New Mathematically-based Tools of Systems Analysis and Related Decision Support Applications

Fred S. Roberts Director of CCICADA Rutgers University

Command, Control, and Interoperabili Center for Advanced Data Analysis

Credit: commons.wikipedia.org

Challenges for Systems Analysis and Decision Support

- Decision makers in fields from engineering to medicine to ecology have available remarkable new mathematically-based tools of systems analysis.
- Applications to problems of the planet are spurred by dramatic amount of data available & remarkable tools for using data to make better decisions & influence policy.
- Yet applying these tools presents complex new challenges.

- How to use data from a wide variety of sources for better decisions?
- Tools of Mathematical Modeling & Simulation can help.
- In 1900, only 13% of the world's population lived in cities. By 2050, it is predicted that 70% will.
- Climate change has serious effect on urban areas: more severe hurricanes, heat waves, droughts, ...
- During "Super Storm" Sandy in 2012, subway tunnels in New York City were flooded.
- Fusing data from many sources, mathematical models developed at Columbia University predicted which ones.
- Can we use similar models to predict effects of sea level rise in urban areas?

3

- Which power plants, train tracks to move

- Health of ecosystems can be obtained by measuring **biodiversity** variability of plants and animals.
- *Tools like Artificial Intelligence and Machine Learning* are helping to identify species.
- **Snapshot Serengeti**: Motion-sensor cameras ("camera traps") have collected millions of images of lions, leopards, cheetahs, elephants. 3.2 million images.
- They launched an app that uses deep convolutional neural networks to identify and count species system is accurate 93.8% of the time.
- Next step: Identifying individual animals.

- Supply chains are increasingly interconnected.
- The recent blockage of the Suez Canal by a grounded container ship continues to affect supply of oil, food, microchips to make cars, availability of empty containers, etc.
- *Tools like Multi-agent Simulations* have been used to simulate supply chain operations and the interactions among "players."
- Each player is an "intelligent autonomous agent" and can process multiple events and subproblems.
- Such simulations allow for prediction of impacts of disruptions and the impact reduction of different mitigation strategies.

- With climate change, there is more vessel traffic in the Arctic and possibility of offshore oil drilling
- Increased risk of spills from vessels or drilling
- Arctic challenge: resource allocation for oil spill response
 - Challenging because of long transit times, lack of infrastructure, remote locations, lack of roads, distant airlift
 - Need data about existing equipment, transportation, communication, etc.
- *Tools of Stochastic Programming* have been used to allocate resources under uncertainty and budget constraints
 - What oil spill response equipment should be "forward-located" in advance? Where to locate it?
 - What equipment should be prepared for "surge" deployment?
 - Near-term vs. long-term planning
 - Seasonal adjustments
 - Purchase vs. contract

www.rpi.edu

Sequential Diagnosis

- In sequential diagnosis, there are a variety of tests available and you choose the next test on the basis of results of earlier ones.
 Useful in medicine, manufacturing, communication networks, etc.
- Tools like Optimization & Decision Trees are helpful here.
- Example: One approach arose from inspecting containers at ports and has applications in education testing, disease testing, etc.
- Many kinds of tests. Want most efficient screening protocols.
- Difficulty: combinatorial explosion in number of possibilities.
- Represent possible tests as binary decision trees.
- Find "optimal" BDT.
- With 5 possible tests there are 263,515,920 possible BDTs.
- Search algorithms to move from one BDT to a better one hold hope for solutions.

Credit; en.wikipedia.org

Sequential Diagnosis

- Alternate approach to container inspection: SNSRTREE
- Tools like Large-scale Linear Programming are relevant.
- SNSRTREE allows for mixed strategies, accommodates realistic limitations on budget and testing capacity and time limits.
- Originally developed for testing for nuclear contraband.
- Recent research on using this tool to testing for COVID-19.
 - How to optimally select from available tests according to the person, the work they do, results of prior tests, dynamic test availability.
 - SNSRTREE finds the entire set of "optimal" testing policies for all possible budgets.

Photo credit: Wikimedia Commons, National Cancer Institute, John Keith photographer

8

Data-driven Decision Science

- Decision science is a key part of systems analysis.
- What is new is that modern data-driven decision science can allow comparison of a vast array of alternative solutions.
- *Tools of Algorithmic Decision Theory (ADT)* aim to exploit algorithmic methods to improve decision maker performance.
- The 2014 Ebola outbreak in West Africa should have reminded us that the world is ill-prepared for a severe disease epidemic.
- When COVID-19 hit, the world was indeed poorly prepared.
- Successful fight to contain Ebola outbreak was helped by ADT.
 - Accurately predicted disease spread and how to contain it.
 - Data allowed decision makers to understand things like: how many beds and lab tests would be needed — and where and when to deploy them.
- During COVID, numerous models & simulations aided by a tsunami of shared data have aided decision makers to save lives.

Credit: Doctors Without Borders

9

Data-driven Decision Science

- Supply chains have been dramatically changed in the digital age.
- Artificial intelligence and machine learning have allowed the private sector and governments to minimize inventories.
 - Due to extremely accurate knowledge of demand for goods or components.
 - Allowing for "just-in-time" delivery.
- COVID has demonstrated the problems with this approach.
 - Shortages of medical equipment (ventilators, masks)
 - Shortages of consumer goods (toilet paper, disinfectant wipes)
- *Tools of Algorithmic Decision Theory* are a key to making supply chains better prepared for natural disasters and more resilient:
 - Modified ML tools to identify alternative sources and change priorities in a speedy way.
 - Data-driven decision making to support decisions about stockpiles for natural disasters, alternative suppliers, modified transportation routes.

Image credits: Left: Laurie Kolano; Right: Wikimedia commons, Timely Medical Innovations, LLC

Information Sharing

- Information sharing is a key to enable all kinds of organizations and individuals to work together while protecting their private information.
- It has become a major research area in tools for systems analysis.
 - Example: sharing information in multinational partnerships for sustainable development in transboundary river basins
 - Example: sharing information about energy use in homes while maintaining privacy
- *Tools of Secure Multiparty Computation* comprise a theoretical area aiming at allowing parties to jointly compute something over their inputs while keeping those inputs private.
- Blockchain is a Tool that provides

 a decentralized recordkeeping
 system that enables disparate parties
 to transact safely without needing
 a middleman.

Information Sharing

- To utilize the vast amounts of information available to us, we have to understand what sources we can trust.
 - Example: Disaster situation; lots of data as to damage, physical needs, information needs, etc. What to trust?
 - Example: Shared information about water quality; air quality; flood risk
- *Tools called Trustmarks* are digitally signed assertions by a third party assessor; shared between parties seeking to share information.
 - Provide evidence that an individual sharing information meets trust requirements.

Japanese Earthquake & Tsunami; credits: commons.wikipedia.org and www.flickr.com

ommand, Control, and Interoperabilit Center for Advanced Data Analysis

Information Sharing

- Proving your identity is part of information sharing.
- So is proving you have the authority to do something.
 - Prove you have been vaccinated so you can board a flight
 - Prove that you have emergency medical training so that you can help after an earthquake or hurricane
 - Prove that you are allowed to be in a remote wilderness area to study endangered species
- *Tools of Identity and Access Management* are being developed to enable individuals' smartphones to carry encrypted information about their credentials to speed approval for giving them access.
- This too is an important, growing field of systems analysis that will help enhance trust in numerous situations.

Credit: Left: commons.wikimedia.org Right: commons.wikimedia,org, Simon Waldherr

