Applied Combinatorics

by Fred S. Roberts and Barry Tesman

Answers to Selected Exercises ${ }^{1}$

Chapter 12

Section 12.1.
1(a-c). $\{a, \alpha\},\{b, \beta\},\{c, \gamma\},\{e, \delta\} ;$
3(a). $\{a, b\},\{c, d\},\{e, f\}$;
5. find a minimum weight matching;
$\mathbf{7 (b)}$. put a very small weight on all edges not in the graph.
Section 12.2.
1(a). \{Cutting, Shaping, Polishing, Packaging\};
1(b). $\{1,2,3\}$;
1(c). $\{a, b, c, d\}$;
2(a). \{Smith, Jones, Black\};
2(b). \{White, Cutting, Shaping, Gluing, Packaging\};
2(c). $\{a, b, c, d, f, i\}$;
3. (a): no; (b): yes; (c): no; (d): no;

5(a). (a, a, a, a, b, d, a);
6(a). no SDR;
6(b). no SDR;
6(c). $\left(a_{1}, a_{3}, a_{2}, a_{4}\right)$;
6(d). $\left(b_{5}, b_{1}, b_{3}, b_{4}\right)$;
6(e). no SDR;
6(f). no SDR;
8(a). two;
8(b). two;
8(c). 2^{5};
8(d). 2^{n};
9. no;

14(a). yes;
14(b). three: $(c, d, a, b, e),(d, c, a, b, e),(d, e, a, b, c)$;
$\mathbf{1 6 (a) . ~ y e s : ~}\left(\begin{array}{c}6 \\ 7 \\ 4 \\ 2 \\ 1\end{array}\right)$;

[^0]16(b). no;
18(a). n even;
18(b). n even;
18(c). n odd;
20. yes: show each likes exactly p;
$\mathbf{2 2 (a)}$. since an SDR exists, either x is used or it is not. If not and S_{i} contains x, replace S_{i} 's representative in the SDR with x;
22(b). no, e.g., let $S_{1}=\{x\}, S_{2}=\{a, x\}$, and $S_{3}=\{b, x\} ;$
23(a). for example, $(2,3,4, \ldots, n-1, n, 1)$;
24. no, consider the vertex/vertices of degree one.

Section 12.3.

1. yes;

2(a). yes;
2(b). yes;
2(c). no;
2(d). no;
2(e). yes;
2(f). no;
2(g). yes;
2(h). yes.

Section 12.4.

1(a). $\{1,2,3,4,5\}$;
1(b). $\{1,2,4,5\}$;
2(b). \{Smith, Jones, Brown, Black, White\};
6(a). minimum $\{2,6\},\{3,5\},\{1,4\}$;
6(b). minimum $\{1,2\},\{3,4\},\{5,6\}$;
6(c). minimum $\{1,3\},\{2,4\},\{5,8\},\{6,7\}$;
6(c). minimum $\{a, \alpha\},\{b, \beta\},\{b, \delta\},\{c, \gamma\}$;
7(a). no;
7(b). $\left\lceil\frac{n}{2}\right\rceil$;
9. minimum edge covering;
13. If I is independent, $V-I$ is a vertex cover and if K is a vertex cover, $V-K$ is independent;
15. $\left|M^{*}\right| \leq\left|K^{*}\right|$ implies $|I| \leq\left|I^{*}\right| \leq\left|F^{*}\right| \leq|F|$.

Section 12.5.

1(a). $8,\{8,9\}, 9,\{9,6\}, 6$;
1(b). $8,\{8,9\}, 9,\{9,6\}, 6,\{6,3\}, 3$;
$\mathbf{1 (c)}$. add edges $\{8,9\}$ and $\{6,3\}$, delete edge $\{9,6\}$;
$\mathbf{6 (a)}$. pick vertex 8 , place edge $\{5,8\}$ in T, note 8 is unsaturated, and note
$5,\{5,8\}, 8$ is an M-augmenting chain;
$\mathbf{9 (a)}$. use edges $\{6,7\},\{7,11\},\{11,9\}$.

Section 12.6.

1. (a): $\delta(G)=1, m(G)=3 ;(\mathrm{b}): \delta(G)=0, m(G)=3 ;(\mathrm{c}): \delta(G)=1, m(G)=4$;
(d): $\delta(G)=1, m(G)=4$;

2(b). $2 p \leq 3|N(S)|$;
2(c). $|S|-|N(S)| \leq p-\frac{2}{3} p$;
2(d). $m(G)=|X|-\delta(G) \geq 9-\frac{1}{3}(9)=6$.

Section 12.7.

$\mathbf{2 (a)}$. worker 1 to job 2,2 to 3,3 to 1 , and 4 to 4 ;
$\mathbf{2 (b)}$. worker 1 to job 2,2 to 3,3 to 1 , and 4 to 4 ;
2(c). worker 1 to job 2,2 to 5,3 to 4,4 to 1 , and 5 to 3 ;
3. worker 1 to job 4,2 to 1,3 to 5,4 to 2 , and 5 to 3 ;
4. machine 1 to location 2,2 to 1,3 to 5,4 to 4 , and 5 to 3 ;
$\mathbf{5 (a)}$. speaker 1 with speaker 3,2 with 5,3 with 1,4 with 6,5 with 2 , and 6 with 4 ; 6. no, there are three solutions: $B_{1}-H_{1}, B_{4}-H_{2}, B_{3}-H_{3}$ or $B_{1}-H_{2}, B_{2}-H_{1}$, $B_{3}-H_{3}$ or $B_{2}-H_{1}, B_{4}-H_{2}, B_{3}-H_{3}$.

Section 12.8.

1. $(n!)^{2 n}$ since there are $n!$ choices for the preference list for each of the n men and n women;
2. $n!$: there are n choices for the first man, then $n-1$ choices for the second man, \ldots, and finally, 1 choice for the $n^{t h}$ man;
3. m_{3} has w_{4} higher on his preference list and w_{4} has m_{3} higher on her preference list;
5(a). $m_{1}-w_{1}, m_{2}-w_{2}, m_{3}-w_{3}, m_{4}-w_{4} ;$
5(b). $m_{1}-w_{4}, m_{2}-w_{3}, m_{3}-w_{2}, m_{4}-w_{1}$;
11(a). there are 3 possible matchings each with a blocking pair: $p_{1}-p_{2}, p_{3}-p_{4}$ with blocking pair p_{2}, p_{3}; and $p_{1}-p_{3}, p_{2}-p_{4}$ with blocking pair p_{1}, p_{2}; and $p_{1}-p_{4}, p_{2}-p_{3}$ with blocking pair p_{1}, p_{3};
11(b). no.

[^0]: ${ }^{1}$ More solutions to come. Comments/Corrections would be appreciated and should be sent to: Barry Tesman (tesman@dickinson.edu) or Fred Roberts (froberts@dimacs.rutgers.edu).

