Applied Combinatorics by Fred S. Roberts and Barry Tesman

Answers to Selected Exercises¹

Chapter 12

Section 12.1. 1(a-c). $\{a, \alpha\}, \{b, \beta\}, \{c, \gamma\}, \{e, \delta\};$ 3(a). $\{a, b\}, \{c, d\}, \{e, f\};$ 5. find a minimum weight matching; 7(b). put a very small weight on all edges not in the graph.

Section 12.2. 1(a). {Cutting, Shaping, Polishing, Packaging}; 1(b). {1, 2, 3}; $1(c). \{a, b, c, d\};$ 2(a). {Smith, Jones, Black}; **2(b)**. {White, Cutting, Shaping, Gluing, Packaging}; **2(c)**. $\{a, b, c, d, f, i\};$ **3**. (a): no; (b): yes; (c): no; (d): no; **5(a)**. (a, a, a, a, b, d, a);6(a). no SDR; **6(b)**. no SDR; **6(c)**. $(a_1, a_3, a_2, a_4);$ **6(d)**. $(b_5, b_1, b_3, b_4);$ 6(e). no SDR; 6(f). no SDR; 8(a). two; 8(b). two; 8(c). 2⁵; 8(d). 2ⁿ; 9. no; 14(a). yes; **14(b)**. three: (c, d, a, b, e), (d, c, a, b, e), (d, e, a, b, c); 6 **16(a)**. yes: **16(a)**

¹More solutions to come. Comments/Corrections would be appreciated and should be sent to: Barry Tesman (tesman@dickinson.edu) or Fred Roberts (froberts@dimacs.rutgers.edu).

16(b). no; 18(a). n even; 18(b). n even; 18(c). n odd; 20. yes: show each likes exactly p; 22(a). since an SDR exists, either x is used or it is not. If not and S_i contains x, replace S_i 's representative in the SDR with x; 22(b). no, e.g., let $S_1 = \{x\}, S_2 = \{a, x\}, \text{ and } S_3 = \{b, x\};$ 23(a). for example, $(2, 3, 4, \ldots, n - 1, n, 1);$ 24. no, consider the vertex/vertices of degree one.

Section 12.3.

1. yes; 2(a). yes; 2(b). yes; 2(c). no; 2(d). no; 2(e). yes; 2(f). no; 2(g). yes; 2(h). yes. Section 12.4. 1(a). {1, 2, 3, 4, 5}; 1(b). {1, 2, 4, 5}; **2(b)**. {Smith, Jones, Brown, Black, White}; **6(a)**. minimum $\{2, 6\}, \{3, 5\}, \{1, 4\};$ **6(b)**. minimum $\{1, 2\}, \{3, 4\}, \{5, 6\};$ **6(c)**. minimum $\{1, 3\}, \{2, 4\}, \{5, 8\}, \{6, 7\};$ **6(c)**. minimum $\{a, \alpha\}, \{b, \beta\}, \{b, \delta\}, \{c, \gamma\};$ 7(a). no; **7(b)**. $\left[\frac{n}{2}\right];$ 9. minimum edge covering; 13. If I is independent, V - I is a vertex cover and if K is a vertex cover, V - Kis independent; **15**. $|M^*| \le |K^*|$ implies $|I| \le |I^*| \le |F^*| \le |F|$. Section 12.5.

1(a). 8, $\{8, 9\}, 9, \{9, 6\}, 6;$ 1(b). 8, $\{8, 9\}, 9, \{9, 6\}, 6, \{6, 3\}, 3;$ 1(c). add edges $\{8, 9\}$ and $\{6, 3\}$, delete edge $\{9, 6\};$ 6(a). pick vertex 8, place edge $\{5, 8\}$ in *T*, note 8 is unsaturated, and note 5, $\{5, 8\}, 8$ is an *M*-augmenting chain; 9(a). use edges $\{6, 7\}, \{7, 11\}, \{11, 9\}.$

52

Answers to Selected Exercises

Section 12.6. 1. (a): $\delta(G) = 1, m(G) = 3$; (b): $\delta(G) = 0, m(G) = 3$; (c): $\delta(G) = 1, m(G) = 4$; (d): $\delta(G) = 1, m(G) = 4$; 2(b). $2p \le 3|N(S)|$; 2(c). $|S| - |N(S)| \le p - \frac{2}{3}p$; 2(d). $m(G) = |X| - \delta(G) \ge 9 - \frac{1}{3}(9) = 6$.

Section 12.7.

2(a). worker 1 to job 2, 2 to 3, 3 to 1, and 4 to 4; **2(b)**. worker 1 to job 2, 2 to 3, 3 to 1, and 4 to 4; **2(c)**. worker 1 to job 2, 2 to 5, 3 to 4, 4 to 1, and 5 to 3; **3**. worker 1 to job 4, 2 to 1, 3 to 5, 4 to 2, and 5 to 3; **4**. machine 1 to location 2, 2 to 1, 3 to 5, 4 to 4, and 5 to 3; **5(a)**. speaker 1 with speaker 3, 2 with 5, 3 with 1, 4 with 6, 5 with 2, and 6 with 4; **6**. no, there are three solutions: $B_1 - H_1$, $B_4 - H_2$, $B_3 - H_3$ or $B_1 - H_2$, $B_2 - H_1$, $B_3 - H_3$ or $B_2 - H_1$, $B_4 - H_2$, $B_3 - H_3$.

Section 12.8.

1. $(n!)^{2n}$ since there are n! choices for the preference list for each of the n men and n women;

2. n!: there are *n* choices for the first man, then n-1 choices for the second man, ..., and finally, 1 choice for the n^{th} man;

4. m_3 has w_4 higher on his preference list and w_4 has m_3 higher on her preference list;

5(a). $m_1 - w_1, m_2 - w_2, m_3 - w_3, m_4 - w_4;$ **5(b)** $m_1 - w_1, m_2 - w_2, m_3 - w_3, m_4 - w_4;$

5(b). $m_1 - w_4$, $m_2 - w_3$, $m_3 - w_2$, $m_4 - w_1$;

11(a). there are 3 possible matchings each with a blocking pair: $p_1 - p_2, p_3 - p_4$ with blocking pair p_2, p_3 ; and $p_1 - p_3, p_2 - p_4$ with blocking pair p_1, p_2 ; and $p_1 - p_4, p_2 - p_3$ with blocking pair p_1, p_3 ; **11(b)**. no.