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Happy Birthday Jean-Claude! 
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My Message 
• The modern theory of measurement was developed to 
deal with measurement in the social and behavioral 
sciences where scales are not as readily defined as in 
the physical sciences. 

–  Utility, noise, intelligence, … 
• Traditional concepts of measurement  
theory are not well known in the public  
health arena. 
• They are finding interesting new 
applications there. 
• In turn, problems of epidemiology and 
public health are providing new  
challenges for measurement theory. measles 
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Some Questions We Will Ask 
• Is it meaningful to say that the malaria parasite 
load has doubled?  
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Some Questions We Will Ask 
• Is the average cough score for one set of TB 
patients higher than that for another? 
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Some Questions We Will Ask 
• For controlling the spread of HIV, which of 
abstinence education, universal screening, and 
condom distribution are more effective? 
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MEASUREMENT 
• All of these questions have something to do with 
measurement. 
 

• We will discuss applications of the theory of measurement 
to measurement in epidemiology and  
public health. 
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Outline 
1.  Introduction to Measurement Theory 
2.  Theory of Uniqueness of Scales of Measurement/Scale   

Types 
3.  Meaningful Statements 
4.  Averaging Judgments of Cough Severity 
5.  Measurement of Air Pollution 
6.  Evaluation of Alternative HIV Treatments: “Merging 

Normalized Scores” 
7.  Optimization Problems in Epidemiology 
8.  Meaningfulness of Statistical Tests 
9.  Behavioral Responses to Health Events 
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MEASUREMENT 
• Measurement has something to do with  
numbers.  
 

• We take the approach of the “representational theory of 
measurement” 
• Assign numbers to “objects” being measured in such a 
way that certain empirical relations are “preserved.” 
• Important contributions of Jean-Claude to the  
development of this representational theory of 
measurement ranging from his early work on 
composite measurement through biorders, well 
graded families of relations, almost connected 
orders, etc. 
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MEASUREMENT 
• Measurement has something to do with  
numbers.  
 

• We take the approach of the “representational theory of 
measurement” 
• Assign numbers to “objects” being measured in such a 
way that certain empirical relations are “preserved.” 
• Temperature, weight are key health variables. 
 

• In measurement of temperature, we preserve a  
relation “warmer than.” 
 

• In measurement of weight, we preserve a relation 
 “heavier than.” 
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MEASUREMENT 
A: Set of Objects 
R: Binary relation on A 
 

aRb ´ a is “warmer than” b 
aRb ´ a is “heavier than” b 

 
f: A Æ ¬ 

aRb ´ f(a) > f(b) 
 
R could be preference. Then f is a utility function (ordinal 
utility function). 
R could be “louder than.” (E.g., coughs) Then f is a 
measure of loudness. 
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MEASUREMENT 
A: Set of Objects 
R: Binary relation on A 
 

aRb ´ a is “warmer than” b 
aRb ´ a is “heavier than” b 

 

f: A Æ ¬ 
aRb ´ f(a) > f(b) 

 
With weight, there is more going on. There is an 
operation of combination of objects and weight is 
additive.  aÈb means a combined with b.  
 

f(aÈb) = f(a) + f(b). 
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MEASUREMENT 
• This can all be generalized using a formalism 
called a homomorphism. 
• It will suffice to think of a homomorphism as a 
way of assigning numbers to objects being 
measured so that certain relations and operations 
among objects are reflected in comparable relations 
among the assigned numbers.  
• Even more basically: Homomorphisms will be 
“acceptable” ways to assign numbers. 
• We will be particularly interested in finding ways 
to transform one homomorphism (acceptable way 
to measure) into another. 
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Homomorphisms: A Formalism 
• Empirical Relational System A 
    Set of objects A and relations R and operations È on A. 
• Numerical Relational System B  
    Set of objects B where B is a set of real numbers, plus a 
relation R* corresponding to each R on A and an operation 
È* corresponding to each È on A.  
• Homomorphism from A  into B 
    A function f:A Æ B such that all relations and operations 
among elements in A are reflected in corresponding 
relations and operations among elements in B, e.g.,  
 

aRb ´ f(a)R*f(b) 
 

f(aÈb) = f(a)È*f(b). 
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Outline 
1.  Introduction to Measurement Theory 
2.  Theory of Uniqueness of Scales of Measurement/

Scale Types 
3.  Meaningful Statements 
4.  Averaging Judgments of Cough Severity 
5.  Measurement of Air Pollution 
6.  Evaluation of Alternative HIV Treatments: “Merging 

Normalized Scores” 
7.  Optimization Problems in Epidemiology 
8.  Meaningfulness of Statistical Tests 
9.  Behavioral Responses to Health Events 
 

 



16 

The Theory of Uniqueness 
Admissible Transformations 
 

• An admissible transformation sends one homomorphism 
(acceptable scale) into another.    

Centigrade Æ Fahrenheit 
Kilograms Æ Pounds 

 

• In most cases one can think of an admissible 
transformation as defined on the range of a 
homomorphism. 
 

• Suppose  f is a homomorphism (“acceptable scale”) from      
A into B . 
 

• j:f(A) Æ B is called an admissible transformation of f  if           
jÈf is again a homomorphism from A  into B. 
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The Theory of Uniqueness 
Admissible Transformations j 

 

Centigrade Æ Fahrenheit: j(x) = (9/5)x + 32 
 

Kilograms Æ Pounds: j(x) = 2.2x 
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The Theory of Uniqueness 
 

• A classification of scales is obtained by studying 
the class of admissible transformations associated 
with the scale. 
• This defines the scale type. (S.S. Stevens) 
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Some Common Scale Types 
Class of Adm. Transfs.  Scale Type  Example 
j(x) = ax, a > 0   ratio   Mass 

      Temp. (Kelvin) 
      Time (intervals) 
      Length 
      Volume 
      Loudness (sones)? 
       

______________________________________________ 
j(x) = ax+b, a > 0  interval  Temp (F,C) 

      Time (calendar) 
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Some Common Scale Types 
Class of Adm. Transfs.  Scale Type  Example 
x ≥ y ´ j(x) ≥ j(y) 
j strictly increasing  ordinal  Preference? 

      Hardness 
      Grades of leather, 
            wool, etc. 
      Subjective 
             

judgments: 
           cough, fatigue,... 

_________________________________________   
j(x) = x    absolute  Counting 
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Outline 
1.  Introduction to Measurement Theory 
2.  Theory of Uniqueness of Scales of Measurement/Scale   

Types 
3.  Meaningful Statements 
4.  Averaging Judgments of Cough Severity 
5.  Measurement of Air Pollution 
6.  Evaluation of Alternative HIV Treatments: “Merging 

Normalized Scores” 
7.  Optimization Problems in Epidemiology 
8.  Meaningfulness of Statistical Tests 
9.  Behavioral Responses to Health Events 
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Meaningful Statements 
• In measurement theory, we speak of a statement as being 
meaningful if its truth or falsity is not an artifact of the 
particular scale values used. 
 
• The following definition is due to Suppes 1959 and 
Suppes and Zinnes 1963. 
 
Definition:  A statement involving numerical scales is 
meaningful if its truth or falsity is unchanged after any (or 
all) of the scales is transformed (independently?) by an 
admissible transformation. 
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Meaningful Statements 
• In some practical examples, for example those involving 
preference judgments or judgments “louder than” under 
the “semiorder” model, it is possible to have two scales 
where one can’t go from one to the other by an admissible 
transformation, so one has to use this definition. 

• A slightly more informal definition could then be used: 
 

Alternate Definition:  A statement involving numerical 
scales is meaningful if its truth or falsity is unchanged 
after any (or all) of the scales is (independently?) replaced 
by another acceptable scale. 
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Meaningful Statements: Another 
Point of View 

• Fundamental paper by Falmagne and Narens (1983): 
“Scales and Meaningfulness of Quantitative Laws” 
• Falmagne and Narens:  
-  This more general definition is imprecise and 

subject to possible misinterpretation. 
-  It is not clear what is meant by “involving” 

numerical scales 
-  Scales can be “involved” in a statement in more than 

one way  
-  Meaningfulness may not be a property of a single 

statement or relation, but of a family of relations 
-  This gave rise to a beautiful theory of families of 

numerical codes 
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Meaningful Statements: Another 
Point of View 

• Falmagne and Narens:  
-  This gave rise to a beautiful theory of families of 

numerical codes 
• Extended in fundamental paper by Falmagne (2004): 
“Meaningfulness and Order-Invariance: Two 
Fundamental Principles for Scientific Laws” 
  That paper leads to axioms based on meaningfulness 

that allow one to derive general form of scientific 
laws 

  Generalizes fundamental work of Luce: “On the 
Possible Scientific Laws” 



26 

Meaningful Statements 
• Nevertheless, the definition given is widely used in 
applications of the theory of measurement and in many 
cases can be used without ambiguity. 

• We will adopt this definition and avoid the long literature 
of more sophisticated approaches to meaningfulness. 

• Situations where this relatively simple-minded definition 
may run into trouble will be disregarded. 

 

• Emphasis is to be on new applications of the concept of  
meaningfulness. 

• But – we will return to the Falmagne-Narens ideas 
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Meaningful Statements 
“This talk will be three times as long as the next talk.” 
 

• Is this meaningful? 
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Meaningful Statements 
“This talk will be three times as long as the next talk.” 
 

• Is this meaningful? 
 

I hope not! 
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Meaningful Statements 
“This talk will be three times as long as the next talk.” 
 

• Is this meaningful? 
 

Me too 
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Meaningful Statements 
“This talk will be three times as long as the next talk.” 
 

• Is this meaningful? 
• We have a ratio scale (time intervals). 
 

(1)    f(a) = 3f(b). 
 

• This is meaningful if  f  is a ratio scale.  For, an 
admissible transformation is  j(x) = ax, a  > 0. We want 
(1) to hold iff  
 

(2)                   (jÈf)(a) = 3(jÈf)(b) 
 

• But (2) becomes 
 

(3)                        af(a) = 3af(b) 
 

• (1) ´ (3)  since a > 0. 
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Meaningful Statements 
“The patient’s temperature at 9AM today is 2 per cent 
higher than it was at 9 AM yesterday.” 
 

• Is this meaningful? 
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Meaningful Statements 
“The patient’s temperature at 9AM today is 2 per cent 
higher than it was at 9 AM yesterday.” 
 

f(a) = 1.02f(b) 
 
 

• Meaningless.  It could be true with Fahrenheit and false 
with Centigrade, or vice versa. 
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Meaningful Statements 
 

In general: 
 
• For ratio scales, it is meaningful to compare ratios: 
 

f(a)/f(b) > f(c)/f(d) 
 

• For interval scales, it is meaningful to compare intervals: 
 

f(a) - f(b) > f(c) - f(d) 
 

• For ordinal scales, it is meaningful to compare size: 
 

f(a) > f(b) 
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Meaningful Statements 
Malaria parasite density is still mainly obtained by 
reading slides under microscopes.  
 
“The parasite density in this slide is double the parasite 
density in that slide.” 
 
 

• Is this meaningful?   
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Meaningful Statements 
“The parasite density in this slide is double the parasite 
density in that slide.” 
 
• Density is measured in number per microliter. So, if one 
slide has 100,000 per mL and another 50,000 per m L, is it 
meaningful to conclude that the first slide has twice the 
density of the second? 
 

• Meaningful.  Volume involves ratio scales. And counts are 
absolute scales. 

• However: This disregards errors in measurement. A 
statement can be meaningful in the measurement theory 
sense but meaningless in a practical sense. 
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Meaningful Statements 
• However: This disregards errors in measurement. A 
statement can be meaningful in the measurement theory 
sense but meaningless in a practical sense. 

• Jean-Claude has done more than anyone to give a 
theoretical account of errors in measurement. 

• Extending framework of fundamental measurement to 
include probabilistic representations. 

• See papers on 
  Random conjoint measurement 
  Probabilistic theory of extensive measurement 
  Statistical issues in measurement 
  Etc. 

 
 



37 

Meaningful Statements 
“I weigh 1000 times what that elephant weighs.” 
 

• Is this meaningful? 
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Meaningful Statements 
“I weigh 1000 times what that elephant weighs.” 
 

• Meaningful.  It involves ratio scales. 
• It is false no matter what the unit. 
 

• Meaningfulness is different from truth. 
 

• It has to do with what kinds of assertions  
 it makes sense to make, which assertions 
 are not accidents of the particular choice 
 of scale (units, zero points) in use. 

• “The ratio of Stendhal’s weight to Jane 
 Austen’s on July 3, 1914 was 1.42.” 
• Lovely discussion in Falmagne and 
 Narens. 
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Meaningful Statements: Another 
Point of View 

“I weigh 1000 times what that elephant weighs.” 
 

• Falmagne and Narens: 
-  A particular scale has been used to measure weight, 

but that scale not mentioned in the statement 
-  Assume initial scaling has been made with weight in 

pounds 
-  Interpretation 1: The sentence defines a numerical 

relation T such that T(a,x) iff a is my weight, x is the 
elephant’s weight, and a/x = 1000. 

-  The sentence is meaningful since for all admissible 
transformations of scale f and all a, x: 

(a) T(a,x) ´ T[f(a),f(x)]. 
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Meaningful Statements: Another 
Point of View 

“I weigh 1000 times what that elephant weighs.” 
 

• Falmagne and Narens: 
-  Interpretation 2: Meaningfulness as a property of a 

family of relations. 
-  If f defines a particular homomorphism (scale) (e.g., 

pounds, grams, kilograms), then the sentence 
defines a family of relations Tf such that Tf(a,x) iff a 
is my weight, x is the elephant’s weight, both 
measured on scale f, and a/x = 1000. 

-  Tf can be thought of as a 3-ary relation T’(f,a,x) 
-  Meaningfulness can be thought of as: for all scales f, 

g and all a, x: 
(b) Tf[f(a),f(x)] ´ Tg[g(a),g(x)]  
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Meaningful Statements: 
Another Point of View 

“I weigh 1000 times what that elephant weighs.” 
 

• Falmagne and Narens: 
-  Since we have a ratio scale (“ratio scale family”), 

we get meaningfulness in both senses: 
(a) T(a,x) ´ T[f(a),f(x)]. 

(b) Tf[f(a),f(x)] ´ Tg[g(a),g(x)] 
  (a) holds since for all α > 0,  

a/x = 1000 ´ αa/αx = 1000 
  (b) holds since for all α, β > 0,  

αa/αx = 1000 ´ βx/βy = 1000 
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Meaningful Statements: Another 
Point of View 

• However, there are examples where the two 
interpretations differ.  

• Fix an initial scale F and assume we have a ratio scale. 
• Then for any scale f, there is α so that f(a) = αF(a) for all  
a. 

• Fix k and for all a, x, let T(a,x) be the statement  
T(a,x): a = x + k  

• Interpretation 1: T as a statement is not meaningful since 
T(a,x) ´ T[αF(a),αF(x)] 

 can hold for some values of α and not others. 
• Falmagne and Narens says that T is meaningless in the 
first sense. 
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Another Point of View 
• Fix k and for all a, x, let T(a,x) be the statement  

T(a,x): a = x + k  
• But perhaps the constant k really depends on the choice 
of scale f, i.e., k = k(f).  

• Interpretation 2: Consider the meaningfulness of the 
family of statements Tf[f(a),f(b)] 

• Now consider whether  
(*) Tf[f(a),f(b)] ´ Tg[g(a),g(b)]      

• Consider the simple case where k(λF) = λk(F). 
• Then if f = αF and g = βF, (*) becomes 

αF(a) = αF(b) + αk(F) ´ βF(a) = βF(b) + βk(F) 
• This is true. 
• Falmagne and Narens say that we have a family of 
statements meaningful in the second sense 
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Outline 
1.  Introduction to Measurement Theory 
2.  Theory of Uniqueness of Scales of Measurement/Scale   

Types 
3.  Meaningful Statements 
4.  Averaging Judgments of Cough Severity 
5.  Measurement of Air Pollution 
6.  Evaluation of Alternative HIV Treatments: “Merging 

Normalized Scores” 
7.  Optimization Problems in Epidemiology 
8.  Meaningfulness of Statistical Tests 
9.  Behavioral Responses to Health Events 
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Average Cough Severity 
• Study two groups of patients with TB. 
 

• f(a)  is the cough severity of a as judged on one of the 
subjective cough severity scales (e.g., rate severity as 1 to 5) 
 

• Data suggests that the average cough severity for 
patients in the first group is higher than the average 
cough severity of patients in the second group. 
 

a1, a2, …, an  patients in first group 
b1, b2, …, bm patients in second group. 
 

                n                   m 
 

(1)   (1/n) Σ f(ai) > (1/m) Σ f(bi) 
              i=1                 i=1 
• We are comparing arithmetic means. 
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Average Cough Severity 
• Statement (1) is meaningful iff for all admissible 
transformations of scale j,  (1) holds iff 
               n                           m 
 

(2)   (1/n) Σ (jÈf)(ai) > (1/m) Σ (jÈf)(bi) 
              i=1                        i=1 
• If cough severity defines a ratio scale: 

• Then,  j(x) = ax, a > 0, so (2) becomes 
               n                      m 
 

(3)   (1/n) Σ af(ai) > (1/m) Σ af(bi) 
              i=1                   i=1 
• Then  a > 0 implies (1) ´ (3). Hence, (1) is meaningful. 
• So this kind of comparison would work if we were 
comparing weights of TB patients. 
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Average Cough Severity 
• Note:  (1) is still meaningful if  f  is an interval scale. 
•   

• For example, we could be comparing temperatures  f(a). 
• Here,  j(x) = ax + b, a > 0.  Then (2) becomes 
               n                          m 
 

(4)   (1/n) Σ af(ai)+b > (1/m) Σ af(bi)+b 
              i=1                       i=1 
 
• This readily reduces to (1). 
 

• However, (1) is meaningless if  f  is just an ordinal 
scale. 
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Average Cough Severity 
• To show that comparison of arithmetic means can be 
meaningless for ordinal scales, note that we are asking 
experts for a subjective judgment of cough severity. 
 

• It seems that  f(a)  is measured on an ordinal scale, e.g., 5-
point scale:  5=extremely severe, 4=very severe, 3=severe, 
2=slightly severe, 1=no cough. 
 

• In such a scale, the numbers may not mean anything; 
only their order matters. 
 

Group 1:  5, 3, 1  average 3 
Group 2:  4, 4, 2  average 3.33 

 

• Conclude: average cough severity of group 2 patients is 
higher. 
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Average Cough Severity  

• Suppose f(a)  is measured on an ordinal scale, e.g., 5-
point scale:  5=extremely severe, 4=very severe, 3=severe, 
2=slightly severe, 1=no cough.  
• In such a scale, the numbers may not mean anything; only 
their order matters. 
 

Group 1:  5, 3, 1  average 3 
Group 2:  4, 4, 2  average 3.33 (greater) 

 

• Admissible transformation:  5 Æ 100, 4 Æ 75, 3 Æ 65,       
2 Æ 40, 1 Æ 30     
• New scale conveys the same information.  New scores: 
 

Group 1:  100, 65, 30  average 65   
Group 2:  75, 75, 40   average 63.33  

 

Conclude: average severity of group 1 patients is higher. 
. 
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Average Cough Severity 
 
• Thus, comparison of arithmetic means can be 
meaningless for ordinal data. 
 
• Of course, you may argue that in the 5-point scale, at least 
equal spacing between scale values is an inherent property 
of the scale.  In that case, the scale is not ordinal and this 
example does not apply. 
 
• Note: Comparing medians is meaningful with ordinal 
scales:  To say that one group has a higher median than 
another group is preserved under admissible 
transformations. 
 
. 
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Average Fatigue  
• Fatigue is an important variable in measuring the progress 
of patients with serious diseases.  
• One scale widely used in measuring fatigue is the Piper 
Fatigue Scale. 
• It asks questions like: 
  On a scale of 1 to 10, to what degree is the fatigue 

you are feeling now interfering with your ability to 
complete your work or school activities? (1 = none, 
10 = a great deal) 

  On a scale of 1 to 10, how would you describe the 
degree of intensity or severity of the fatigue which 
you are experiencing now? (1 = mild, 10 = severe) 

• Similar analysis applies: Meaningless to compare means, 
meaningful to compare medians 
. 
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Average Cough Severity 
• Suppose each of  n  observers is asked to rate each of a 
collection of patients as to their relative cough severity.  

• Or we rate patients on different criteria or against 
different benchmarks. (Similar results with performance 
ratings, importance ratings, etc.) 

• Let  fi(a)  be the rating of patient a  by  judge  i  (under 
criterion  i).  Is it meaningful to assert that the average 
rating of patient  a  is higher than the average rating of 
patient  b?   
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Average  Cough Severity 
• Let  fi(a)  be the rating of patient  a  by   
judge  i  (under criterion  i).  Is it meaningful to assert that 
the average rating of patient  a  is higher than the average 
rating of patient  b?   
 
• A similar question arises in fatigue ratings, ratings of 
brightness of rash, etc. 

               n                   n 
 
 
 

(1)   (1/n) Σ fi(a) > (1/n) Σ fi(b) 
              i=1                i=1 
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Average Cough Severity 
• If each  fi  is a ratio scale, then we consider for a  > 0, 
               n                      n 
 

(2)   (1/n) Σ afi(a) > (1/n) Σ afi(b) 
              i=1                  i=1 
• Clearly,  (1) ´ (2), so (1) is meaningful. 
 

• Problem: f1, f2, …, fn  might have independent units.  In 
this case, we want to allow independent admissible 
transformations of the fi.  Thus, we must consider 
               n                       n 
 

(3)   (1/n) Σ aifi(a) > (1/n) Σ aifi(b) 
              i=1                   i=1 
• It is easy to see that there are ai so that (1) holds and (3) 
fails. Thus, (1) is meaningless. 
 
. 
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Average Cough Severity 
Motivation for considering different ai:  
 

n = 2,   f1(a) = weight of a,  f2(a) =  height of a.  Then (1) 
says that the average of  a's  weight and height is greater 
than the average of  b's weight and height.  This could be 
true with one combination of weight and height scales and 
false with another. 
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Average Cough Severity 
• Compare the Falmagne-Narens discussion of families of   
relations depending on several scales. 

• They consider statements like 

Tf1f2…fn
[a1,a2,…,an] ´ Tf1f2…fn 

[g1(a1),g2(a2),…,gn(an)] 
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Average Cough Severity 
Motivation for considering different ai:  
 

n = 2,   f1(a) = weight of a,  f2(a) =  height of a.  Then (1) 
says that the average of  a's  weight and height is greater 
than the average of  b's weight and height.  This could be 
true with one combination of weight and height scales and 
false with another. 
 

•  Conclusion:  Be careful when comparing 
arithmetic mean ratings. 
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Average Cough Severity 
• In this context, it is safer to compare geometric means 
(Dalkey). 
    n_____     n_____           n______     n_______ 
    √Π fi(a) > √Π fi(b) ßà √Π aifi(a) > √Π aifi(b)  
                                               
all  ai > 0. 
 
• Thus, if each  fi  is a ratio scale, if individuals can change 
cough severity rating scales (performance rating scales, 
importance rating scales) independently, then comparison 
of geometric means is meaningful while comparison of 
arithmetic means is not. 

 
. 
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Application of this Idea 
 

Role of Air Pollution in Health. 
• In a study of air pollution and related energy use in San 
Diego, a panel of experts each estimated the relative 
importance of variables relevant to air pollution using the 
magnitude estimation procedure. Roberts (1972, 1973).  

• Magnitude estimation: Most important gets score of 100. 
If half as important, score of 50. And so on. 

• If magnitude estimation leads to a ratio scale -- Stevens  
presumes this -- then comparison of geometric mean 
importance ratings is meaningful.  

 

• However, comparison of arithmetic means 
 may not be.  Geometric means were used. 
 
. 
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Magnitude Estimation by One Expert of Relative 
Importance for Air Pollution of Variables Related to 

Commuter Bus Transportation in a Given Region  

 
Variable      Rel. Import. Rating 
1. No. bus passenger mi. annually    80 
2. No. trips annually     100 
3. No. miles of bus routes     50 
4. No. miles special bus lanes     50 
5. Average time home to office     70 
6. Average distance home to office    65 
7. Average speed       10 
8. Average no. passengers per bus    20 
9. Distance to bus stop from home    50 
10. No. buses in the region     20 
11. No. stops, home to office     20 
. 
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Outline 
1.  Introduction to Measurement Theory 
2.  Theory of Uniqueness of Scales of Measurement/Scale   

Types 
3.  Meaningful Statements 
4.  Averaging Judgments of Cough Severity 
5.  Measurement of Air Pollution 
6.  Evaluation of Alternative HIV Treatments: “Merging 

Normalized Scores” 
7.  Optimization Problems in Epidemiology 
8.  Meaningfulness of Statistical Tests 
9.  Behavioral Responses to Health Events 
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MEASUREMENT OF AIR POLLUTION 
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MEASUREMENT OF AIR POLLUTION 
 
• Close relationship between pollution and health 
• Various pollutants are present in the air: 
 

• Carbon monoxide (CO), hydrocarbons (HC), nitrogen 
oxides (NOX), sulfur oxides (SOX),  particulate matter 
(PM).  
 

• Also damaging: Products of chemical reactions among 
pollutants. E.g.: Oxidants such as ozone produced by HC 
and NOX reacting in presence of sunlight. 
 

• Some pollutants are more serious in presence of others, 
e.g., SOX are more harmful in presence of PM. 
 

• Can we measure pollution with one overall measure? 
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• To compare pollution control policies, need to compare effects 
of different pollutants.  We might allow increase of some 
pollutants in order to achieve decrease of others. 
• One single measure could give indication of how bad 
pollution level is and might help us determine if we have 
made progress. 

Combining Weight of Pollutants: 
• Measure total weight of emissions of pollutant  i  over fixed 
period of time and sum over  i. 
 

e(i,t,k) = total weight of emissions of pollutant  i  (per cubic 
meter) over  tth  time period and due to  kth  source or measured 
in  kth  location. 
                                                n 

A(t,k) = Σ e(i,t,k) 
                                                       i=1 

MEASUREMENT OF AIR POLLUTION 
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• Early uses of this simple index  A  in the early 1970s led to 
the conclusions: 

 
(A)  Transportation is the largest source of air pollution, with 

stationary fuel combustion (especially by electric power 
plants) second largest.   

(B)  Transportation accounts for over 50% of all air 
pollution. 

(C) CO accounts for over half of all emitted air pollution. 
 
• Are these meaningful conclusions? 

MEASUREMENT OF AIR POLLUTION 
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• Early uses of this simple index  A  in the early 1970s led to 
the conclusions: 

 
(A)  Transportation is the largest source of air pollution, with 

stationary fuel combustion (especially by electric power 
plants) second largest.   

 
• Are these meaningful conclusions? 

A(t,k) > A(t,k’) 

MEASUREMENT OF AIR POLLUTION 
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• Early uses of this simple index  A  in the early 1970s led to 
the conclusions: 

 
(B) Transportation accounts for over 50% of all air 

pollution. 
 
• Are these meaningful conclusions? 

A(t,kr) > Σ A(t,k) 
    k≠kr 

MEASUREMENT OF AIR POLLUTION 
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• Early uses of this simple index  A  in the early 1970s led to 
the conclusions: 

 
(C) CO accounts for over half of all emitted air pollution. 
 
• Are these meaningful conclusions? 

Σ e(i,t,k) > Σ   Σ e(j,t,k) 
                             t,k              t,k  j≠i 

MEASUREMENT OF AIR POLLUTION 
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All these conclusions are meaningful if we measure all  
e(i,t,k)  in same units of mass (e.g., milligrams per cubic 
meter) and so admissible transformation means multiply  
e(i,t,k)  by same constant. 

MEASUREMENT OF AIR POLLUTION 

A(t,k) > A(t,k’) 

A(t,kr) > Σ A(t,k) 
    k≠kr 

Σ e(i,t,k) > Σ   Σ e(j,t,k) 
     t,k              t,k  j≠i 
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• These comparisons are meaningful in the technical sense. 
 

• But: Are they meaningful comparisons of pollution level 
in a practical sense? 

 

• A unit of mass of CO is far less harmful than a unit of mass 
of NOX.  EPA standards based on health effects for 24 hour 
period allow 7800 units of CO to 330 units of NOX.   

• These are Minimum acute toxicity effluent tolerance 
factors (MATE criteria).  

 

• Tolerance factor is level at which adverse effects are 
known.  Let  t(i)  be tolerance factor for  ith  pollutant.   

 

• Severity factor:  t(CO)/t(i)  or  1/t(i) 

MEASUREMENT OF AIR POLLUTION 
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• One idea (Babcock and Nagda, Walther, Caretto and 
Sawyer):  Weight the emission levels (in mass) by severity 
factor and get a weighted sum.  This amounts to using the 
indices 

 

Degree of hazard:  1/t(i) *  e(i,t,k) 
 

and the combined index 
                           n 
Pindex: B(t,k) = Σ [1/t(i) *  e(i,t,k)] 
                          i=1 
 

• Under pindex, transportation is still the largest source of 
pollutants, but now accounts for less than 50%. Stationary 
sources fall to fourth place.  CO drops to bottom of list of 
pollutants, accounting for just over 2% of the total. 

MEASUREMENT OF AIR POLLUTION 
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• These conclusions are again meaningful if all emission 
weights are measured in the same units.  For an admissible 
transformation multiplies  t  and e  by the same constant 
and thus leaves the degree of hazard unchanged and 
pindex unchanged. 

 

• Pindex was introduced in the San Francisco  
 Bay Area in the 1960s.  

 

• But, are comparisons using pindex meaningful in the  
practical sense? 
 

MEASUREMENT OF AIR POLLUTION 
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• Pindex amounts to:  For a given pollutant, take the 
percentage of a given harmful level of emissions that is 
reached in a given period of time, and add up these 
percentages over all pollutants. (Sum can be greater than 
100% as a result.) 

 
• If 100% of the CO tolerance level is reached, this is known 
to have some damaging effects.  Pindex implies that the 
effects are equally severe if levels of five major pollutants 
are relatively low, say 20% of their known harmful levels.  

 
 

MEASUREMENT OF AIR POLLUTION 
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• Severity tonnage of pollutant  i  due to a given source is 
actual tonnage times the severity factor 1/t(i).   

 

• In early air pollution measurement literature, severity 
tonnage was considered a measure of how severe pollution 
due to a source was. 

 

• Data from Walther 1972 suggests the following. 
  

• Interesting exercise to decide which of these  
 conclusions are meaningful. 

MEASUREMENT OF AIR POLLUTION 
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1. HC emissions are more severe (have greater severity 
tonnage) than NOX emissions. 
 

2. Effects of HC emissions from transportation are more 
severe than those of HC emissions from industry. (Same for 
NOX.). 
 

3. Effects of HC emissions from transportation are more 
severe than those of CO emissions from industry.  
 

4. Effects of HC emissions from transportation are more 
than 20 times as severe as effects of CO emissions from 
transportation. 
 

5. The total effect of HC emissions due to all sources is 
more than 8 times as severe as total effect of NOX emissions 
due to all sources. 

MEASUREMENT OF AIR POLLUTION 
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Outline 
1.  Introduction to Measurement Theory 
2.  Theory of Uniqueness of Scales of Measurement/Scale   

Types 
3.  Meaningful Statements 
4.  Averaging Judgments of Cough Severity 
5.  Measurement of Air Pollution 
6.  Evaluation of Alternative HIV Treatments: 
“Merging Normalized Scores” 

7.  Optimization Problems in Epidemiology 
8.  Meaningfulness of Statistical Tests 
9.  Behavioral Responses to Health Events 
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Evaluation of Alternative HIV 
Treatments 

 

• How do we evaluate alternative possible treatment plans or 
interventions for a given disease? 

•  One common procedure: A number of treatments are 
compared on different criteria/benchmarks.   

• Their scores on each criterion are normalized relative to the 
score of one of the treatments.   

• The normalized scores of a treatment are combined by some 
averaging procedure and normalized scores are compared.  

 
 
 

AIDS orphans 
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Evaluation of Alternative HIV 
Treatments 

 

• The normalized scores of a treatment are combined by some 
averaging procedure.   

• If the averaging is the arithmetic mean, then the statement 
“one treatment has a higher arithmetic mean normalized 
score than another system” is meaningless:   

• The treatment to which scores are normalized can determine 
which has the higher arithmetic mean. 

 

AIDS street kids 
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Evaluation of HIV Treatments  

• Similar methods are used in comparing performance of 
alternative computer systems or other types of machinery. 
 

• Consider a number of treatments/interventions: 
ü Universal screening 
ü Free condom distribution 
ü Abstinence education 
ü Male circumcision 

• Consider a number of criteria/outcomes: 
ü CD4 count 
ü Days without symptoms of … 
ü Number days hospitalized … 

 



80 

Treatment Evaluation  
Evaluation of HIV Treatments 

 
  417 83 66 39,449 772 

244 70 153 33,527 368 

134 70 135 66,000 369 
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Treatment Evaluation 
Normalize Relative to Treatment R 

 
  417 

1.00 
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Treatment Evaluation 

Take Arithmetic Mean of Normalized Scores  

 
  417 

1.00 
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Treatment Evaluation 

Take Arithmetic Mean of Normalized Scores  
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Conclude that treatment Z is best 
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Treatment Evaluation 
Now Normalize Relative to Treatment M 
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Treatment Evaluation 
Take Arithmetic Mean of Normalized Scores 
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Treatment Evaluation 
Take Arithmetic Mean of Normalized Scores 

 
  417 

1.71 
83 

1.19 
66 
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39,449 
1.18 
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1.00 

70 
1.00 
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Arithmetic 
Mean 

1.32 

1.00 

1.08 

Conclude that treatment R is best 
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Treatment Evaluation 

•  So, the conclusion that a given treatment is best  
by taking arithmetic mean of normalized scores 
is meaningless in this case. 

•  Above example from Fleming and Wallace 
(1986), data from Heath (1984) (in a computing 
machine application) 

•  Sometimes, geometric mean is helpful. 
•  Geometric mean is 

÷ Pis(xi) 
 
 

  

n s 
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Treatment Evaluation 
Normalize Relative to Treatment R 

 
  417 

1.00 
83 

1.00 
66 

1.00 
39,449 
1.00 

772 
1.00 

244 
.59 

70 
.84 
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2.32 
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Conclude that treatment R is best 
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Treatment Evaluation 
Now Normalize Relative to Treatment M 

 
  417 

1.71 
83 

1.19 
66 
.43 

39,449 
1.18 
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2.10 
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1.00 

70 
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1.00 

33,527 
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368 
1.00 
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1.00 
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.88 
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R 
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T
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E
A
T
M
E
N
T
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Geometric 
Mean 

1.17 

1.00 

.99 

Still conclude that treatment R is best 
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Treatment Evaluation 

•  In this situation, it is easy to show that the conclusion 
that a given treatment has highest geometric mean 
normalized score is a meaningful conclusion. 

•  Even meaningful: A given treatment has geometric 
mean normalized score 20% higher than another 
treatment. 

•  Fleming and Wallace give general conditions under 
which comparing geometric means of normalized 
scores is meaningful. 

•  Research area: what averaging procedures make sense 
in what situations? Large literature.  
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Treatment Evaluation 

Message from measurement theory: 

 
Do not perform arithmetic operations on 
data without paying attention to whether 
the conclusions you get are meaningful. 
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Treatment Evaluation 

•  We have seen that in some situations, comparing 
arithmetic means is not a good idea and 
comparing geometric means is. 

•  There are situations where the reverse is true. 
•  Can we lay down some guidelines as to when to 

use what averaging procedure? 
•  Some results of Aczél, Roberts and Rosenbaum 

following on work of Luce on the possible 
psychophysical laws. 
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Treatment Evaluation 

• Aczél, Roberts,Rosenbaum: 
• Suppose the averaging function F is defined based on 
scales a1, a2, ..., an. 

• Suppose the following statements are meaningful: 
F(a1,a2, …, an) = kF(b1,b2, …, bn)  

• Suppose a1, a2, …, an  are independent ratio scales 
• Suppose F is reflexive: F(a,a,…,a) = a 
• Suppose F is symmetric:   

F(a1,a2,…,an) = F(ap(1),ap(2),…,ap(n))   
   for all permutations p of {1,2,…,n} 

• Then F is the geometric mean. 
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Treatment Evaluation 
• Aczél, Roberts, Rosenbaum 
• Suppose the averaging function F is defined based on 
scales a1, a2, ..., an. 

• Suppose the following statements are meaningful: 
F(a1,a2, …, an) – F(b1,b2, …, bn) =  
k[F(c1,c2, …, cn)  - F(d1,d2, …, dn)] 

 
F(a1,a2, …, an) > F(b1,b2, …, bn)  

• Suppose a1, a2, …, an  are interval scales with the same 
unit and independent zero points 

• Suppose F is reflexive and symmetric 
• Then F is the arithmetic mean. 
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Outline 
1.  Introduction to Measurement Theory 
2.  Theory of Uniqueness of Scales of Measurement/Scale   

Types 
3.  Meaningful Statements 
4.  Averaging Judgments of Cough Severity 
5.  Measurement of Air Pollution 
6.  Evaluation of Alternative HIV Treatments: “Merging 

Normalized Scores” 
7.  Optimization Problems in Epidemiology 
8.  Meaningfulness of Statistical Tests 
9.  Behavioral Responses to Health Events 

 



96 

DIMACS Initiative on Climate and 
Health 

• Spurred by concerns about global warming. 
• Resulting impact on health 

– Of people 
– Of animals 
– Of plants 
– Of ecosystems 
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Climate and Health 
• Special emphasis on extreme heat events, e.g.,: 

– 1995 extreme heat event in Chicago 
Ø 514 heat-related deaths 
Ø 3300 excess emergency admissions 

– 2003 heat wave in Europe 
Ø 35,000 deaths 
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DIMACS Project: Extreme Heat Events 

 

• Result in increased incidence of heat stroke, 
dehydration, cardiac stress, respiratory distress 

• Hyperthermia in elderly patients can lead to cardiac 
arrest. 

• Effects not independent: Individuals under stress due 
to climate may be more susceptible to infectious 
diseases  

 
2222 
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Extreme Heat Events: Evacuation 
• One response to such events: evacuation of most 
vulnerable individuals to climate controlled 
environments. 
• Modeling challenges: 

– Where to locate the evacuation centers? 
– Whom to send where? 
– Goals include minimizing travel time, keeping facilities to 
their maximum capacity, etc. 
– Relevance of mathematical tools of operations research – 
location theory, assignment problems, etc. 
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One Approach to Evacuation: Find the 
Shortest Route from Home to 

Evacuation Center 
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Optimization Problems in 
Epidemiology:  

Shortest Path Problem 

x y 

z 

2 

4 
15 

• Problem: Find the shortest path from x to z in the network. 
• Widely applied problem.  

ü US Dept. of Transportation alone uses it billions of 
times a year. 

 

Numbers = some 
sort of weights or 
lengths 
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Shortest Path Problem 

x y 

z 

2 

4 
15 

• The shortest path from x to z is the path x to y to z. 
• Is this conclusion meaningful? 
• It is if the numbers define a ratio scale. 
• The numbers define a ratio scale if they are distances, as 
in the DIMACS Climate and Health project. 
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Shortest Path Problem 
z 

x y 2 

4 
15 

• However, what if the numbers define an interval scale? 
• For example, the numbers could be costs in terms of 
utility (or disutility) assigned to a route, and these might 
only define an interval scale.  
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Shortest Path Problem 

x y 

z 

2 

4 
15 

• Consider the admissible transformation  j(x) = 3x + 100. 
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Shortest Path Problem 
z 

x y 106 

112 
145 

• Consider the admissible transformation  j(x) = 3x + 100. 
• Now we get the above numbers on the edges. 
• Now the shortest path is to go directly from x to z. 
• The original conclusion was meaningless. 
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Linear Programming 
• The shortest path problem can be formulated as a linear 
programming problem. 

• Thus: The conclusion that A is the solution to a linear 
programming problem can be meaningless if cost 
parameters are measured on an interval scale. 

• How many people realize that? 
• Note that linear programming is widely used in public 
health, for example to solve problems like: 
ü Optimal inventories of medicines 
ü Assignment of patients or doctors to clinics 
ü Optimization of size of a treatment facility 
ü Amount to invest in preventive treatments  
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Related Example: Minimum 
Spanning Tree Problem 

2 

8 

10 14 

16 

20 22 

• A spanning tree is a tree using the edges of the graph and 
containing all of the vertices. 

• It is minimum if the sum of the numbers on the edges used 
is as small as possible. 

15 

26 

28 
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Related Example: Minimum 
Spanning Tree Problem 

2 

8 

10 14 

16 

20 22 

• Red edges define a minimum spanning tree. 
• Is it meaningful to conclude that this is a minimum 
spanning tree? 

 

15 

26 

28 
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Related Example: Minimum 
Spanning Tree Problem 

• Minimum spanning trees arise in many applications. 
• One example: Given a road network, find usable roads that 
allow you to go from any vertex to any other vertex, 
minimizing the lengths of the roads used. 

• This problem arises in another DIMACS Climate and 
Health project: Find a usable road network for emergency 
vehicles in case extreme events leave flooded roads. 
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Related Example: Minimum 
Spanning Tree Problem 

2 

8 

10 14 

16 

20 22 

• Consider the admissible transformation  j(x) = 3x + 100. 

15 

26 

28 
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Related Example: Minimum 
Spanning Tree Problem 

106 

124 

130 142 

148 

160 166 

• Consider the admissible transformation  j(x) = 3x + 100. 
• We now get the above numbers on edges. 

145 

178 

184 
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Related Example: Minimum 
Spanning Tree Problem 

106 

124 

130 142 

148 

160 166 

• The minimum spanning tree is the same. 

145 

178 

184 
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Related Example: Minimum 
Spanning Tree Problem 

106 

124 

130 142 

148 

160 166 

• Is this an accident? 
• No: By Kruskal’s algorithm for finding the minimum 
spanning tree, even an ordinal transformation will leave the 
minimum spanning tree unchanged. 

145 

178 

184 
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Related Example: Minimum 
Spanning Tree Problem 

106 

124 

130 142 

148 

160 166 

• Kruskal’s algorithm: 
ü  Order edges by weight. 
ü  At each step, pick least-weight edge that does not 

create a cycle with previously chosen edges. 

145 

178 

184 
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Related Example: Minimum 
Spanning Tree Problem 

• Many practical decision making problems 
involve the search for an optimal solution as in 
Shortest Path and Minimum Spanning Tree. 

• Little attention is paid to the possibility that 
conclusion that a particular solution is optimal 
may be an accident of the way things are 
measured. 
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Outline 
1.  Introduction to Measurement Theory 
2.  Theory of Uniqueness of Scales of Measurement/Scale   

Types 
3.  Meaningful Statements 
4.  Averaging Judgments of Cough Severity 
5.  Measurement of Air Pollution 
6.  Evaluation of Alternative HIV Treatments: “Merging 

Normalized Scores” 
7.  Optimization Problems in Epidemiology 
8.  Meaningfulness of Statistical Tests 
9.  Behavioral Responses to Health Events 
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Meaningfulness of Statistical Tests 
 

(joint work with Helen Marcus-Roberts) 
 

• Biostatistics a key component of epidemiological 
research. 

• However, biostatisticians know virtually nothing 
about measurement theory. 

• Most have never heard about the theory of 
meaningfulness or limitations that meaningfulness 
places on conclusions from statistical tests. 
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Meaningfulness of Statistical Tests 
 

(joint work with Helen Marcus-Roberts) 
 

• For > 50 years: considerable disagreement on 
limitations scales of measurement impose on 
statistical procedures we may apply.   

• Controversy stems from Stevens (1946, 1951, 
1959, ...):  
ü Foundational work 
ü Developed the classification of scales of 
measurement  
ü Provided rules for the use of statistical 
procedures: certain statistics are inappropriate at 
certain levels of measurement. 
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Meaningfulness of Statistical Tests 
 

 

• The application of Stevens' ideas to descriptive 
statistics has been widely accepted 

• Application to inferential statistics has been  
  labeled by some a misconception. 
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Meaningfulness of Statistical Tests: 
Descriptive Statistics 

 

• P = population whose distribution we would like to 
describe 

• Capture properties of  P  by finding a descriptive 
statistic for  P  or taking a sample  S  from  P  and 
finding a descriptive statistic for  S. 

 

• Our examples suggest: certain descriptive statistics 
appropriate only for certain measurement situations. 

• This idea originally due to Stevens 
• Popularized by Siegel in his well-known book 
Nonparametric Statistics (1956). 
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Meaningfulness of Statistical Tests: 
Descriptive Statistics 

 

• Our examples suggest the principle: Arithmetic 
means are “appropriate” statistics for interval 
scales, medians for ordinal scales. 

• Other side of the coin:  It is argued that it is always 
appropriate to calculate means, medians, and other 
descriptive statistics, no matter what the scale of 
measurement. 

Frederic Lord:  Famous football player example.  
“The numbers don't remember where they came 
from.” 
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Meaningfulness of Statistical Tests: 
Descriptive Statistics 

 
• I agree:  It is always appropriate to calculate 
means, medians, ... 

• But:  Is it appropriate to make certain statements 
using these descriptive statistics? 
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Meaningfulness of Statistical Tests: 
Descriptive Statistics 

 

• My position:  It is usually appropriate to make a 
statement using descriptive statistics iff the statement is 
meaningful.   

• A statement that is true but meaningless gives information 
that is an accident of the scale of measurement used, not 
information that describes the population in some 
fundamental way. 

• So, it is appropriate to calculate the mean of ordinal data 
• It is just not appropriate to say that the mean of one group 
is higher than the mean of another group. 
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Meaningfulness of Statistical  
Tests: Inferential Statistics 

 

• Stevens' ideas have come to be applied to 
inferential statistics -- inferences about an unknown 
population  P.   

• They have led to such principles as the following: 
 
(1).  Classical parametric tests (e.g., t-test, Pearson 
correlation, analysis of variance) are inappropriate 
for ordinal data.  They should be applied only to 
data that define an interval or ratio scale. 
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Meaningfulness of Statistical  
Tests: Inferential Statistics 

 
 
(2).  For ordinal scales, non-parametric tests (e.g., 
Mann-Whitney U, Kruskal-Wallis, Kendall's tau) 
can be used. 
 
Not everyone agrees. Thus:  Controversy 
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Meaningfulness of Statistical  
Tests: Inferential Statistics 

 

My View: 
 

• The validity of a statistical test depends on a 
statistical model 
ü This includes information about the distribution 
of the population and about the sampling 
procedure.   

• The validity of the test does not depend on a  
measurement model 
ü This is concerned with the admissible 
transformations and scale type. 
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Meaningfulness of Statistical  
Tests: Inferential Statistics 

 

• The scale type enters in deciding whether the 
hypothesis is worth testing at all -- is it a 
meaningful hypothesis?   

• The issue is:  If we perform admissible 
transformations of scale, is the truth or falsity of 
the hypothesis unchanged? 

 
• Example: Ordinal data. Hypothesis: Mean is 0.  
Conclusion: This is a meaningless hypothesis. 
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Meaningfulness of Statistical  
Tests: Inferential Statistics 

 

• Can we test meaningless hypotheses?  
• Sure.  But I question what information we get 
outside of information about the population as 
measured. 

 

More details: Testing H0 about  P : 
1). Draw a random sample  S  from  P. 
2). Calculate a test statistic based on  S. 
3). Calculate probability that the test statistic is 
what was observed given H0 is true. 
4). Accept or reject H0 on the basis of the test. 
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Meaningfulness of Statistical  
Tests: Inferential Statistics 

 
 

• Calculation of probability depends on a statistical 
model, which includes information about the 
distribution of  P  and about the sampling 
procedure.   

• But, validity of the test depends only on the 
statistical model, not on the measurement model. 
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Meaningfulness of Statistical  
Tests: Inferential Statistics 

 

•  Thus, you can apply parametric tests to ordinal 
data, provided the statistical model is satisfied. 

• Model satisfied if the data is normally   
distributed.   

•  Where does the scale type enter?  
• In determining if the hypothesis is worth testing 

at all. i.e., if it is meaningful.   
 



131 

Meaningfulness of Statistical  
Tests: Inferential Statistics 

 

•  For instance, consider ordinal data and 
H0: mean is 0 

 
• The hypothesis is meaningless.  
• But, if the data meets certain distributional 
requirements such as normality, we can apply a 
parametric test, such as the t-test, to check if the 
mean is 0. 
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Outline 
1.  Introduction to Measurement Theory 
2.  Theory of Uniqueness of Scales of Measurement/Scale   

Types 
3.  Meaningful Statements 
4.  Averaging Judgments of Cough Severity 
5.  Measurement of Air Pollution 
6.  Evaluation of Alternative HIV Treatments: “Merging 

Normalized Scores” 
7.  Optimization Problems in Epidemiology 
8.  Meaningfulness of Statistical Tests 
9.  Behavioral Responses to Health Events 
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• Governments are making detailed plans for how to 
respond to future health “events” such as pandemic 
influenza, a bioterrorist attack with the smallpox 
virus, etc.  

Behavioral Responses to Health Events 

smallpox 
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• A major unknown in planning for future disease 
outbreaks is how people will respond.  

• Behavioral responses to health events form a key 
issue in Economic Epidemiology. 

Ø Will they follow instructions to stay home? 
Ø Will critical personnel report to work or take 
care of their families? 
Ø Will instructions for immunization be followed? 

Behavioral Responses to Health Events 
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• Mathematical models are increasingly used to help 
plan for health events or to develop responses to 
them. 

• Especially important in planning responses to such 
events as: 

• Foot and Mouth Disease in Britain 
• SARS 
• Swine Flu 

Behavioral Responses to Health Events 
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• Models in epidemiology typically omit 
behavioral responses. 

Ø Hard to quantify. 

Ø Hard to measure. 

• Leads to challenges for behavioral scientists. 

• Leads to challenges for mathematical sciences. 

Behavioral Responses to Health Events 
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• We can learn some things from the study of 
responses to various disasters: 
Ø Earthquakes 
Ø Hurricanes 
Ø Fires 
Ø Etc. 

Behavioral Responses to Health Events 

New Orleans hurricane 2005 

Turkey earthquake 1999 
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Some Behavioral Responses that Need to be 
Addressed: 

• Compliance: 
Ø Quarantine 
Ø Resistance 
Ø Willingness to seek/receive treatment 
Ø Credibility of government 
Ø Trust of decision makers 

Behavioral Responses to Health Events 
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Some Behavioral Responses that Need to be 
Addressed: 

• Movement 
• Rumor 
• Perception of risk 
• Person to person interactions 
• Motivation 
• Social stigmata (discrimination against social 
groups) 

• Panic 
• Peer pressure 

Behavioral Responses to Health Events 

SARS Response 
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The Challenge to Measurement Theory: 

• How do we measure some of these factors? 
• How do we bring them into mathematical models? 
• What statements using the new scales of 
measurement are meaningful? 

Behavioral Responses to Health Events 
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There is much more analysis of a similar nature in 
the field of epidemiology that can be done with the 
principles of measurement theory. There are 
important challenges for researchers. 
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Happy Birthday Jean-Claude! 
 


