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Abstract 

The problem of container inspection at ports-of-entry is formulated in several different 

ways as an optimization problem. Data generated from different analytical methods, x-

ray detectors, gamma-ray detectors and other sensors used for the detection of chemical, 

biological, radiological, nuclear, explosive, and other illicit agents are often relied upon 

to make critical decisions with regard to the nature of containers presented for possible 

inspection and the appropriate response mechanism. Several important questions related 

to the utilization and coordination of multiple sensors for container inspection are 

discussed. New and efficient algorithms for finding the best inspection strategy, including 

the optimal sequencing of sensors and optimal assignment of thresholds for interpreting 

sensor readings, are described. Models and algorithms that can be used by decision 

makers, allowing them to minimize expected cost of inspection, minimize inspection 

errors (both false positives and false negatives), and/or maximize the throughput of 

containers, are outlined. 

1. Introduction 

Finding ways to intercept illicit materials, in particular weapons, destined for the U.S. via 

the maritime transportation system is an exceedingly difficult task. Practical 

complications of inspection approaches involve the negative economic impacts of 

surveillance activities, errors and inconsistencies in available data on shipping and import 

terminal facilities, and the tradeoffs between costs and potential risks, among others.  
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Until recently, even with increased budget and emphasis, and rapid development of 

modern technology, only a very small percentage of ships entering U.S. ports have had 

their cargo inspected. Thus there is a great need to improve the efficiency of the current 

inspection processes. There has been a series of attempts to develop algorithms that will 

help us to inspect for and intercept chemical, biological, radiological, nuclear, and 

explosive agents, as well as other illicit materials. Such algorithms need to be developed 

with the constraint that seaports are critical gateways for the movement of international 

commerce. More than 95 percent of our non–North American foreign trade arrives by 

ship. With “just-in-time” deliveries of goods, the expeditious flow of commerce through 

these ports is essential. Slowing the flow long enough to inspect either all or a statistically 

significant random selection of imports would be economically intolerable (Loy and Ross 

2002). 

Potential goals for container inspection include: 

• Minimizing inspection errors, both false positive and false negative, subject to 

constraints on cost of inspections 

• Maximizing inspection system “throughput” 

• Minimizing total expected cost of inspection. 

Here, false positive means a container that has no suspicious contents is rejected or goes 

through extensive manual examination and false negative means that a container that has 

suspicious contents is accepted. These criteria are inter-related and it is unlikely that they 

would be optimized by a single set of parameter values. Thus, we are dealing with a 

typical multi-objective programming problem, and one seeks ways to formulate this 

precisely and use methods of multi-objective programming to find solutions under 

different formulations. 

As to the data itself, at present there are only two techniques for non-invasively “seeing” 

into a container, both involving projection and the resultant transmission or reflection of 

waves: 1) Electromagnetic (EM) waves (radio waves, light, x-rays, gamma rays, etc.) and 

2) Material vibration waves (ultrasound). A variety of means exist for converting these 

waves into images suitable for human inspectors to interpret (James et al. 2002). In 
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practice, there are only a small number of types of sensors used in port-of-entry 

inspection protocols. In part this is due to the reality that there are not many different 

types of inspections that can be carried out short of actually opening a container, and in 

part it is due to the fact that algorithmic approaches to container inspection run afoul of 

combinatorial explosions when more than a small number of sensors are used. We will 

describe new approaches to the container inspection problem that we can hope could lead 

to almost doubling the number of sensors whose outputs could be considered. Such 

methods should prepare us well for the time when additional practical detection methods 

are made available for port-of-entry inspections. 

Although the techniques of “seeing” into containers are limited, various types of sensors, 

testing for the same types of things, are being used in the current practice of port-of-entry 

inspection. They range from hand-held or portable devices, to heavy equipment, and from 

counts to numerical measurements to shape (image) classifications. These sensors vary 

widely in cost, resolution and sensitivity, and they are evolving quickly with innovations 

leading to both significant decreases in costs and to many new features as well. We rely 

upon their measurements to make critical decisions with regard to the nature of the 

containers being inspected and to detect unwanted agents.  Interpretation of the output 

from a sensor is not always straightforward and requires calibration. The interpretation 

may lead to accepting a container that contains undesirable material (false negative) or 

may lead to unnecessary inspection of a container that is acceptable (false positive), 

which results in delays and added cost.  Clearly, interpretation of sensor readings has a 

direct effect on these errors and on the entire inspection process. 

Typical techniques transform sensor readings into a real output, and generally thresholds 

are used to separate suspicious containers from innocent looking ones. There are many 

critical issues involved in determining what thresholds to use, such as noise (in the 

detector measurements), the sequencing of different sensors, the determination of the 

threshold levels of the sensors that minimize the probabilities of accepting undesirable 

containers and rejecting acceptable containers, and the minimization of system delays, 

among others. These issues must be considered simultaneously in configuring inspection 

and detection systems and research needs to address these threshold-related issues. We 
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will describe a polyhedral approach to this problem, building on earlier work that 

formulated a large-scale linear programming model yielding optimal strategies for 

container inspection under certain assumptions, and we will also describe a dynamic 

programming approach and a new algorithm that combines the well-known optimization 

known as the Gradient Descent Method and Newton’s Method. 

2. Model Formulation 

In the port-of-entry inspection process, we consider containers (entities) being off- loaded 

from ships. Containers are inspected and classified according to observations we make 

regarding their attributes. In the simplest case, each attribute is either “present” (1) or 

“absent” (0). There are several categories into which we seek to classify entities. In the 

simplest case, these are positive and negative, 1 or 0, with “0” designating entities that 

are considered “acceptable” and “1” designating entities that raise suspicion and require 

special treatment. After each observation, we either classify the entity as 0 or 1 or subject 

it to another inspection process. Thus, a container can be thought of as corresponding to a 

string of 0’s and 1’s, a binary string. Note that we might make a decision about a 

container before knowing all the terms in this string. The classification can be thought of 

as a decision function F that assigns to each binary string of attributes a category. In this 

paper, we focus on the case where there are two categories. Thus, F is a Boolean 

function. For instance, consider the Boolean function defined by F(111) = 1 and F(x1x2x3) 

= 0 otherwise, where x1, x2, and x3 are 0 or 1. This F is the function that classifies an 

entity as positive if and only if it has all of the attributes. Boolean functions provide the 

selection logic for an inspection scheme. If F is known, we seek to determine its value by 

testing the attributes one by one. In a typical case, the attributes are assumed to be 

independent. We shall describe models where the distribution of the attribute states is 

known and also where it is not. In particular, in the binary case, we consider the 

probability pi that the ith attribute takes on the value 0, and the probability qi = 1-pi that it 

takes on the value 1. The inspection policy determines the order of testing the container’s 

attributes. At any point, the inspection scheme might tell us to stop inspecting and decide 

the value of F based on the outcomes of inspections so far. We must make enough 

observations to allow us to classify the entity and decide whether to designate it as an 
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entity that needs special handling or accept it. The notation we use and assumptions we 

make about a port-of-entry inspection system can be formalized as follows: 

1. There are n  inspection stations in the system; each station is used to identify one 

attribute of the container being inspected. Let ix  be the state of the i th attribute. 

2. We think of observations (measurements) as taking place sequentially. After each 

observation, we either classify the entity being inspected or subject it to another 

inspection process.  As noted above, the classification of each container is thought of 

as a decision function F  that assigns to each string of attribute values a class C. We 

focus on the case where there are only two classes, C = 0 and C = 1, i.e. F(x1x2…xn) = 

0 means the negative class and that there is no suspicion with the container, and 

F(x1x2…xn) = 1 means the positive class and that additional special treatment such as 

manual inspection of the container is required.  

3. We assume that we gather information about the probability that the attribute i  is 

present or absent for a group of containers, which are imported by the same company 

or from the same origin at the same time. This information can be obtained, for 

example, from inspection history or other sources. As noted, we use ip  to be the 

probability that the attribute i  is absent and iq  to be the probability that the attribute 

i  is present, i.e., ( 0),i ip P x= =   ( 1) 1 ,i i iq P x p= = = −  for 1,2, ,i n= K .   

4. The inspection stations are assumed at first to be perfect, which means that the true 

attributes can always be identified at the corresponding inspection stations without 

any error. However, later we will assume that the sensor readings are either 

continuous or categorical measures and consider errors in identification. In particular 

once “thresholds” are included in our model, we will consider the problem with the 

possibility that resetting thresholds will lower the probability of misclassifying a 

“good” container as needing further inspection or a “bad” container as being 

acceptable. 

5. The port-of-entry inspection problem involves three kinds of costs (Stroud and Saeger 

(2003)): costs of making observations, costs of false positives, and costs of false 

negatives.  There are many possible ways to calculate the cost of obtaining a sensor 
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reading. For instance, we can break down the cost into two components: unit cost and 

fixed cost. The unit cost is just how much it costs to use the sensor to inspect one 

item, and the fixed cost is the cost of the purchase and deployment of the sensor itself. 

In many cases, the primary cost is the unit cost since many inspections are very labor 

intensive. The fixed cost is usually a constant and often does not contribute in 

optimization equations, so for simplicity we will disregard it.  The inspection cost ci 

is basically the expected cost of making observations for an average container. Stroud 

and Saeger (personal communication) also assign costs to false positives and false 

negatives, though especially the latter is very difficult to do. The cost of the former is 

essentially the cost of labor to manually inspect the container, though more 

sophisticated analysis would take into consideration the economic cost of delays in 

shipping. Stroud and Saeger then seek to minimize the sum of inspection costs and 

false positive and negative costs. Some other researchers also consider such a sum of 

costs, whereas others concentrate on inspection costs only. 

The whole inspection process can be represented as a binary decision tree (BDT), the 

nodes of which correspond to sensors or decisions (0 or 1), and branches of which 

correspond to the decision we make after learning the sensors’ readings. For 

concreteness, we think of a BDT as having a left branch from a sensor node meaning that 

the sensor gives an outcome 0, and a right branch meaning that it gives an outcome 1. 

Decision nodes are all 0 or 1 and are leaves of the tree, i.e., have no outgoing branches. 

The container inspection problem was considered by Stroud and Saeger (2003), who 

provided a complete enumeration of all possible binary decision trees built from no more 

than 4 sensors and corresponding to Boolean functions satisfying two assumptions: 

completeness (all variables are needed) and monotonicity (finding a more suspicious 

reading on any one sensor must not decrease the probability that the container itself 

should be inspected). A Boolean function F is monotone if given two strings x1x2…xn, 

y1y2…yn with xi ≥ yi for all i, then F(x1x2…xn) ≥ F(y1y2…yn). F is incomplete if it can be 

calculated by finding at most n-1 attributes and knowing the value of the input string on 

those attributes. Stroud and Saeger then modeled sensor outcomes as following 

independent Gaussian distributions, one for “good” containers and one for “bad” ones, 

and studied thresholds for container readings above which an inspection outcome of 1 
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would be reported. They computed approximately optimal thresholds for each sensor 

(one threshold per sensor) by a non-linear grid-search approach. Their method cannot be 

extended to more than 4 sensors, due to combinatorial explosion of the number of binary 

decision trees.  For example, for n = 4 different sensors as nodes, there are 114 complete, 

monotone Boolean functions and 11,808 distinct corresponding BDTs. Compare this with 

1,079,779,602 BDTs for all Boolean functions, which explains the need for special 

assumptions such as completeness and monotonicity.  For n = 5, there are 6,894 

complete, monotone Boolean functions and 263,515,920 corresponding BDTs. Even 

worse: compare 5 x 1018 BDTs corresponding to all Boolean functions. (Counts are from 

Stroud-Saeger.) 

Among important extensions of this work are: doing sensitivity analysis on their results 

(Anand, et al (2006)); making more restrictive assumptions about the nature of the binary 

decision trees (Zhang, Schroepfer, and Elsayed (2006)); introducing a new and promising 

polyhedral approach (Boros, et al. (2006)); and broadening the class of binary decision 

trees considered in order to introduce more computationally-efficient search procedures 

for optimal inspection strategies (Madigan, et al. (2007)). 

3. The Polyhedral Formulation 

Boros, et al. (2006) extended the work of Stroud and Saeger (2003) and formulated a 

large-scale linear programming model yielding optimal strategies for container 

inspection. This model is based on a polyhedral description of all decision trees in the 

space of possible container inspection histories. The dimension of this space, while quite 

large, is an order of magnitude smaller than the number of decision trees. This 

formulation allowed them to incorporate both the problem of finding optimal decision 

trees and optimal threshold selection for each sensor into a single linear programming 

problem. The model can also accommodate budget limits, capacities, etc., and one can 

solve it to maximize the achievable detection rate. Boros, et al. have been able to solve 

this model for 4 sensors, and branching that allows up to 7 possibly different routing 

decisions at each sensor (in contrast to the binary routing solved by Stroud and Saeger 

(2003), and implicit in Boolean models) in a few minutes of CPU time, on a standard 
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desktop PC. They are also able to run the model for as many as 7 sensors, when they 

allow only binary decisions, as in Stroud and Saeger (2003). A challenge is to extend and 

improve this polyhedral formulation.   

To describe the polyhedral approach in more detail, note that to containers passing 

through the inspection station, one can associate a “history,” which is the sequence of 

pairs naming a sensor and its reading. Readings at a given sensor fall within a range of 

values, and we can partition this range into several classes. For instance, if we have 

sensors a,b,c and we present a grid of partitions for these sensors, consisting of, say, 2 

possible readings for sensor a, 3 for sensor b, and 5 for sensor c,  then sequences  like 

(c,4;a,1;b,3), (b,1;a,2), etc. are all possible histories. (In the former, we mean that sensor 

c has a reading in its fourth region, a in its first region, and b in its third region). Let us 

note that the number of possible histories is smaller by a full exponential order (that is, it 

is only singly exponential instead of being doubly exponential) than the number of 

decision trees (utilizing the same branching parameters and same set of sensors). 

Denoting our terminal decisions by 0 and 1, we can define decision variables y(H,0) and 

y(H,1) representing, respectively, the (unknown) fraction of containers having history H 

and final decisions 0 (ok) or 1 (check further with special handling). Clearly, the equality 

ÂH,Dy(H,D) = 1 must hold, where the summation is taken over all histories H and final 

decisions D. Let us further call an initial segment of a history a pre-history, and denote by 

P<H the statement that P is an initial segment in H. With this notation we can describe a 

set of consistency equalities corresponding to the knowledge that at each sensor s and for 

each reading range r at this sensor the fraction of containers receiving reading r is g(s,r) 

out of all containers that arrive at s with the same pre-history (where g(s,r) are considered 

as input parameters, derivable from a physical sensor model, or from past data, etc.). In 

other words, we must have: 

g(s,r)*Â{H,D| (K,s)< H} y(H,D) = Â{H,D | (K,s,r) < H} y(H,D)  

for all sensors s, for all pre-histories K not involving sensor s, and for all reading ranges r 

possible at sensor s. 
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Boros, et al. (2006) prove that the above set of equalities, together with the nonnegativity 

of the decision variables, describes a polytope, the vertices of which correspond to 

decision trees. Since many other characteristics of an inspection policy, such as unit 

inspection cost, detection rate, sensor loads, etc., can all be expressed as linear functions 

of the decision variables, they are able to formulate various problems related to container 

inspection as linear programs (see more in Boros, et al, 2006)). 

The preliminary results of Boros, et al. demonstrate that (1) allowing multi-fold 

discretization of sensor readings provides substantially better results (higher detection 

rate at a lower cost) with the same set of sensors; (2) optimal strategies in fact involve a 

mixture of several decision trees, rather than just a single best decision tree. There are 

various ways to extend this work. 

3.1 Extension to more sensors and variables 

The current formulation involves a quite large system of linear inequalities, which leads 

to numerical instability, and with this there are challenges in expanding to a larger 

number of sensors and larger branching factors at each of these sensors. One could 

exploit the algebraic structure of this system, and reformulate it to yield a numerically 

more stable formulation. Developing a column generation technique for this type of 

problem might also help. Extending the method to systems involving up to 7 to 8 sensors, 

and as many as 5 to 10 different possible decisions at each of these sensors, would allow 

us to evaluate the effects of new technologies, budget changes, etc., in realistic sizes. 

3.2 Selection of threshold grids or partitions 

As noted in Section 2, another important area for further research is the selection of 

threshold grids. There are many important issues involved in determining what thresholds 

to use, including sequencing of sensors, the desire to minimize false positive or false 

negative results, the need to minimize system delays for commerce, and problems caused 

by noise and errors in measurement. Stroud and Saeger (2003) developed a grid-

optimization technique for selecting the thresholds. This is incorporated into the large-

scale linear programming formulation of Boros, et al. (2006) by choosing a grid of 

possible threshold values, and letting the optimization model select which ones of them 
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are actually utilized in an optimal inspection strategy. The large-scale linear 

programming formulation can be solved efficiently by standard LP packages for up to 5 

sensors and 5 to 7 thresholds per sensor, even if the decision trees involved are not 

binary. As noted above, the results of Boros, et al. (2006) show that multiple thresholds 

provide substantial improvement at no added cost. They also show that the optimal 

solution is not a single decision tree, but a convex mixture of several decision trees. Of 

course, this approach is sensitive to the selection of the initial grid. In particular, 

computational complexity forces us to start with a relatively coarse grid initially. A 

challenge is to develop a better method for selecting initial grids. One could use the fact 

that decisions based on sensor readings do not depend on the actual reading, but rather on 

the odds ratio of dangerous to innocent container contents corresponding to the actual 

reading (Kushner & Pacut, 1982). One could also develop an iterative approach for 

refining the partitioning of sensor readings, so that a k-fold partition at a given sensor is 

focused on the most critical sensor readings, as revealed by the model with k-1 partitions. 

4. Different Allowable Topologies for the Decision Trees 

The port-of-entry inspection problem can be decomposed into two sub-problems. The 

first problem deals with the determination of the optimum sequence of inspection or the 

structure of the inspection decision tree in order to achieve the minimum expected 

inspection cost; the second problem with the determination of the optimum thresholds of 

the sensors at inspection stations so as to minimize the cost associated with false positive 

(false alarm, which results in additional manual inspection) and false negative (failure to 

identify illicit materials or weapons). The first problem can be formulated and 

investigated using approaches parallel to those used in the optimal sequential inspection 

procedure for reliability systems as described by Butterworth (1972), Halpern (1974, 

1977), Ben-Dov (1981), Cox, et al. (1989), Cox, et al. (1996), and Azaiez, et al. (2004). 

After the sequences of inspection and the structure of the inspection decision tree are 

determined, one determines the optimum thresholds of the sensors at inspection stations. 

 

The Stroud-Saeger (2003) approach to port-of-entry inspection concentrated on limiting 

the number of decision trees we must consider by making special assumptions about the 
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underlying Boolean function, i.e., that it is complete and monotone. An alternative 

approach is to make special assumptions about the topology of the decision tree. 

4.1. Series, parallel, and other topologies 

A topology-limiting approach can take advantage of the literature of systems reliability. 

Here, one considers a multi-component system, where the state of all the components is 

described by a vector (x1,x2,…,xn), and the operational state of the system is a function 

F(x1,x2,…,xn) of the states of its components. (In our earlier discussion, we spoke of 

strings x1x2…xn rather than vectors, but the distinction is not important.) In the so-called 

testing or diagnosis problem, we want to learn the state of the system (the value of F) by 

testing some of the components (learning the value of some of the variables xi). It is 

assumed that we know the cost ci of testing component xi, and we also know the 

distribution of the values of xi, for all components i=1,..,n. The problem is to determine 

that sequence of tests that minimizes the total expected cost. A simplified version 

considers only expected cost of inspections, disregarding costs of false positives and 

negatives. The word “sequence” used here is in fact misleading, since, as we have noted, 

the real testing strategy is in fact a decision tree, in which the next component to be tested 

depends on the values we learned for the components tested earlier. Such problems arise 

in fault testing in systems engineering, medical diagnosis, search problems in data bases, 

and even in quiz shows (see e.g., Butterworth (1972), Chang and Slagle (1971), Duffuaa 

and Raouf (1990), Greiner (1990), Joyce (1971), Kadane (1969), Kowalski (1969, 1972), 

Nilsson (1971), Pohl (1971)). Numerous papers in the extensive literature have 

considered this problem in one or another special case.  

For instance, consider series or parallel systems, i.e., those in which components have 

only working or failing states, and the function F is a simple conjunction or disjunction of 

its components. More precisely, a series Boolean function is a decision function F  that 

assigns the container class “1” if any of the attributes is present, i.e., if 1ix =  for any 

{1, 2, , }i n∈ K , and a parallel Boolean function is a decision function F  that assigns the 

container the class “1” if all of the attributes are present, i.e., if 1ix =  for all 

{1, 2, , }i n∈ K . 
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Consider a container with n  independent attributes and described by a series Boolean 

function. Let the inspection procedure be such that attribute 1i +  is inspected only if 

attribute i  is found absent, for all attributes 1, 2, , 1i n= −K . If attribute i is present, the 

inspection of further attributes is halted and the container is subject to special 

handling/manual inspection. In this situation, the following result holds: For a series 

Boolean decision function, inspecting attributes 1, 2, ,i n= K  in sequential order is 

optimum, i.e., minimizes total expected inspection cost, if and only if: 

             1 1 2 2/ / /n nc q c q c q≤ ≤K . 

In this case, the expected inspection cost is given by  

1

1
2 1

[ ]
n i

j i
i j

C c p c
−

= =

= +∑ ∏ . 

In other words, the optimal strategy is to test the components in the order of the ratio 

ci/Prob(xi=1). This strategy is dependent on the sensor configuration. (See e.g., Mitten 

(1960), Butterworth (1972), Natarajan (1986), Alidaee (1994) and many others for 

proofs.) 

It is natural to ask: How can this be generalized for different Boolean decision functions 

other than series?  For more complex k-out-of-n systems, the optimal strategy was 

determined by Chang, Shi and Fuchs (1990). Series-parallel systems (i.e., systems in 

which components can hierarchically be grouped into series or parallel subsystems) are 

also frequently considered in the literature. One natural idea is to test subsystems one-by 

one, without interruption, in the order of their cost/probability ratios. This was proposed 

by Joyce (1971), and was claimed (mistakenly) to be optimal for series-parallel systems. 

Ben-Dov (1981) showed that this idea is indeed optimal for simple, depth-2 series-

parallel systems, while Natarajan (1986) proved that it is optimal within those strategies 

that test subsystems without any interruption. Boros and Ünlüyurt (2000) showed that this 

algorithm can unfortunately fall short of the optimal value, and by an arbitrary factor, for 

series-parallel systems of depth-3. A generalization was also proposed, and was shown to 

be optimal for the very special case of systems composed of identical components (see 
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Ünlüyurt (2005) for a survey on this topic). Zhang, Schroepfer, and Elsayed (2006) have 

developed general total cost of inspection equations for n sensors in series and parallel 

configurations. It is natural to seek to develop similar equations for other configurations 

such as series-parallel, parallel-series, k-out-of-n systems and consecutive k-out-of-n 

systems. The approach for other complex configurations such as networks of sensors can 

be based on either a path-tracing approach or cut sets (minimum cut sets) depending on 

the characteristics of the sensor network.  It is likely going to be difficult to obtain closed 

form expressions but the derived equations can be numerically evaluated through 

efficient algorithms. 

4.2. Optimal threshold setting 

In Section 3.2, we discussed a polyhedral approach to optimal threshold setting. The 

problems of optimal threshold setting become much more complex and difficult to solve 

for a larger number of sensors. An alternative approach to determining threshold levels 

involves a simplifying assumption about the tree topology.  Assuming a “series” topology 

(looking at one sensor at a time in a fixed order), one can first determine an optimal 

sequence of sensors. Once an optimum sequencing of sensors is obtained, the threshold 

level problem is then formulated. Zhang, Schroepfer and Elsayed (2006) have used a 

complete enumeration approach to determine the optimum sequence of inspection 

stations and the corresponding sensors’ threshold levels to solve problems with up to 

three sensors in series and parallel systems. The computational time increases 

exponentially as the number of sensors increases. They are developing efficient 

algorithms for solving different sensor configurations and hope to be able to utilize the 

topology to obtain tractable solutions for systems having 6 to 7 sensors without resorting 

to complete enumeration, through a combinatorial optimization algorithm based on a 

dynamic programming approach. 

4.3. Unknown Boolean function F 

A similar, though very different problem, arises in the study of systems reliability when 

we do not explicitly know the system function F, but we know a way to determine for 

any proposed function G(x1,...,xn) the probability that it describes the true state of our 
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system (we call this probability the detection rate). This variant arises in several 

applications, including medical diagnosis (Greiner (1990)), organizing call centers (Cox, 

Qiu, and Kuehner (1989)), and container inspections at ports (Stroud and Saeger (2003)).  

There are several possible ways to formulate problems in this setting (still assuming that 

we know the cost of testing and probability distributions of the variables). One problem is 

to find that function G for which the detection rate is the highest, and then to determine 

the optimal decision tree for “testing its components” (that is, determining the actual 

value of each of the components) to minimize expected expenses. A more general 

problem is to consider all of the functions G for which the detection rate is above a given 

threshold, and minimize the expected testing cost among all these. This particular 

formulation was considered by Stroud and Saeger (2003). 

Stroud and Saeger (2003) solved the above problems at once, by enumerating all the 

possible decision trees representing all possible complete, monotone Boolean functions. 

The difficulty with this approach is that the number of decision trees grows doubly-

exponentially with the number of sensors. In particular, they demonstrated that these 

problems can be handled for up to 4 sensors, but that this approach is not feasible for 5 or 

more sensors, with current computing technology, due to the intensity of the 

combinatorial explosion. 

Both of the above problem formulations are further complicated in practice by the fact 

that testing the components typically yields a result on a continuous scale, not a discrete 

or binary scale.  The solution must discretize this (that is, assign some meaning to the 

readings), changing thus implicitly the functions (or sets of functions) considered by the 

model. For instance, if we decide to binarize all readings, then one possibility is to use 

thresholds that divide the range of readings into two, and this leads to the problem of 

finding the thresholds for which the optimum in the previously  

considered cases (whichever model we use) is the best.  One approach to this problem is 

to bisect the range of the threshold into two equal regions and then select two threshold 

levels, the first in the middle of the first region and the second in the middle of the second 

region. One can then estimate the minimum cost for each and select the level 



 15 

corresponding to the lower cost. A promising approach is to repeat the process by 

bisecting the range between the selected level and the original level and continue the 

process until the global minimum cost is obtained. The computational time required for 

this approach will of course be dependent on the initial range and the “fine” sectioning of 

the region.  

The effectiveness of a partition having a given number of subsets K will be increased if 

the partition is not defined by thresholds placed on the natural sensor reading scale, but 

are defined to mark off connected portions of the ROC curve. This curve plots the 

conditional probability of sending a dangerous container for inspection as a function of 

the probability that a harmless container will be unnecessarily inspected.  This curve rises 

smoothly as the required posterior odds that a container is “bad” are lowered. With 

complex sensors, the natural sensor readings corresponding to a particular portion of the 

ROC curve may be quite widely separated.  On the other hand, statistical theory tells us 

that such a portion should be treated in the same or very similar ways.  Therefore one can 

anticipate that defining partitions in terms of the ROC curve, rather than in terms of the 

natural sensor reading, will increase the power of an inspection scheme for any given 

number of partitions K 

4.4. Complete, Monotone Binary Decision Trees 

Stroud and Saeger (2003) formulate the port-of-entry inspection problem as a sequential 

decision making problem that involves finding an optimal (least cost) binary decision 

function. They reformulate this by considering the possible binary decision trees that 

correspond to that decision function, and seek through the space of possible binary 

decision trees to find least cost trees realizing each function. The problem becomes 

rapidly intractable unless special assumptions are made about the binary decision 

function. As noted earlier, Stroud and Saeger limit their analysis to complete, monotone 

binary decision functions. They enumerate all complete, monotone Boolean functions and 

then calculate the least expensive corresponding BDTs under assumptions about various 

costs associated with the trees. Their method is practical for n up to 4, but not n = 5. The 

problem is exacerbated by the number of BDTs (see counts in Section 2). 
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Madigan, et al. (2007) generalized the notion of complete, monotonic Boolean functions 

and defined notions of complete and monotonic binary decision trees. They developed a 

search algorithm that identifies (locally) optimum (least cost) complete, monotonic 

binary decision trees that is more efficient than the method developed by Stroud and 

Saeger, and makes it possible to analyze trees of at least 5 sensors (types of tests). The 

search method is based on a notion of neighborhood in the space of complete,  monotonic 

binary decision trees, built on work of Chipman, George, and McCullough (1998a,b) and 

Miglio and Soffritti (2004). 

5.  Multi-Objective Programming Approaches 

As mentioned earlier, in algorithmic approaches to inspection at ports of entry, we hope 

to find the optimal design of (sensor) system configuration and the best sets of threshold 

levels that can achieve a variety of objectives, such as maximizing inspection system 

throughput, minimizing the expected cost of inspection per container, and minimizing 

inspection errors, including both false positive and false negative. These objectives or 

criteria are interrelated. It is unlikely that they would be optimized by the same 

alternative parameter values, and there exists some trade-off between the criteria.  It is a 

typical multi-objective optimization problem (see, for instance, Eschenauer, et al. (1990), 

Statnikov and Matuso (1995), Fonseca and Fleming (1998a, b), and Leung and Wang 

(2000), among others). Depending on the application, one can formulate different multi-

objective algorithms for the problem. In general, there may be a large number or infinite 

number of optimal solutions (e.g., optimal sets of threshold values, etc.), in the sense of 

Pareto-optimality.  It is desirable to find as many (optimal) solutions as possible in order 

to provide more choices to decision makers. 

The multi-objective problem is almost always solved by combining the multiple 

objectives into one scalar objective whose solution is a Pareto optimal point for the 

original problem. Most algorithms for the problem have been developed in combination 

with techniques, such as minimizing/maximizing weighted sum of the objective 

functions, the goal programming method, a normal-boundary intersection method, and 

multilevel programming, among others. A particularly promising idea is to employ a 
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combination of a goal programming method and a modified method of using weighted 

sums of the objective functions. 

The goal programming method (Scniederjans 1995, Jones and Tamiz 2002) is a branch of 

multiple objective programming. In the goal programming approach, we optimize one 

objective while constraining the remaining objectives to be less than given target values. 

One can, for example, set constraints on the inspection cost, false positive rate and false 

negative rate, and maximize the objective function of throughput. An alternative 

approach is to use a modified weighted sum approach (a hybrid version of goal 

programming and the weighted sum approach), where we optimize, for example, a fitness 

function (i.e., weighted sum) of the objective functions under a constraint that both the 

false negative rate and false positive rate are controlled within their respective tolerance 

levels. In both the goal programming method and the modified weighted sum approach, 

by using the constraints, one can avoid the problem of how to subjectively choose 

appropriate weights for the false positives and false negatives, as discussed in Stroud and 

Saeger (2003). In a small system with only 2 to 4 sensors, this multi-objective 

programming problem can be solved by a grid search method similar to that discussed in 

Zhang, Schroepfer, and Elsayed (2006) and Stroud and Saeger (2003); see, also Sections 

4.2 and 3.2. However, for a large system with more sensors, it is computationally 

challenging to use this simple enumeration method, since the computational time 

increases exponentially as the number of sensors increases. Hence, one needs to 

investigate alternative methods to simple enumeration. 

To effectively solve the problem for a system with more sensors and a more complex 

configuration, one needs to develop more efficient algorithms as well as more objective 

ways of choosing the weights. This could be tackled by using a genetic algorithm in 

combination with studying statistical designs (such as uniform designs) on the weights 

and by systematically searching through the domain of parameters (i.e., threshold values 

and configurations) for optimal values.  A similar algorithm was developed by Leung and 

Wang (1995), who used a uniform design to study the weights and search for optimal 

parameter values. 
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6. Generalizations and Complications 

6.1 Allowing for stochastic dependence of the sensor readings 

The research described above has all been done for the case of stochastically independent 

sensors.  The model can be extended to consider stochastically dependent sensors. In the 

current models, sensor readings are taken to be independent of one another, although, of 

course, the branching actions at a later sensor can be quite different depending on the 

readings provided by an earlier sensor.  The polyhedral method described in Sec. 3 can in 

principle be extended to deal with the case of stochastically dependent sensors, although 

the constraints required to represent the inspection effort needed to identify a particular 

region of the “sensor reading space” become rather more complicated. 

6.2 Measurement Error and Optimal Threshold Setting 

One important issue in modeling and computing sensor reading data and the objective 

functions is measurement error. The measurement error is also known as ‘error-in-

variables' (Carroll et al., 1984, Carroll et al., 1995, Kalbfleisch and Prentice 2002). Some 

work on port-of-entry inspection optimization algorithms has simplified the analysis by 

assuming precise and accurate measurements of sensors at inspection stations. This is a 

reasonable first approach. However, most measurements are subject to errors due to 

external sources, which include environmental conditions such as temperature 

fluctuations, humidity, dust particles, vibration, natural radiation; and internal sources 

that are dependent on the sensing component material and its ability to provide accurate 

measurements over a wide range of measurements as well as its manufacturing and 

assembly issues. 

As noted earlier, Stroud and Saeger (2003) assume that both “good” containers and “bad” 

containers follow Gaussian distributions of readings. When readings exceed a threshold 

value, the outcome is viewed as suspicious. Based on whether or not an outcome is 

suspicious, the next test to be applied is determined or the container is finally categorized 

as “ok” or not. Of course, depending on the distribution of readings and the threshold 

values, errors can occur with certain probabilities. Anand, et al (2006), also using 
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Gaussian distributions, experiment with models for setting the thresholds so as to 

minimize total cost of the corresponding binary decision tree. Their approach involves 

incrementing individual sensor thresholds in fixed-size steps in an exhaustive search for 

threshold values that will minimize the expected cost of a binary decision tree. More 

efficient algorithms, based on combinations of the Gradient Descent Method and 

Newton’s Method in optimization, are reported on in Madigan, et al. (2007). 

Other approaches are also of interest. For example, building on work of Yi and Lawless 

(2006), one can aim to “extract” the “true” values of the measurements in order to 

determine accurate threshold levels and minimize the probability of misclassification of 

inspected items (containers) investigated using sensor observations. One can also apply 

analysis of the “meaningfulness” of conclusions from combinatorial optimization, 

developed in the measurement theory literature. (See Mahadev, Pekec, and Roberts 

(1997, 1998), Roberts (1990,1994,1999).) This approach analyzes the sensitivity of 

conclusions about optimality if parameters are measured on different kinds of scales and 

the scales change in permissible ways. Conditions are given for conclusions of optimality 

to be invariant under permissible changes of scale. A major application of this line of 

work has been to scheduling problems and one can seek to modify the methods of 

Mahadev, Pekec, and Roberts (1997, 1998) to apply to the port-of-entry inspection 

problem, which involves complications in the scheduling problems considered previously 

in the literature. 

7. Case Study: Container Risk Scoring 

The first step in the container inspection process actually starts outside the United States. 

To determine which containers are to be inspected, the United States Customs and Border 

Protection (CBP) uses a layered security strategy. One key element of this strategy is the 

Automated Targeting System (ATS). CBP uses ATS to review documentation, including 

electronic manifest information submitted by the ocean carriers on all arriving shipments, 

to help identify containers for additional inspection. CBP requires the carriers to submit 

manifest information 24 hours prior to a United States-bound sea container being loaded 

onto a vessel in a foreign port.  
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ATS is a complex mathematical model that uses weighted rules that assign a risk score to 

each arriving shipment in a container based on manifest information. The CBP officers 

then use these scores to help them make decisions on the extent of documentary review 

or physical inspection to be conducted (United States Government Accountability Office 

(2006)). This can be thought of as the first inspection test and the “sensor” is the risk 

scoring algorithm. Thus, in some sense, all trees start with the first sensor and this sensor 

is then not used again. It is not unreasonable to think of more sophisticated risk scoring 

algorithms that also involve sequential decision making, going to more detailed analysis 

of risk on the basis of initial risk scoring results. The Canadian government uses similar 

methods. The Canadian Border Services Agency (CBSA) uses an automatic electronic 

targeting system to risk-score each marine container arriving in Canada.  As with ATS, 

this Canadian system has several dozen risk indicators, and a score/weight for each 

indicator.   

As an application of how these two risk-assessment systems can be enhanced using the 

methods discussed in this paper, one could think of the following approach.  Each risk 

indicator could be categorized into a specific "risk category," based on general themes 

such as an unreliable trade chain partner or suspicious commodity information. Based on 

various algorithms, one could create a real-valued function or "super rule" to assess the 

potential risk in each of these risk categories, returning a value between 0 and 1.  Each of 

these functions could be thought of as a "sensor".  The methods described in this paper, in 

particular the polyhedral methods described in Section 3, could provide both the 

American and Canadian container targeting systems with tools to determine an optimal 

multi-level decision tree to determine whether a container should be targeted or 

authorized to clear based on the results of these super rules. These and other ideas are 

under consideration.  
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8. Closing Comments 

It is quite impressive how much work has already been done to develop formal methods 

for improving container inspection procedures using optimization techniques. Future 

work would benefit greatly from agreement upon a method for representing the cost-

effectiveness of various sensor strategies. The problem always involves representation of 

risks, with assumptions about probabilities and costs (or utilities). It would be very useful 

to find ways to make precise the range of possible parameter values for things like 

inspection costs, loss of trade costs, etc. The problem is particularly complex since we are 

dealing with low probability, high consequence events. Measurement of both the 

probability and the cost of such events is very difficult and of course risk assessment for 

such events is a central challenge in homeland security.  

 

The many parameters involved and many criteria for a “good” inspection strategy suggest 

that there will be more than one way to formulate the inspection problem. The 

uncertainties involved about parameter values suggest that even for each formulation, a 

significant amount of sensitivity analysis should be carried out.  Because the problem of 

finding solutions to the formalizations of the inspection problem becomes dramatically 

more difficult as the number of tests available increases by even a small number, there is 

great need to develop methods for finding such solutions in increasingly efficient ways.   

The chances of extending present methodology to the number of potential tests we might 

have in the future will be small without some dramatically new approaches. 

 

Because our ports handle billions of dollars of goods each year, even small improvements 

in efficiency of handling these goods, or of inspecting them while not disrupting trade, 

can be very important. Because the consequences of mistakes in inspection can be 

catastrophic, even small improvements in the likelihood of successfully preventing 

weapons of mass destruction from passing through our borders can also be important.  
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