps: generation of the city population, generation of
each individual agenda, and then the actual simulation. Our
approaches could be considered similar in that we also gen-
erate a population for our facility, give those agents goals,
and then run our actual simulation. However, our approach
to each of these steps is quite divergent due to the difference
in the focus of work. Our contribution is focused on gener-
ating paths that match the complexity of people commuting
between different modes of mass transit in multistory struc-
tures as opposed to the movement of people in an exterior
environment.We particularly recommendRogla et al.’s work
to those interested in crowds for games, both for its academic
contributions and its extensive review of crowd simulation in
commercial games.

An example of work specifically designed for the interior
of a real building is that done by Shau and Terzopoulos [19].
Thisworkmodeled theflowof pedestrians in a section ofNew

123

Generation of crowd arrival and destination locations/times in complex transit facilities

York’s original Pennsylvania Station. Although this work
puts crowds in a large structure, similar to our work, its focus
is more on creating a virtual reality environment, not gener-
ating the arrival and destination times and locations for tens
of thousands of agents.

Other work that has some similarity to our work includes
work that gives semantic information to objects and loca-
tions. In addition to much of the work already cited, early
work by Kallmann and Thalmann [20] takes a fine-detailed
approach to semantic labeling. Additionally, work by Jor-
gensen [21] and Jorgensen and Lamarche [22] that takes into
account scheduling activities of agents shares some themes to
our work, although the scopes of our problem and approach
are much different than theirs.

See [23,24] or [25] for a more extensive treatment of the
vast field of crowd simulation.

2.2.1 Commercial crowd software

Commercial software, such as Massive [26], Golaem [27],
Maya [28], and Houdini [29], are simulation-centric tools
that animators use to author the responses of an autonomous
agent to external stimuli and tweak simulation parameters
to mold the emergent crowd behavior to conform to the
required visual effect. These packages connect the environ-
mental design and crowd simulation pieces into congruent
pieces of software. Other software, such as Legion [30], have
been written with building simulation in mind.

Even after entering into discussions with at least one com-
mercial simulation vendor, our industrial partners asked us to
create a custom simulation. Themotivations for this included
the need for the simulation to be tailored specifically to the
behavior of the patrons in their building, the complexity of
agents arriving and departing on differentmass transitmodal-
ities, and the need for custom, tunable what-if scenarios.

3 Arrival and departure specification

Our crowd generation specification is based on our inter-
actions with engineers and managers of one of the world’s
largest transit facilities located in the Eastern USA. Themain
pattern we observed in these practitioners was that they have
a clear sense of the main groups of people in their buildings.
These included the commuters that quickly came andwent in
addition to people who stayed in the building longer includ-
ing employees, security, and the homeless. Similarly, these
managers had a clear sense of how behaviors in a build-
ing changed over time. During the workweek they clearly
delineated the pre-commute, morning commute, midday lull,
evening crush, and then late evening behaviors. These experts
could also readily explain how crowd behavior changed with
certain holidays or events in the surrounding city. However,

these descriptions were purely qualitative. Fortunately, it
gave us a clear sense of the specification granularity that
would work well with these managers—they thought about
their building in terms of certain demographics and certain
times.

Aswevisiting the facility, it became clear that determining
the scope for crowd generation would be a non-trivial task.
People arrived at the facility in multiple modalities, includ-
ing on foot, inmultiplemodes of personal transportation, and
in multiple modes of mass transportation. As a result, there
were about two hundred placeswhere people could arrive and
depart across different floors. The pedestrian and personal
transportation entrances and exits tended to have steady rates
of arrival and departure. On the other hand, the mass transit
entrances and exits often had long lines of people waiting to
depart followed by a large rush of arrivals. In addition, some
of the mass transit locations were for long distance travel; the
patrons waiting at these departure points frequently arrived
long before their scheduled departure times and broughtmul-
tiple pieces of luggage.

Based on these interactions, we propose a compact yet
expressive enhanced crowd specification. The specification
includes the following:

– Location points of agents with arrivals that have either a
steady rate or scheduled, large arrivals.

– Location points of agents with departures that have either
continuous egress or queues followedby large departures.

– Distinct demographics within the structure with each
arrival location spawning specific distributions of each
demographic.

– Non-departure anddestination locations that affect agents’
behavior within the structure.

– Customizable global changes in behavior such as fire
alarms.

– Every aspect of the specification being able to change
with time.

Fig. 1 Pseudocode of attractor information in the global sub-
specification for a simple building. This lists two attractor types: food
vendors and restrooms. The food vendors have a low attraction at the
start of the simulation (min 0) that goes up around lunch time, drops
down in the afternoon, and then goes up again around dinner time. The
restrooms in this example have a constant attraction strength

123

B. Ricks et al.

To include all of these parts, our specification is designed
in three main sections. First, the global sub-specification
defines the global variables for the entire facility. Easy mod-
ification for the entire structure allows for simple “what-if”
scenario testing and modeling events with specific global
behaviors (vacation days, busy shopping days, etc.). Sec-
ond, the local sub-specification allows individual areas of
the structure to be defined as having the properties of a
global variable with additional, more specific information.
This allows the user to give a terminal exact information
about arrival times or a food vendor details about relative
popularity. Third, the high-level changes sub-specification
allows time-based events to be added to the simulation, for
example, a global delay in the departure of trains starting at a
certain time or weather-related slippery conditions that slow
pedestrian movements in the afternoon. We discuss each of
these sub-specifications in turn.

3.1 Global sub-specification

Thefirst part of our specification is the global sub-specification.
This provides general information about the attractors, peo-
ple types, and origin types in the structure. Later, in the
local sub-specification, individual parts of the structure will
define their specific information in terms of this global sub-
specification plus additional details. Each part of the global
sub-specification was chosen to match the mental model
of industry professionals, while still providing information
needed for a crowd simulation algorithm.

The first kind of global information is a list of attractor
types seen in the facility (see Fig. 1). An attractor is a loca-
tion in the building that can affect the behavior of people in
the building on their way from their arrival location to their
destination location. Attractors are integrated into the behav-
ioral aspects of the crowd simulation algorithm at run time.
Attraction typesmight include retail locations, food vending,
ticket booths, restrooms, offices, and meeting areas. Each of
the global types can be annotated to indicate how interest
in these locations changes throughout the day. For exam-
ple, food locations are more influential around meal time. As
noted earlier, the ability to vary the attraction of inter-facility
locations was a critical expectation of our expert collabora-
tors. Later, individual locations in our specification can be
labeled as being one of these attraction types, along with
other local details.

The second kind of global information is a list of major
people types that move through the facility (see Fig. 2).
Such demographic types might include commuters, shop-
pers, employees, and security personnel. Each major people
type includes information about how long they are expected
to stay in the facility and how interested they are in each
global attraction type. Thus, commuters may stay in the
building for shorter periods of time and are highly interested

in buying tickets, while employees will staymuch longer and
spend most of their time in their offices. Additional demo-
graphic information can be added about each major agent
type that uses the facility, including a distribution over the
expected walking speed and the percent that have luggage or
a disability that will affect mobility. Lastly, each major agent
type is labeled as representing agents that either (A) return
from where they entered (stay agents), or as (B) representing
agents that leave at a different place than where they entered
(through agents). In a transit facility, commuters will gen-
erally enter and leave at different locations (through agents)
while employees will generally come and go from the same
location (stay agents). This differentiation will be discussed
at length in our algorithm section.

The third kind of global information is a list of major
origin/destination types (see Fig. 3). These can include
designations such as bus gates, airline terminals, subway
entrances/exits, parking, and sidewalk entrances/exits. Each
major origin/destination type also can include annotations
about what percent of the people who enter there are from
each major agent type. For through agent types (as described
above), there is also a distribution over the destinations those
agents will choose.

3.2 Local sub-specification

The local sub-specification comprises individual details
about specific locations within the facility. By giving details
in terms of global information plus local variations from that
global information, it is easy to create what-if scenarios that
change global information about a facility while still preserv-
ing the unique characteristics of each part of a building. The

Fig. 2 Pseudocode of people type information in the global sub-
specification for a simple building. This lists two people types:
commuters and employees. The commuters are almost all through
agents (they arrive and leave at different locations) while employees
are not (meaning they are mostly stay agents, so they arrive and leave
at the same locations). Both people types have their own distributions
for their interest in attractor types and walking speed (specified as a
minimum and maximum value) as well as percent disabled and percent
with luggage, which affect walking speed, etc

123

Generation of crowd arrival and destination locations/times in complex transit facilities

Fig. 3 Pseudocode of origin type information in the global sub-
specification for a simple building. This lists three origin types: buses,
subways, and sidewalks. Each origin type specifies a distribution of
people types that arrive there and, of those that are through agents, their
destination ratios

local sub-specification includes details for individual attrac-
tors and individual origin/destinations (see Fig. 4).

First, local attractor information specifies the type of
attraction a certain area has. For example, an area may be
assigned the type of retail outlet, a restaurant, etc., if such
a type exists in the global sub-specification. In addition to
choosing a global type, our specification allows for location-
specific distributions over how long people will stay in a
location and how many people can fit into a location before
a queue forms outside the location.

Fig. 4 Example of the local part of our specification given as pseu-
docode. Notice the list of individual origins and attractors

Fig. 5 Example of a high-level change given as pseudocode. This
change gives a delay in all bus departures starting at 5 pm (17:00)
and lasting 15 min

Second, for each specific area that acts as an ori-
gin/destination point, the user can indicate which global
origin/destination type this location is. In addition to this
global information, details are provided about howpeople are
expected to arrive and leave at the location. We do this for
twomain arrival rate types: steady flow and bulk arrivals. For
exterior entrances that have steady rates of arrival, such as
parking lots and sidewalk entrances, information is provided
in terms of people/minute, which can change throughout the
day. For example, 10 people arrive per minute from the park-
ing lot from midnight to 6 am, 30 people arrive per minute
from 6 am to 8 am, etc. For mass transit locations that have
bulk arrivals, arrivals are specified in terms of people arriving
en masse at certain times. For example, a bus arrives at 7:12
with 50 people, a plane arrives at 8:33 with 128 people, and
so on.

Also included in the local information are details about
how people leave at a location. Similar to the local arrival
specification, there are two types of departure rates: steady
flow and bulk departures. For departure locations with steady
flow, the specification does not indicate how many people
leave per minute, since that is calculated algorithmically.
Instead, the user can specify a destination priority, or how
likely an agent is to choose this specific destination when
choosing among destinations of the same type. For exam-
ple, our observation is that certain street exits are far more
popular than others. The destination priority captures these
preferences. If agents depart from a location in bulk, then
departures are specified by time andwith themaximum num-
ber of people that could leave. For example, a bus departs at
11:30 with up to 75 people, a plane leaves at 6:00 with up to
200 people, etc.

3.3 High-level changes sub-specification

The above specifications give us the information needed to
run a crowd simulation. However, all of this information is
too detailed for a facility engineer to change to test a what-if
scenario such as ‘what if all departures are delayed by 15min
starting at noon?.’ Additionally, it does not match the higher-
level mental model we observed in industry experts. Since
one of the main use cases of this enhanced building specifi-
cation is performing what-if testing, we added the capacity

123

B. Ricks et al.

to indicate changes at a higher-level that match the needs of
these professionals (see Fig. 5).

For example, our experience is that managers and engi-
neers are interested in how movements within the building
will change if all mass transit departures are delayed by
15 min. This can be specified by altering each mass transit
arrival point and adding a delay; however, this is tedious and
not at the level that the managers and engineers are thinking.
Thus, our specification also allows a user to include specific
information about global changes to crowd behavior. These
changes (detailed later) include:

– Global changes in departures by transit type.
– Global changes in condition (such as rain and snow) that
affect people’s walking speed.

Fig. 6 This figure shows the process of taking our enhanced crowd
specification and generating a list of agent paths for a crowd simulation
to model. (Left) The algorithmic steps that happen in sequence. (Right)
The information that is known once each step is completed

– Emergency conditions, such as an evacuation.

4 Calculating agent paths

Our first major contribution is our crowd and building spec-
ification as described above. This specification is not useful
without an algorithm to generate the arrival and destination
locations and times for agents. We now give the details of
our second contribution, the algorithm that generates these
high-level paths. By generating these paths, traditional crowd
simulation algorithms can be used to simulate the movement
of people within large, complex structures.

The steps taken by this algorithm are detailed in Fig. 6.
The goal of these steps is to create high-level agent paths that
contain the following information: arrival time, arrival loca-
tion, agent type, desired departure time, departure location,
and agent information. In other words, our algorithm imple-
ments a function f such that f takes a crowd and building
specification sp ∈ SP as its input and produces a set of
paths P ′ ∈ P , where P = {arrivalt × arrivall × agenttype ×
departuret × departurel}. The resulting set of paths P ′ can
then be used as the input into a traditional crowd simulation
algorithm.

4.1 Determining arrival times

The first step is to determine the arrival times of agents. To
do this, our algorithms loops over each room to see if it has
origin information. If it does, then the arrival information is
used to create arrival times.

How arrival times are chosen depends upon the arrival
type. If the origin has a constant arrival rate, then our algo-
rithm calculates the number of arrivals per time period. For
example, the specificationmay indicate that 100people arrive
per hour. In this case, the algorithm randomly chooses 100
times within that hour for people to arrive. This effectively
does a uniform sampling of arrivals, stratified by the hour.
On the other hand, if this origin has bulk arrivals (for exam-
ple, from a bus, train, or plane), then the specified number
of arrivals is created at the given arrival time. Arrivals are
spaced slightly (by a second or two) to prevent agents being
created on top of each other.

At this point in the process, we have a list of paths with
the arrival times and arrival locations, i.e., P ′ ⊂ {arrivalt ×
arrivall}.

4.2 Determining agent types and departure times

Once we have a list of high-level paths with the arrival time
and arrival location, the algorithm calculates agent types.
Each arrival place has local origin information (as described
above) that specifieswhat global type best describes that local

123

Generation of crowd arrival and destination locations/times in complex transit facilities

origin. For example, an origin can be a bus gate, a subway sta-
tion, a sidewalk entrance, etc. Since each global type includes
information about the distribution of agent types that arrive
at that global type, the algorithm samples that distribution to
assign the agent type. This is done using a simple weighted
sampling.

At this point, our algorithm has a list of paths with the
arrival time, arrival place, and agent type of each agent, i.e.,
P ′ ⊂ {arrivalt × arrivall × agenttype}. The algorithm now
branches depending on whether or not the agent type is a
stay agent or a through agent (as defined previously).

4.2.1 Stay agents

If the agent type chosen has the stay agent property (i.e., each
agent of this agent type leaves where it enters, as is often
the case of employees), then the algorithm can immediately
assign the agent’s destination location. In this case, it is the
arrival location. The specification has a distribution of desired
durations for each agent type if they are a stay agent. Thus,
the algorithm samples the stay agent duration distribution to
choose a desired duration. This assigned duration prevents
stay agents from immediately turning around and leaving the
facility and instead visiting the various attractors inside the
facility.

At this point, for stay agents, the algorithm has a list of
pathswith arrival time, arrival place, agent type, desired dura-
tion, and destination location.

4.2.2 Through agents

Through agents require more work than stay agents since the
algorithm has to determine where through agents will leave.
This is a non-trivial process since many patrons will choose
mass transit options that leave on a set schedule. This leads
to two possible approaches. In our facility, rates of departure
on mass transit were some of the best documented figures
available for our model. This led to one possible solution,
which was to work backward and start by calculating agent
departure times and then calculating agent arrival times based
on that figure. This may be the correct approach in a facility
where agents primarily arrive at a constant rate, but this did
not work in our case, as the majority of the patrons departing
via mass transit also arrived via mass transit (e.g., arriving
on one train and departing on another). Resolving this prob-
lem was non-trivial, but the resulting solution creates a very
plausible and useful crowd simulation.

The first step in our ultimate solution was to sample the
distribution of destination types for the current origin type
and to treat the result as a desired departure time as opposed
to a fixed departure time. If the destination type was where
people leave at regular rates (such as a sidewalk entrance or
parking garage), the exact destination location was chosen

based on the destination priority information. If the agent
chose to leave at a destination type that had bulk departures,
the agent chose a specific destination byweighing each possi-
ble departure time. Theweightwas determined by comparing
the bulk departure time to the agent’s desired departure time.
If the bulk departure time was close to the agent’s desired
departure time, then the weight was high; if the departure
time was not close to the agent’s desired departure time, then
the weight was low. Once a bulk departure was chosen, the
agent adjusted its departure time to match the bulk departure
time and set its desired destination to that location.

At this point in the algorithm, regardless of whether the
agent is a stay agent or a through agent, each agent nowhad an
agent type, arrival time, arrival location, departure location,
and desired departure time, e.g., P ′ ⊂ {arrivalt × arrivall ×
agenttype × departuret × departurel}.

4.3 Other variables

Additional information for the agent can be calculated using
simple distributions. For example, each agent type has a dis-
tribution over the probability of an agent being disabled (i.e.,
walking slower and requiring the use of elevators), having
luggage, and general walking speed. Similarly, each agent
type has a distribution for interest for each attraction type.
Each of these distributions is sampled to give each individ-
ual agent specific desires to visit attractions in the facility.
It is then up to the behavioral algorithm used by the crowd
simulation engine to use these at runtime.

4.4 High-level changes

As noted earlier, buildingmanagers and designers often want
to do what-if analysis at a high level. For example, they may
want to study what happens when all trains are delayed by an
hour. This could be accomplished bymanually altering all the
destination information in the facility, but this would require
tedious work. In a desire to simplify and match the mental
model of the experts with whomwe worked, we also provide
the ability to make high-level or event-level changes to the
specification. These high-level changes are also be taken into
account during the agent creation process.

The first global change reflects a delay in all departures
of a certain type. For example, an airport may have adverse
weather that delays all flights in a given time period by an
hour. This could be done in two different ways. It could be
done by changing the departure times at each location and
then running our path calculation algorithm. On the other
hand, it could be done by calculating all the agent paths
and then delaying all departures that fell within the specified
delayed period. We found that this latter approach worked
better since it better reflects what happens in a real delay
situation.

123

B. Ricks et al.

Other global changes reflect changes in walking speeds
(as seen on rainy/snowy days) or when an evacuation starts.
Global changes in walking speed adjust the walking speed
parameter on each agent. An evacuation tells the crowd sim-
ulation engine to change agents’ destinations at a given time.

Combined, the steps translate our high-level specification
into low-level information for a crowd engine.

4.5 Limitations

This approach is not a general purpose crowd simulation
solution since it is designed for transit facilities. Other crowd
simulation domains (consider highly social ones as in [32])
would probably find the arrival and destination contribution
of this work most applicable to their work. Also, our model
requires a large number of parameters—in our specific facil-
ity the hundreds of arrival and departure parameters were
provided by the facility. In cases such information is not
available, or the building is not a real one, such informa-
tion will need to be generated. One such approach can be to
follow the work of Rogla et al.’s [1] where building gener-
ation and agent generation are created simultaneously. This
approach can be used to determine many of the parameters
in the simulation (see Figs. 1, 2, 3, 4).

5 Validation, results, and informal user study

Due to our non-disclosure agreement, we cannot provide
numeric details about the actual crowds inside the facility.
Thus, in validating our results, we provide the expert feed-
back and an informal user study.

After the simulation ran,we compiled agent density results
and created heat maps showing where the simulation pre-
dicted crowds were the most dense in the current facility
layout (see Fig. 7). This allowed us to validate our model
in three ways. First, the building stakeholders reviewed this
data and gave us feedback about how the density data com-

pared to their mental model of density in the real building.
Second, we had footage from security cameras within the
building and knew where the choke points were within in the
facility. Third, we had spent extensive timewithin the facility
ourselves and had begun to build our own mental model of
what the crowd flow looked like in the real facility. All three
of these validated the numeric results of our simulation.

At the end of this multi-year collaboration our partners
were pleased with the results of our work. Specifically, they
were impressed that we could create a specification that cap-
tured the dynamics of such a complex structure, that the
specification was designed to match their mental model, and
that it couldmodel themany transportationmodalities in their
facility. Theywere also impressedwith the crowd simulations
we could produce from the results of our specification and
algorithm and the analysis of their structure it allowed us to
do together.

We further validated our specification with informal user
studies. In the first study, we created an app for creating
our specification. This was used by three graduate students,
two of whom were familiar with crowd simulation and one
of whom was familiar with building design. The graduate
students were given tasks in designing a building and/or
specifying crowd behavior. In the second study, this system
was used by two undergraduate students, both of whomwere
unfamiliar with building design and crowd simulation. Both
of these undergraduate students were given detailed tasks in
designing and authoring crowds in a large facility.

Several results cameout of these user studies that informed
our work. Foremost, we learned that the specification should
be broken down into clear components. This led to the clear
delineation between the three sub-specifications described
above (global, local, and high-level changes). These changes
were also greeted warmly by our industry collaborators, as it
was a closer mapping to their mental model. These informal
user studies also showed that multiple people with different
backgrounds could use our specification.

Fig. 7 Left: Heatmap of crowd densities within our facility. Similar heat maps were used to validate our simulation. Center and Right: Simple
renderings of crowds specified using our crowd specification. These two examples show crowds at a staircase at two different times

123

Generation of crowd arrival and destination locations/times in complex transit facilities

Fig. 8 Final renderings of crowds using the Unity [31] engine that show the complexity of the facility simulated

In termsof implementation,weused anRVO-based engine
called PracSys [33] and is representative of other available
crowd simulation engines. The behavioral engine we used
was similar to that explained by Krontiris et al. [14]. Using
our specification, we were able to load crowds into this vast
facility (see Fig. 7). We then rendered our results together
with geometry available from the commercial design tools
(see Fig. 8) using the Unity [31] engine.

6 Future work

We have presented a specification and algorithm for pro-
cedurally generating crowd paths for a real transit facility.
Looking forward, we see research opportunities in the area of
environment optimization.As crowd simulations can provide
quantitative results about the usability of a space, algorithms
could be designed to optimize the arrivals and destinations
locations, similar to how Feng et al. [34] adjust retail spaces.
For example, our software could explore a space of differ-
ent options and use results from a crowd simulation engine
to update the building to the most efficient model found.
Another possibility is that the software could suggest this
improved layout to the users, who could use their expert
knowledge to decide if the proposed decision will lead to
the desired outcome.

Funding This study was funded in part by NSF #1718139 and by DHS
#2009-ST-061-CCI002-06 to Rutgers University. All authors were in a
contractual agreement with the transit facility mentioned that supported
the researchers directly or funded students.

Compliance with ethical standards

Conflict of interest The authors declared that they have no other conflict
of interest.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Rogla Pujalt, O., Pelechano Gómes, N., Patow, G.: Procedural
crowd generation for semantically augmented virtual cities. In:
CoRR (2018). arXiv:1811.10036

2. Testa, E., Barros, R.C., Musse, S.R.: Crowdest: a method for
estimating (and not simulating) crowd evacuation parameters in
generic environments. Vis. Comput. 35(6), 1119–1130 (2019)

3. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral
model. In: ACM Siggraph Computer Graphics, vol. 21, pp. 25–34.
ACM (1987)

4. Helbing, D., Molnar, P.: Social force model for pedestrian dynam-
ics. Phys. Rev. E 51(5), 4282 (1995)

5. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments
using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998)

6. Van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obsta-
cles for real-time multi-agent navigation. In: IEEE International
Conference on Robotics and Automation 2008, ICRA 2008, pp.
1928–1935. IEEE (2008)

7. Wolinski, D., Lin, M.C., Pettré, J.: WarpDriver: context-aware
probabilistic motion prediction for crowd simulation. ACM Trans.
Graph. 35(6), 164:1–164:11 (2016)

8. Guanghui, L., Chen, L., Luo, W.: Real-time crowd simulation inte-
grating potential fields and agent method. ACM Trans. Model.
Comput. Simul. 26(4), 1–16 (2016)

9. He, G., Jin, Y., Chen, Q., Liu, Z., Yue,W., Lu, X.-J.: Shadow obsta-
clemodel for realistic corner-turning behavior in crowd simulation.
Front. Inf. Technol. Electron. Eng. 17(3), 200–211 (2016)

10. Huang,W., Terzopoulos,D.:Door and doorway etiquette for virtual
humans. IEEE Trans. Vis. Comput. Graph. (2018) https://doi.org/
10.1109/TVCG.2018.2874050

11. Schuerman, M., Singh, S., Kapadia, M., Faloutsos, P.: Situation
agents: agent-based externalized steering logic. Comput. Anim.
Virtual Worlds 21(3–4), 267–276 (2010)

12. Kapadia, M., Singh, S., Reinman, G., Faloutsos, P.: A behavior-
authoring framework for multiactor simulations. IEEE Comput.
Graph. Appl. 31(6), 45–55 (2011)

13. Li, W.P., Allbeck, J.M: Populations with purpose. In: Motion in
Games (2011)

14. Krontiris, A., Bekris, K.E., Kapadia, M.: Acumen: activity-centric
crowd authoring using influence maps. In: Proceedings of the
29th International Conference on Computer Animation and Social
Agents, CASA ’16, pp. 61–69. ACM, New York (2016)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1811.10036
https://doi.org/10.1109/TVCG.2018.2874050
https://doi.org/10.1109/TVCG.2018.2874050

B. Ricks et al.

15. Yersin, B., Maïm, J., Pettré, J., Thalmann, D.: Crowd patches: pop-
ulating large-scale virtual environments for real-time applications.
In: SI3D (2009)

16. Jordao, K., Charalambous, P., Christie, M., Pettré, J., Cani, M.-
P.: Crowd art: density and flow based crowd motion design. In:
Proceedings of the 8th ACM SIGGRAPH Conference on Motion
in Games, MIG ’15, pp. 167–176. ACM, New York (2015)

17. Jordao, K., Pettré, J., Christie, M., Cani, M-P.: Crowd sculpting:
a space-time sculpting method for populating virtual environ-
ments. Comput. Graph. Forum. (2014). https://doi.org/10.1111/
cgf.12316

18. de Paiva, D.C., Vieira, R.,Musse, S.R.: Ontology-based crowd sim-
ulation for normal life situations. In: International 2005 Computer
Graphics, pp. 221–226 (2005)

19. Shao, W., Terzopoulos, D.: Autonomous pedestrians. In: Proceed-
ings of the 2005 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pp. 19–28. ACM (2005)

20. Kallmann, M., Thalmann, D.: Modeling objects for interaction
tasks. In: Arnaldi, B., Hégron, G. (eds.) Computer Animation and
Simulation ’98, pp. 73–86. Springer, Vienna (1999)

21. Jørgensen, C.-J.: Scheduling activities under spatial and temporal
constraints to populate virtual urban environments. Theses, Uni-
versité Rennes 1 (2015)

22. Jorgensen, C.-J., Lamarche, F.: Space and time constrained task
scheduling for crowd simulation. Research report PI 2013 (2014)

23. Kapadia,M., Pelechano,N.,Allbeck, J., Badler,N.:Virtual crowds:
steps toward behavioral realism. Synth. Lect. Vis. Comput. Com-
put. Graph. Anim. Comput. Photogr. Imaging 7(4), 1–270 (2015)

24. Pelechano, N., Allbeck, J.M., Kapadia, M., Balder, N.L.: Crowds
with Interactive Behaviors. Taylor and Francis Group, London
(2017)

25. Thalmann, D.: Crowd Simulation. Wiley, New York (2007)
26. Massive Software: Massive. http://massivesoftware.com (2019).

Accessed 10 Oct 2019
27. Golaem: Golaem. http://golaem.com (2019). Accessed 10 Oct

2019
28. Autodesk: Maya. https://www.autodesk.com/products/maya/

overview (2019). Accessed 10 Oct 2019
29. SideFX: Houdini. https://www.sidefx.com/ (2019). Accessed 10

Oct 2019
30. Bentley: Legion Software. https://www.bentley.com/en/products/

brands/legion (2019). Accessed 10 Oct 2019
31. Unity3D: Unity. https://unity.com/ (2019). Accessed 10 Oct 2019
32. Ricks, B.C., Egbert, P.K.: A whole surface approach to crowd sim-

ulation on arbitrary topologies. IEEE Trans. Vis. Comput. Graph.
20(2), 159–171 (2014)

33. Kimmel, A., Dobson, A., Littlefield, Z., Krontiris, A., Marble,
J., Bekris, K.E.: Pracsys: an extensible architecture for compos-
ing motion controllers and planners. In: Simulation, Modeling,
and Programming for Autonomous Robots, pp. 137–148. Springer
(2012)

34. Feng, T., Yu, L.-F., Yeung, S.-K., Yin, K.K., Zhou, K.: Crowd-
driven mid-scale layout design. ACM Trans. Graph. 35(4), 132:1–
132:14 (2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Brian Ricks is the director of
the Bricks Lab at the University
of Nebraska at Omaha, which
focuses on crowd simulation and
virtual worlds. He distinguishes
himself by working directly with
building managers and designers
to identify fundamental research
questions in the field of crowd
simulation. His work has been pub-
lished in Transactions on Visu-
alization and Computer Graphics
and the Visual Computer as well
as in numerous conferences. His
work is funded by multiple NSF

awards.

Andrew Dobson received both
his Bachelor’s degree and Mas-
ters Degree in Computer Science
from the University of Nevada,
Reno. He received his Ph.D. at
Rutgers University and did post-
doctoral work at the University of
Michigan.

Athanasios Krontiris received a
Bachelor’s degree in Computer Sci-
ence from the University of Crete
(2007). On August 2009 he joined
the Department of Computer Sci-
ence and Engineering at the Uni-
versity of Nevada, Reno (UNR) as
a graduate student. In May 2011
he completed a Master’s degree in
Computer Science. On July 2012,
he moved to Rutgers, the State
University of New Jersey where
he would complete his Ph.D. work
under the supervision of Dr. Kostas
Bekris.

Kostas Bekris received a Bach-
elor’s degree in Computer Sci-
ence from the University of Crete
in 2001. He completed both his
Master’s (2004) and Doctoral
(2008) degrees in Computer Sci-
ence under the supervision of Prof.
Lydia Kavraki. On July 2008 he
joined the Department of Com-
puter Science and Engineering at
the University of Nevada, Reno
(UNR) as an Assistant Professor.
On July 2012, he moved to Rut-
gers University and joined the Com-
puter Science department as an

123

https://doi.org/10.1111/cgf.12316
https://doi.org/10.1111/cgf.12316
http://massivesoftware.com
http://golaem.com
https://www.autodesk.com/products/maya/overview
https://www.autodesk.com/products/maya/overview
https://www.sidefx.com/
https://www.bentley.com/en/products/brands/legion
https://www.bentley.com/en/products/brands/legion
https://unity.com/

Generation of crowd arrival and destination locations/times in complex transit facilities

Assistant Professor. Since July 2016, he is serving as Associate Pro-
fessor in the same department.

Mubbasir Kapadia is the Direc-
tor of the Intelligent Visual Inter-
faces Lab and an Assistant Pro-
fessor in the Computer Science
Department at Rutgers University.
Previously, he was an Associate
Research Scientist at Disney
Research Zurich. Kapadia’s
research lies at the intersection of
artificial intelligence, visual com-
puting, and human–computer inter-
action, with a mission to develop
intelligent visual interfaces to
empower content creation for
human-aware architectural design,

digital storytelling, and serious games. Kapadia’s research is funded
by DARPA and NSF, and through generous support from industrial
partners including Disney Research, and Unity Labs. He received his
Ph.D. in Computer Science at UCLA.

Fred Roberts is a Distinguished
Professor of Mathematics at Rut-
gers University, where he is a
member of seven graduate facul-
ties, in Computer Science, Math-
ematics, Operations Research,
Computational Molecular Biology,
BioMaPS (Interdisciplinary Ph.D.
Program at the Interface between
the Biological, Mathematical, and
Physical Sciences), Industrial and
Systems Engineering, and Educa-
tion. He has served as Director
of CCICADA (a U.S. Department
of Homeland Security Center of

Excellence) since its founding in 2009, and previously served as
Director of the Center for Dynamic Data Analysis (DyDAn), the pre-
decessor DHS University Center of Excellence to CCICADA, from
2006 to 2009.

123

	Generation of crowd arrival and destination locations/times in complex transit facilities
	Abstract
	1 Introduction
	2 Related work
	2.1 Crowd simulation research
	2.2 Large crowds
	2.2.1 Commercial crowd software

	3 Arrival and departure specification
	3.1 Global sub-specification
	3.2 Local sub-specification
	3.3 High-level changes sub-specification

	4 Calculating agent paths
	4.1 Determining arrival times
	4.2 Determining agent types and departure times
	4.2.1 Stay agents
	4.2.2 Through agents

	4.3 Other variables
	4.4 High-level changes
	4.5 Limitations

	5 Validation, results, and informal user study
	6 Future work
	References

