Applied Combinatorics
 by Fred S. Roberts and Barry Tesman

Answers to Selected Exercises ${ }^{1}$

Chapter 11

Section 11.1.

$\mathbf{1 (a)}$. One example: assign labels $a=1, e=2, j=3, k=4, f=5, g=6, h=7, l=$ $8, m=9, i=10, d=11, c=12, b=13$ and mark the edges
$\{a, e\},\{e, j\},\{j, k\},\{k, f\},\{f, g\},\{g, h\},\{h, l\},\{l, m\},\{m, i\},\{i, d\},\{d, c\},\{c, b\} ;$
2. not connected;

3(a). connected;
$4(\mathbf{a})$. one example: use the marked edges in answer to $1(\mathrm{a})$;
6. it is a spanning forest;

8(a). no;
10. yes.

Section 11.2.
1(a). none;
1(f). $\{c, e\}$;
2(a). orientation based on answer to Exercise 1(a), Section 11.1 orients 1 to 2 to 3 to ... to 13 and all other edges from higher number to lower number;
7. $V=\{x, a, b, c\}, E=\{\{x, a\},\{x . b\},\{x, c\}\} ;$

8(a). none;
$\mathbf{8 (f) . ~} c, e$;
16. for digraph (a) and measure (1): essentially the only orientations are: (i) which uses arcs $(a, b),(b, c),(c, f),(f, e),(e, d),(d, a)$, and (b, e), or (ii) which uses $\operatorname{arcs}(a, b),(b, e),(e, d),(d, a),(e, f),(f, c)$, and (c, b); both are equally efficient; for digraph (a) and measure (3): orientation (ii) above is best; for digraph (a) and

[^0]measure (4): orientation (ii) above is best; for digraph (a) and measure (6): orientation (ii) above is best;
25. D_{1} : category $3, D_{4}$: category 2 ;
26. if $V=\{a, b, c, d\}$ and $A=\{(a, b),(b, c),(c, d),(d, a)\}$, any arc is $(3,2)$;
27. in previous example, any vertex is (3, 2);

28(a). 1 .

Section 11.3.

2. $G_{1}:$ none; $G_{2}: a, c, e, b, f, e, i, j, k, l, i, k, h, g, f, d, a ; G_{3}:$ none; $G_{4}: f, e, c, d, e, b, a, b, a, d, g, f ;$
3. G_{1};
4. $D_{1}: a, b, d, c, d, f, e, c, a ; D_{2}$: none; D_{3} : none; D_{4} : none; D_{5} : none;
5. $D_{2}: c, a, b, d, f, e, c, d ; D_{5}: b, a, e, f, g, b, c, d, e ;$

10(a). yes;
10(b). yes;
10(c). no;
10(d). yes;
12(a). $D_{1}: 2$;
12(b). $D_{2}: 2 ; D_{5}: 2$;
13. 12;
16. no: consider D_{2} of Figure 11.25.

Section 11.4.

3(a). add edge $\{c, f\}$;
$\mathbf{3 (b)}$. add edges $\{e, g\}$ and $\{g, h\}$;
3(c). add edges $\{a, d\}$ and $\{b, c\}$;
$\mathbf{3}(\mathbf{d})$. add edges $\{a, d\}$ and $\{b, c\}$;
6(a). CAAGCUGGUC;
9(a). yes: $A_{1} A_{1} A_{2} A_{2} A_{2} A_{3} A_{3} A_{3} A_{3} A_{3} A_{2} A_{1} ;$
$\mathbf{1 7 (a)}$. say B is an interior extended base of a $\mathrm{U}, \mathrm{C}(\mathrm{G})$ fragment; then both B and the preceeding extended base end in $\mathrm{G}(\mathrm{U}, \mathrm{C})$, so B is on the second list;
18. ends in A;
$\mathbf{2 0}(\mathbf{b})$. if there is a second abnormal fragment, it is B alone.

Section 11.5.

1(a). a, b, d, f, e, c, a;
$\mathbf{1 (b) . ~} i, a, b, c, d, e, f, g, h, i$;
1(c). $a, b, c, d, h, g, f, j, k, l, p, o, n, m, i, e, a ;$
2(a). $e, c, d, a, b ;$
2(b). a, b, c, d, f, e;
2(c). $a, b, c, d, e, j, g, i, f, h ;$
3(a). $a, b, c, d, e, f, a ;$
3(b). a, b, c, e, d, a;
3(c). c, a, d, b, e, f, c;
4(a). a, d, b, c;
4(b). $a, b, d, c, e, f ;$
4(c). a, c, d, b, e;
6. no;

7(a). Z_{4};
7(b). K_{4};
7(c). the graph in Figure 11.50;
7(d). $K_{1,4}$;
8(a). $K_{1,3}$;
8(b). K_{4};
9(a). yes;
10(a). for (a) of Figure 11.45: complete graph;
10(b). for (a) of Figure 11.45: yes;
11. $K_{1,3}$;
12. Z_{5};
13. for (a) of Figure 11.4: no;

Answers to Selected Exercises

14. for (a) of Figure 11.4: no;

15(a). use Theorem 11.8.

Section 11.6.

1(b). yes;
2. for (b) of Exercise 1, Section 4.1: no;
3. for (a), the labeling is a topological order;
8. SF, B, H, LA, NY or SF, B, LA, NY H, or SF, B, NY H, LA;
10. i beats j iff $i<j$;

11(a). $a=1, b=2, c=3, d=4, e=5, f=6 ;$
12. $3,1,2$;
15. if C is a, b, f, d, c, e, a, then H has edges $\{b, d\}$ to $\{e, f\}$ and $\{a, c\}$ to $\{e, f\}$ and is 2 -colorable;
20(b). ($0,1,2,3,4$);
22(a). no;
22(b). no;
23. consider the tournament on $V(D)=\{1,2,3,4\}$ and
$A(D)=\{(1,2),(2,4),(3,1),(3,2),(4,1),(4,3)\} ;$
28(a). $(0,1,2, \ldots, n-1)$;
31. start with any vertex x and find the longest simple path heading into x; this must start at a vertex with no incoming arcs;
32(a). $\binom{s(u)}{2}$;
32 (c). use part (b) and the fact that $s(u) \geq 2$ for some vertex u in every tournament of four or more vertices.

[^0]: ${ }^{1}$ More solutions to come. Comments/Corrections would be appreciated and should be sent to: Barry Tesman (tesman@dickinson.edu) or Fred Roberts (froberts@dimacs.rutgers.edu).

