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My Message
•”Measurement is the process by which 
numbers or symbols are assigned to attributes of 
entities in the real world in such a way as to 
describe them according to clearly defined 
rules.” - Fenton and Pfleeger, Software 
Measurement

•Message: Unless we are careful, statements using 
scales of measurement can be meaningless (in a 
precise sense).
•That is specifically relevant to measuring the 
performance of intelligent machines.
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Some Questions We Will Ask
•A machine can complete one task three times as 
fast as another task.  
•Is this a meaningful conclusion?

Credit: NASA/Dominic Hart, wikimedia commons
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Some Questions We Will Ask
•A robot is tested on a variety of tasks involving 
lifting objects and then on a variety of tasks 
involving moving objects. 
•Is it meaningful to say that the average weight of  
items lifted is greater than the average weight of 
items moved?

Credit: Crispin Semmens,  wikimedia commons (no 
changes)

https://www.flickr.com/people/32751486@N00
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Some Questions We Will Ask
•Two unmanned vehicles have to move an item 
from one location to another. 
•Is it meaningful to say that the path one vehicle 
takes is shorter than that of the other?

Credit: Johnny Zoo wikimedia commons

https://commons.wikimedia.org/wiki/User:Johnny_Zoo
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MEASUREMENT
•All of these questions have something to do with 
measurement.

•We will discuss applications of the theory of measurement 
to measurement in robotics and more generally for 
intelligent machines.

Credits: L ponizej, wikimedia commons C: Wikimedia commons R: OpenStax, wikimedia
commons 
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MEASUREMENT
•Measurement has something to do with numbers.
•The theory of measurement was developed by 
mathematical social scientists to put measurement on a 
firm mathematical foundation.
•Think of starting with a set A of objects that we want to 
measure.
•We shall think of a scale of measurement as a function f
that assigns a real number f(a) to each element a of A (or 
more generally assigns a number f(a) in some other set B).
•The representational theory of measurement gives 
conditions under which a function is an acceptable scale 
of measurement. 
•Formalized through study of homomorphisms from one 
relational system to another.
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Outline
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The Theory of Uniqueness
Admissible Transformations
•An admissible transformation sends one acceptable scale 
into another.   

Centigrade → Fahrenheit
Kilograms → Pounds

•In most cases one can think of an admissible 
transformation as defined on the range of a scale of 
measurement.
•Suppose f is an acceptable scale on A taking values in B .
•𝛷:f(A) → B is called an admissible transformation of f if 
𝛷◦f is again an acceptable scale.
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The Theory of Uniqueness
Admissible Transformations 𝛷

Centigrade → Fahrenheit: 𝛷(x) = (9/5)x + 32
Kilograms → Pounds: 𝛷(x) = 2.2x

•A classification of scales is obtained by studying the class 
of admissible transformations associated with the scale.

•This defines the scale type. (S.S. Stevens)



11

Some Common Scale Types
Class of Adm. Transfs. Scale Type Example
𝛷(x) = 𝛼x, 𝛼 > 0 ratio Mass

Temp. (Kelvin)
Time (intervals)
Length
Volume
Loudness (sones)?

______________________________________________
𝛷(x) = 𝛼x+𝛽, 𝛼 > 0 interval Temp (F,C)

Time (calendar)
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Some Common Scale Types
Class of Adm. Transfs. Scale Type Example
x ≥ y ⟷𝛷(x) ≥ 𝛷(y)
𝛷 strictly increasing ordinal Preference?

Hardness
Grades of leather, 

wool, etc.
Subjective 

judgments:
cough, fatigue,...

_________________________________________
𝛷(x) = x absolute Counting
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Meaningful Statements
•In measurement theory, we speak of a statement as being 
meaningful if its truth or falsity is not an artifact of the 
particular scale values used.

•The following definition is due to Suppes 1959 and 
Suppes and Zinnes 1963.

Definition:  A statement involving numerical scales is 
meaningful if its truth or falsity is unchanged after any (or 
all) of the scales is transformed (independently?) by an 
admissible transformation.
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Meaningful Statements

•A slightly more informal definition:
Alternate Definition: A statement involving numerical 
scales is meaningful if its truth or falsity is unchanged 
after any (or all) of the scales is (independently?) replaced 
by another acceptable scale.
•In some practical examples, for example those involving 
preference judgments or judgments “louder than” under 
the “semiorder” model, it is possible to have two scales 
where one can’t go from one to the other by an admissible 
transformation, so one has to use this definition.
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Meaningful Statements

•We will avoid the long literature of more sophisticated 
approaches to meaningfulness.

•Situations where this relatively simple-minded definition 
may run into trouble will be disregarded.

•Emphasis is to be on applications of the “invariance”
motivation behind the theory of meaningfulness.
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Meaningful Statements
“A machine can complete task a three times as fast as 
task b.”
•Is this meaningful?

Credit: ICAPlants, Wikimedia commons (no changes)
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Meaningful Statements
“A machine can complete task a three times as fast as 
task b.”
•Is this meaningful?
•We have a ratio scale (time intervals).
(1) f(a) = 3f(b).
•This is meaningful if  f is a ratio scale.  For, an 
admissible transformation is 𝛷(x) = 𝛼x, 𝛼 > 0. We want 
(1) to hold iff
(2)                   (𝛷◦f)(a) = 3(𝛷◦f)(b)
•But (2) becomes
(3)                        𝛼f(a) = 3𝛼f(b)
•(1) ⟷ (3)  since 𝛼 > 0.
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Meaningful Statements
“After completing its task, the machine’s 
temperature will be 2 per cent higher than it was at the 
beginning.”
•Is this meaningful?
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Meaningful Statements
“After completing its task, the machine’s 
temperature will be 2 per cent higher than it was at the 
beginning.”

f(a) = 1.02f(b)

•Meaningless.  It could be true with Fahrenheit and false 
with Centigrade, or vice versa.
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Meaningful Statements
In general:

•For ratio scales, it is meaningful to compare ratios:
f(a)/f(b) > f(c)/f(d)

•For interval scales, it is meaningful to compare intervals:
f(a) - f(b) > f(c) - f(d)

•For ordinal scales, it is meaningful to compare size:
f(a) > f(b)
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Meaningful Statements
“I weigh 1000 times what that elephant weighs.”
•Is this meaningful?
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Meaningful Statements
“I weigh 1000 times what that elephant weighs.”
•Meaningful.  It involves ratio scales.
It is false no matter what the unit.
•Meaningfulness is different from truth.
•It has to do with what kinds of assertions 
it makes sense to make, which assertions
are not accidents of the particular choice
of scale (units, zero points) in use.
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Average Machine Performance
•Compare the performance of a machine on two groups of 
tasks to see which it is better at. 

•Data suggests that the average performance on tasks in 
the first group is higher than the average performance 
on tasks in the second group.

•A robot lifts some items and moves some items.
•Average weight of items lifted is greater than average 
weight of items moved.

•Is this meaningful?
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Average Machine Performance
•Compare the performance of a machine on two groups of 
tasks to see which it is better at. 
•f(a) is machine performance on task a
•Data suggests that the average performance on tasks in 
the first group is higher than the average performance on 
tasks in the second group.
a1, a2, …, an tasks in first group
b1, b2, …, bm tasks in second group

n m
(1)   (1/n) ∑ f(ai) > (1/m) ∑ f(bi)

i=1                 i=1
•We are comparing arithmetic means.
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Average Machine Performance
•Statement (1) is meaningful iff for all admissible 
transformations of scale 𝛷,  (1) holds iff

n m
(2)   (1/n) ∑ (𝛷◦f)(ai) > (1/m) ∑ (𝛷◦f)(bi)

i=1                        i=1
•If machine performance defines a ratio scale:
•Then, 𝛷(x) = 𝛼x, 𝛼 > 0, so (2) becomes

n m
(3)   (1/n) ∑ 𝛼f(ai) > (1/m) ∑ 𝛼f(bi)

i=1                   i=1
•Then  𝛼 > 0 implies (1) ⟷ (3). Hence, (1) is meaningful.
•So this kind of comparison would work if we were 
comparing weights of objects lifted or moved.
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Average Machine Performance
•Note:  (1) is still meaningful if  f is an interval scale.
•

•For example, we could be comparing achieved 
temperatures  f(a).
•Here, 𝛷(x) = 𝛼x + 𝛽, 𝛼 > 0.  Then (2) becomes

n m
(4)   (1/n) ∑ 𝛼f(ai)+𝛽 > (1/m) ∑ 𝛼f(bi)+𝛽

i=1                       i=1

•This readily reduces to (1).

•However, (1) is meaningless if  f is just an ordinal 
scale.
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Average Machine Performance
•Suppose that  f(a) is measured on an ordinal scale, e.g., 
5-point scale:  5=very good, 4=good, 3=good, 2=bad, 
1=very bad.
•In such a scale, the numbers may not mean anything; 
only their order matters.

Group 1:  5, 3, 1  average 3
Group 2:  4, 4, 2  average 3.33

•Conclude: average performance on group 2 tasks is 
higher.
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Average Machine Performance
•Suppose that  f(a) is measured on an ordinal scale, e.g., 
5-point scale:  5=very good, 4=good, 3=good, 2=bad, 
1=very bad.
•In such a scale, the numbers may not mean anything; only 
their order matters.

Group 1:  5, 3, 1  average 3
Group 2:  4, 4, 2  average 3.33 (greater)

•Admissible transformation:  5 → 100, 4 → 75, 3 → 65,       
2 → 40, 1 → 30
•New scale conveys the same information.  New scores:

Group 1:  100, 65, 30  average 65  
Group 2:  75, 75, 40   average 63.33 

Conclude: average performance on group 1 tasks is higher.
.
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Average Machine Performance
•Thus, comparison of arithmetic means can be 
meaningless for ordinal data.

•Of course, you may argue that in the 5-point scale, at least 
equal spacing between scale values is an inherent property 
of the scale.  In that case, the scale is not ordinal and this 
example does not apply.

•Note: Comparing medians is meaningful with ordinal 
scales:  To say that one group has a higher median than 
another group is preserved under admissible 
transformations.
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Average Machine Performance II
•Suppose each of  n observers is asked to rate each of a 
collection of machines as to their performance on a 
given task.
•Similarly if we judge the machines as to performance 
on n different criteria.

•Let  fi(a)  be the rating of machine a on the task by  
judge  i (under criterion i).  Is it meaningful to assert that 
the average rating of machine a is higher than the average 
rating of machine  b?  
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Average Machine Performance II
•Let  fi(a)  be the rating of machine a on a given task by  
judge  i (under criterion i).  Is it meaningful to assert that 
the average rating of machine a is higher than the average 
rating of machine  b?  

n n
(1)   (1/n) ∑ fi(a) > (1/n) ∑ fi(b)

i=1                i=1
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Average Machine Performance II
•Let  fi(a)  be the rating of machine a on a given task by  
judge  i (under criterion i).  Is it meaningful to assert that 
the average rating of machine a is higher than the average 
rating of machine  b?  

n n
(1)   (1/n) ∑ fi(a) > (1/n) ∑ fi(b)

i=1                i=1
•If each  fi is a ratio scale, then we consider for 𝛼 > 0,

n n
(2)   (1/n) ∑ 𝛼fi(a) > (1/n) ∑ 𝛼fi(b)

i=1                  i=1
•Clearly,  (1) ⟷ (2), so (1) is meaningful.

.
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Average Machine Performance II
•If each  fi is a ratio scale, then we consider for 𝛼 > 0,

n n
(2)   (1/n) ∑ 𝛼fi(a) > (1/n) ∑ 𝛼fi(b)

i=1                  i=1
•Clearly,  (1) ⟷ (2), so (1) is meaningful.

•Problem: f1, f2, …, fn might have independent units.  In 
this case, we want to allow independent admissible 
transformations of the fi.  Thus, we must consider

n n
(3)   (1/n) ∑ 𝛼ifi(a) > (1/n) ∑ 𝛼ifi(b)

i=1                   i=1
•It is easy to see that there are 𝛼i so that (1) holds and (3) 
fails. Thus, (1) is meaningless.

.



36

Average Machine Performance II
Motivation for considering different 𝛼i:
Machine = person, task is to play football

n = 2,   f1(a) = weight of a,  f2(a) =  height of a.  Then (1) 
says that the average of  a's  weight and height is greater 
than the average of  b's weight and height.  This could be 
true with one combination of weight and height scales and 
false with another.

Credit:
L: Miguel Castaneda: wikimedia commons
R: Keith Allison wikimedia commons (no 
changes) 

https://www.flickr.com/people/24557071@N05
https://www.flickr.com/people/27003603@N00
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Average Machine Performance II
Motivation for considering different 𝛼i: 
Machine = person, task is to play football

n = 2,   f1(a) = weight of a,  f2(a) =  height of a.  Then (1) 
says that the average of  a's  weight and height is greater 
than the average of  b's weight and height.  This could be 
true with one combination of weight and height scales and 
false with another.

• Conclusion:  Be careful when comparing 
arithmetic mean ratings.
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Average Machine Performance II
•In this context, it is safer to compare geometric means
(Dalkey).

n_____     n_____       n______      n_______
√Π fi(a) > √Π fi(b) ⟷ √Π 𝛼ifi(a) > √Π 𝛼ifi(b) 

all  𝛼i > 0.

•Thus, if each  fi is a ratio scale, if individuals can change 
performance rating scales independently, then comparison 
of geometric means is meaningful while comparison of 
arithmetic means is not.
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Application of this Idea
Role of Air Pollution in Health.
•In a study of air pollution and related energy use in San 
Diego, a panel of experts each estimated the relative 
importance of variables relevant to air pollution using the 
magnitude estimation procedure. Roberts (1972, 1973).
•Magnitude estimation: Most important gets score of 100. 
If half as important, score of 50. And so on.
•If magnitude estimation leads to a ratio scale -- Stevens 
presumes this -- then comparison of geometric mean 
importance ratings is meaningful. 

•However, comparison of arithmetic means
may not be.  Geometric means were used.

.

Credits: 
Uipper:Welp.sk wikimedia commons (no changes)
Lower: Kentaro IEMOTO,  wikimedia commons (no changes)

https://commons.wikimedia.org/w/index.php%3Ftitle=User:Welp.sk&action=edit&redlink=1
https://www.flickr.com/people/28573791@N08


40

Magnitude Estimation by One Expert of Relative 
Importance for Air Pollution of Variables Related to 

Commuter Bus Transportation in a Given Region

Variable Rel. Import. Rating
1. No. bus passenger mi. annually 80
2. No. trips annually 100
3. No. miles of bus routes 50
4. No. miles special bus lanes 50
5. Average time home to office 70
6. Average distance home to office 65
7. Average speed 10
8. Average no. passengers per bus 20
9. Distance to bus stop from home 50
10. No. buses in the region 20
11. No. stops, home to office 20
.
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Normalized Performance Scores
• A widely used method in hardware measurement starts with 
scoring performance of different machines (systems) under 
different criteria or benchmarks. 
•The scores on each criterion are normalized relative to the 
score of one of the machines.  
•The normalized scores are combined by some averaging 
procedure and normalized scores are compared. 
•The machine with the highest average normalized score is 
chosen.
•Fleming and Wallace show that the outcome can depend on 
the choice of the base system.
•So it is meaningless in the sense of measurement theory.



43

Performance Scores

417 83 66 39,449 772

244 70 153 33,527 368

134 70 135 66,000 369

CRITERION

R

M

Z

M
A
C
H
I
N
E

E F G H I
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Performance Scores
Normalize Relative to Machine R

417
1.00

83
1.00

66
1.00

39,449
1.00

772
1.00

244
.59

70
.84

153
2.32

33,527
.85

368
.48

134
.32

70
.85

135
2.05

66,000
1.67

369
.45

CRITERION

R

M

Z

E F G H I

M
A
C
H
I
N
E
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Performance Scores

Take Arithmetic Mean of Normalized Scores

417
1.00

83
1.00

66
1.00

39,449
1.00

772
1.00

244
.59

70
.84

153
2.32

33,527
.85

368
.48

134
.32

70
.85

135
2.05

66,000
1.67

369
.45

CRITERION

R

M

Z

E F G H I
Arithmetic
Mean

1.00

1.01

1.07

M
A
C
H
I
N
E
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Performance Scores

Take Arithmetic Mean of Normalized Scores

417
1.00

83
1.00

66
1.00

39,449
1.00

772
1.00

244
.59

70
.84

153
2.32

33,527
.85

368
.48

134
.32

70
.85

135
2.05

66,000
1.67

369
.45

CRITERION

R

M

Z

E F G H I
Arithmetic
Mean

1.00

1.01

1.07

Conclude that machine Z is best

M
A
C
H
I
N
E
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Performance Scores
Now Normalize Relative to Machine M

417
1.71

83
1.19

66
.43

39,449
1.18

772
2.10

244
1.00

70
1.00

153
1.00

33,527
1.00

368
1.00

134
.55

70
1.00

135
.88

66,000
1.97

369
1.00

CRITERION

R

M

Z

E F G H I

M
A
C
H
I
N
E
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Performance Scores
Take Arithmetic Mean of Normalized Scores

417
1.71

83
1.19

66
.43

39,449
1.18

772
2.10

244
1.00

70
1.00

153
1.00

33,527
1.00

368
1.00

134
.55

70
1.00

135
.88

66,000
1.97

369
1.00

CRITERION

R

M

Z

E F G H I

Arithmetic
Mean

1.32

1.00

1.08

M
A
C
H
I
N
E
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Performance Scores
Take Arithmetic Mean of Normalized Scores

417
1.71

83
1.19

66
.43

39,449
1.18

772
2.10

244
1.00

70
1.00

153
1.00

33,527
1.00

368
1.00

134
.55

70
1.00

135
.88

66,000
1.97

369
1.00

CRITERION

R

M

Z

E F G H I

Arithmetic
Mean

1.32

1.00

1.08

Conclude that machine R is best

M
A
C
H
I
N
E
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Normalized Scores

• So, the conclusion that a given machine is best  
by taking arithmetic mean of normalized scores 
is meaningless in this case.

• Above example from Fleming and Wallace 
(Communications of the ACM, 1986), data from 
Heath (1984) (in a computing machine 
application)

• Sometimes, geometric mean is helpful.
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Performance Scores
Normalize Relative to Machine R

417
1.00

83
1.00

66
1.00

39,449
1.00

772
1.00

244
.59

70
.84

153
2.32

33,527
.85

368
.48

134
.32

70
.85

135
2.05

66,000
1.67

369
.45

CRITERION

R

M

Z

E F G H I
Geometric
Mean

1.00

.86

.84

Conclude that treatment R is best

M
A
C
H
I
N
E
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Performance Scores
Now Normalize Relative to Machine M

417
1.71

83
1.19

66
.43

39,449
1.18

772
2.10

244
1.00

70
1.00

153
1.00

33,527
1.00

368
1.00

134
.55

70
1.00

135
.88

66,000
1.97

369
1.00

CRITERION

R

M

Z

E F G H I
Geometric
Mean

1.17

1.00

.99

Still conclude that treatment R is best

M
A
C
H
I
N
E
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Normalized Scores

• In this situation, it is easy to show that the conclusion 
that a given machine has highest geometric mean 
normalized score is a meaningful conclusion.

• Even meaningful: A given machine has geometric 
mean normalized score 20% higher than another 
machine.

• Fleming and Wallace give general conditions under 
which comparing geometric means of normalized 
scores is meaningful.

• Research area: what averaging procedures make sense 
in what situations? Large literature. 
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Treatment Evaluation

Message from measurement theory:

Do not perform arithmetic operations on 
data without paying attention to whether 
the conclusions you get are meaningful.

Credit: Toby Hudson, wikimedia commons (no changes)

https://commons.wikimedia.org/wiki/User:99of9
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Optimization Problems for Intelligent 
Machines: 

Shortest Path Problem

x y

z

2

4
15

• Problem: Find the shortest path from x to z.

Numbers = some
sort of weights
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Optimization Problems for Intelligent 
Machines: 

Shortest Path Problem
• This problem frequently arises in robotics, e.g., in finding 

a path that minimizes time or energy expended, and it 
certainly arises with unmanned vehicles.

Credit: Mittgaurav: wikimedia commons

https://en.wikipedia.org/wiki/User:Mittgaurav
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Shortest Path Problem

x y

z

2

4
15

• So what is the shortest path from x to z?

Numbers = some
sort of weights
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Shortest Path Problem

x y

z

2

4
15

• The shortest path from x to z is the path x to y to z.
• Is this conclusion meaningful?
• It is if the numbers define a ratio scale.
• The numbers define a ratio scale if they are distances.
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Shortest Path Problem
z

x y2

4
15

• However, what if the numbers define an interval scale?
• For example, the numbers could be costs in terms of 

utility (or disutility) assigned to a route, and these might 
only define an interval scale. 
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Shortest Path Problem
z

x y106

112
145

• Consider the admissible transformation 𝛷(x) = 3x + 100.
• Now we get the above numbers on the edges.
• Now the shortest path is to go directly from x to z.
• The original conclusion was meaningless.
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Linear Programming
• The shortest path problem can be formulated as a 

linear programming problem.
• Thus: The conclusion that A is the solution to a 

linear programming problem can be meaningless if 
cost parameters are measured on an interval scale.
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Related Example: Minimum 
Spanning Tree Problem

2

8

10 14

16

20 22

• A spanning tree is a tree using the edges of the graph and 
containing all of the vertices.

• It is minimum if the sum of the numbers on the edges 
used is as small as possible.

15

26

28
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Related Example: Minimum 
Spanning Tree Problem

• Minimum spanning trees arise in many applications.
• It arises in construction applications where automated 

robots pick up and drop off building blocks located at 
vertices (nodes) of a network.

Credit: Wikimedia commons
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Related Example: Minimum 
Spanning Tree Problem

2

8

10 14

16

20 22

• Red edges define a minimum spanning tree.
• Is it meaningful to conclude that this is a minimum 

spanning tree?

15

26

28
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Related Example: Minimum 
Spanning Tree Problem

2

8

10 14

16

20 22

• Consider the admissible transformation  j(x) = 3x + 100.

15

26

28
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Related Example: Minimum 
Spanning Tree Problem

106

124

130 142

148

160 166

• Consider the admissible transformation  j(x) = 3x + 100.
• We now get the above numbers on edges.

145

178

184
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Related Example: Minimum 
Spanning Tree Problem

106

124

130 142

148

160 166

• The minimum spanning tree is the same.

145

178

184
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Related Example: Minimum 
Spanning Tree Problem

106

124

130 142

148

160 166

• Is this an accident?
• No: By Kruskal’s algorithm for finding the minimum 

spanning tree, even an ordinal transformation will leave 
the minimum spanning tree unchanged.

145

178

184
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Related Example: Minimum 
Spanning Tree Problem

106

124

130 142

148

160 166

• Kruskal’s algorithm:
ü Order edges by weight.
ü At each step, pick least-weight edge that does not 

create a cycle with previously chosen edges.

145

178

184
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Related Example: Minimum 
Spanning Tree Problem

• Many practical decision making problems 
involve the search for an optimal solution as in 
Shortest Path and Minimum Spanning Tree.

• Little attention is paid to the possibility that 
conclusion that a particular solution is 
optimal may be an accident of the way things 
are measured.
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Outline
1. Theory of Uniqueness of Scales of Measurement/Scale 

Types
2. Meaningful Statements
3. Average Machine Performance
4. Normalized Performance Scores
5. Optimization Problems for Intelligent Machines
6. How to Average Scores
7. Meaningfulness of Statistical Tests
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•Sometimes arithmetic means are not a good idea. 
•Sometimes geometric means are. 
•Are there situations where the opposite is the case?  Or 
some other method is better?  
•Can we lay down some guidelines about when to use what 
averaging or merging procedure?
•Let  a1, a2, …, an be “scores” or ratings, e.g., scores on 
criteria for evaluating machines.
•Let  u = F(a1,a2, …, an)
•F  is an unknown averaging function – sometimes called a 
merging function, and  u  is the average or merged score.

How Should We Average Scores?
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An Axiomatic Approach
Theorem (Fleming and Wallace).  Suppose  F:(¬+)n Æ ¬+

has the following properties:
(1). Reflexivity:  F(a,a,...,a) = a
(2). Symmetry:  F(a1,a2,…,an) = F(ap(1),ap(2),…,ap(n))
for all permutations p of {1,2,…,n}
(3). Multiplicativity: 
F(a1b1,a2b2,…,anbn) = F(a1,a2,…,an) F(b1,b2,…,bn)
Then  F is the geometric mean.  And conversely.

How Should We Average Scores?
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Unknown function u = F(a1,a2,…,an) 

Luce's idea (“Principle of Theory Construction”):  If you 
know the scale types of the ai and the scale type of  u and 
you assume that an admissible transformation of each of the 
ai leads to an admissible transformation of  u,  you can 
derive the form of  F.  

(We will disregard some of the restrictions on applicability 
of this principle, including those given by Luce.)

This gets us into functional equations.

How Should We Average Scores?
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A Functional Equations Approach

Example: u = F(a).  Assume a and u are ratio scales.
• Admissible transformations of scale: multiplication by a 
positive constant.
•Multiplying the independent variable by a positive constant 
a leads to multiplying the dependent variable by a positive 
constant A that depends on a.
•This leads to the functional equation:
(&)                    F(aa) = A(a)F(a), A(a) > 0.

How Should we Average Scores?
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•This leads to the functional equation:
(&)                    F(aa) = A(a)F(a), a > 0, A(a) > 0.

By solving this functional equation, Luce proved the 
following theorem:

Theorem (Luce 1959): Suppose the averaging function F is 
continuous and suppose a takes on all positive real values 
and F takes on positive real values. Then 

F(a) = cak

Thus, if both the independent and dependent variables are 
ratio scales, the only possible way to relate them is by a 
power law.

How Should we Average Scores?
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• This result is very general. 
• It can be interpreted as limiting in very strict ways the 
“possible scientific laws”

• Other examples of power laws:
– V = (4/3)pr3 Volume V, radius r are ratio scales
– Newton’s Law of gravitation: F = G(mm*/r2),

where F is force of attraction, G is gravitational 
constant, m,m* are fixed masses of bodies being 
attracted, r is distance between them.

– Ohm’s Law: Under fixed resistance, voltage is 
proportional to current (voltage, current are ratio 
scales)

The Possible Scientific Laws
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A Functional Equations Approach
Example: a1, a2, …, an are independent ratio scales,  u is a 
ratio scale.

F: (¬+)n Æ ¬+

F(a1,a2,…,an) = u Æ F(a1a1,a2a2,…,anan) = au,

a1 > 0,  a2  > 0, an > 0, a > 0, a depends on a1, a2, …, an.

•Thus we get the functional equation:

(*) F(a1a1,a2a2,…,anan) = A(a1,a2,…,an)F(a1,a2,…,an),
A(a1,a2,…,an) > 0

How Should We Average Scores?
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A Functional Equations Approach

(*) F(a1a1,a2a2,…,anan) = A(a1,a2,…,an)F(a1,a2,…,an),
A(a1,a2,…,an) > 0

Theorem (Luce 1964):  If   F: (¬+)n Æ ¬+ is continuous and 
satisfies (*), then there are l > 0, c1, c2, …, cn so that

c1 c2 cnF(a1,a2,…,an) = λa1  a2  …an

λ, c1, c2, …, cn constants

How Should We Average Scores?
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c1 c2 cnF(a1,a2,…,an) = λa1  a2  …an

Theorem (Aczél and Roberts 1989):  If in addition  F
satisfies reflexivity and symmetry, then l = 1  and  c1 = c2 = 
… = cn = 1/n ,  so  F is the geometric mean.

How Should We Average Scores?
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Sometimes You Get the Arithmetic Mean

Example:  a1, a2, …, an interval scales with the same unit 
and independent zero points;  u an interval scale.

Functional Equation:

(****)     F(aa1+b1,aa2+b2,…,aan+bn) = 
A(a,b1,b2,…,bn)F(a1,a2,…,an) + B(a,b1,b2,…,bn) 

A(a,b1,b2,…,bn) > 0

How Should We Average Scores?
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Functional Equation:

(****)     F(aa1+b1,aa2+b2,…,aan+bn) = 
A(a,b1,b2,…,bn)F(a1,a2,…,an) + B(a,b1,b2,…,bn) 

A(a,b1,b2,…,bn) > 0

Solutions to (****) (Even Without Continuity Assumed)
(Aczél, Roberts, and Rosenbaum):

n
F(a1,a2,…,an) = Σ lia i+ b

i=1

l1,  l2, …,  ln, b arbitrary constants

How Should We Average Scores?
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n
F(a1,a2,…,an) = Σ lia i+ b

i=1
Theorem (Aczél and Roberts):

(1).  If in addition  F satisfies reflexivity, then  

Σ li = 1, b = 0
(2).  If in addition  F satisfies reflexivity and symmetry, 
then  li = 1/n for all i, and b = 0,  i.e., F is the arithmetic 
mean.

How Should We Average Scores?
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Meaningfulness Approach

•While it is often reasonable to assume you know the scale 
type of the independent variables  a1, a2, …, an,  it is not so 
often reasonable to assume that you know the scale type of 
the dependent variable  u. 

• However, it turns out that you can replace the assumption 
that the scale type of  u is  xxxxxxx  by the assumption that 
a certain statement involving  u is meaningful.

How Should We Average Scores?
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Back to Earlier Example:  a1, a2, …, an are independent 
ratio scales. Instead of assuming  u is a ratio scale, assume 
that the statement

F(a1,a2, …, an) = kF(b1, b2, …, bn)

is meaningful for all a1, a2, …, an, b1, b2, …, bn and  k > 0.  
Then we get the same results as before:

Theorem (Roberts and Rosenbaum 1986):  Under these 
hypotheses and continuity of F, 

c1 c2 cnF(a1,a2,…,an) = λa1  a2  …an

If in addition  F satisfies reflexivity and symmetry, then  F
is the geometric mean.

How Should We Average Scores?
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Outline
1. Theory of Uniqueness of Scales of Measurement/Scale 

Types
2. Meaningful Statements
3. Average Machine Performance
4. Normalized Performance Scores
5. Optimization Problems for Intelligent Machines
6. How to Average Scores
7. Meaningfulness of Statistical Tests
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Meaningfulness of Statistical Tests
(joint work with Helen Marcus-Roberts)

•For > 50 years: considerable disagreement on 
limitations scales of measurement impose on 
statistical procedures we may apply.  
•Controversy stems from Stevens (1946, 1951, 
1959, ...): 
－ Foundational work
－Developed the classification of scales of 

measurement 
－ Provided rules for the use of statistical 

procedures: certain statistics are inappropriate at 
certain levels of measurement.



89

Meaningfulness of Statistical Tests

•The application of Stevens' ideas to descriptive 
statistics has been widely accepted
•Application to inferential statistics has been 
labeled by some a misconception.
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Meaningfulness of Statistical Tests: 
Descriptive Statistics

•P = population whose distribution we would like to 
describe.
•Capture properties of  P by finding a descriptive 
statistic for  P or taking a sample  S from  P and 
finding a descriptive statistic for  S.
•Our examples suggest: certain descriptive statistics 
appropriate only for certain measurement situations.
•This idea originally due to Stevens.
•Popularized by Siegel in his well-known book 
Nonparametric Statistics (1956).
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Meaningfulness of Statistical Tests: 
Descriptive Statistics

•Our examples suggest the principle: Arithmetic 
means are “appropriate” statistics for interval scales, 
medians for ordinal scales.
•Other side of the coin:  It is argued that it is always
appropriate to calculate means, medians, and other 
descriptive statistics, no matter what the scale of 
measurement.
Frederic Lord:  Famous football player example.  
“The numbers don't remember where they came 
from.”
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Meaningfulness of Statistical Tests: 
Descriptive Statistics

•I agree:  It is always appropriate to calculate
means, medians, ...
•But:  Is it appropriate to make certain statements 
using these descriptive statistics?
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Meaningfulness of Statistical Tests: 
Descriptive Statistics

•My position:  It is usually appropriate to make a 
statement using descriptive statistics iff the statement is 
meaningful.
•A statement that is true but meaningless gives information 
that is an accident of the scale of measurement used, not 
information that describes the population in some 
fundamental way.
•So, it is appropriate to calculate the mean of ordinal data
•It is just not appropriate to say that the mean of one group 
is higher than the mean of another group.
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Meaningfulness of Statistical 
Tests: Inferential Statistics

•Stevens' ideas have come to be applied to 
inferential statistics -- inferences about an unknown 
population  P.  

•They have led to such principles as the following:

(1).  Classical parametric tests (e.g., t-test, Pearson 
correlation, analysis of variance) are inappropriate 
for ordinal data.  They should be applied only to 
data that define an interval or ratio scale.
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Meaningfulness of Statistical 
Tests: Inferential Statistics

(2).  For ordinal scales, non-parametric tests (e.g., 
Mann-Whitney U, Kruskal-Wallis, Kendall's tau) 
can be used.

Not everyone agrees. Thus:  Controversy



96

Meaningfulness of Statistical 
Tests: Inferential Statistics

My View:
•The validity of a statistical test depends on a 
statistical model
－This includes information about the 

distribution of the population and about the 
sampling procedure.  

•The validity of the test does not depend on a 
measurement model
－This is concerned with the admissible 

transformations and scale type.
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Meaningfulness of Statistical 
Tests: Inferential Statistics

•The scale type enters in deciding whether the 
hypothesis is worth testing at all -- is it a 
meaningful hypothesis?

•The issue is:  If we perform admissible 
transformations of scale, is the truth or falsity of the 
hypothesis unchanged?

•Example: Ordinal data. Hypothesis: Mean is 0. 
Conclusion: This is a meaningless hypothesis.
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Meaningfulness of Statistical
Tests: Inferential Statistics

•Can we test meaningless hypotheses? 
•Sure.  But I question what information we get 
outside of information about the population as 
measured.

More details: Testing H0 about  P :
1). Draw a random sample S from  P.
2). Calculate a test statistic based on  S.
3). Calculate probability that the test statistic is 
what was observed given H0 is true.
4). Accept or reject H0 on the basis of the test.
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Meaningfulness of Statistical
Tests: Inferential Statistics

•Calculation of probability depends on a statistical 
model, which includes information about the 
distribution of  P and about the sampling 
procedure.  
•But, validity of the test depends only on the 
statistical model, not on the measurement model.
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Meaningfulness of Statistical 
Tests: Inferential Statistics

• Thus, you can apply parametric tests to ordinal 
data, provided the statistical model is satisfied.
• Model satisfied if the data is normally distributed.  
• Where does the scale type enter? 
• In determining if the hypothesis is worth testing at 
all. i.e., if it is meaningful.  
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Meaningfulness of Statistical 
Tests: Inferential Statistics

• For instance, consider ordinal data and
H0: mean is 0

•The hypothesis is meaningless. 
• But, if the data meets certain distributional 
requirements such as normality, we can apply a 
parametric test, such as the t-test, to check if the 
mean is 0.
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Closing Comments
• Meaningfulness of statistical tests: There are 

considerable limitations that meaningfulness 
places on conclusions from statistical tests
§ Descriptive statistics – reasonably well 

accepted
§ Inferential statistics – considerable 

“discussion”
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Closing Comments

Message: Do not perform arithmetic operations on 
data without paying attention to whether the 
conclusions you get are meaningful.

Questions:
froberts@dimacs.rutgers.edu

Credit: Toby Hudson, wikimedia commons (no changes)

https://commons.wikimedia.org/wiki/User:99of9

