Trend Flagging to Aid Resource Allocation Decisions

Fred S. Roberts Director

Command, Control, and Interoperability Center for Advanced Data Analysis (CCICADA)

Source: wikimedia commons

A Department of Homeland Security Center of Exce

Flagging Trends

- Decision makers need to be able to flag trends so as to respond to changes.
- Response might be rethink policies or reallocate resources.
- US Coast Guard a case in point.
 - Looks at changing shipping volumes or vessel behavior patterns
 - Reallocates resources to missions such as search & rescue, environmental protection, narcotics interdiction

Credit: commons.wikipedia.org

Flagging Trends

- Increased shipping in the Arctic due to changing ice conditions will allow more eco-tourism and cruise ships – requiring preparation for more search & rescue.
- Increased petrochemical shipping in the Houston Ship Channel increases risk of oil spill.
- Increased frequency of vessels anchoring offshore for unusually long periods of time might suggest smuggling of narcotics or weapons. Stacks of cocaine

Credit: commons.wikipedia.org

Stacks of cocaine Credit: En.wikipedia.org

Flagging Trends

- We introduce a simple-to-use tool called TrendFlagger that allows a decision maker to get evidence that a trend is appearing – without statistical sophistication.
- We illustrate TrendFlagger with Houston Ship Channel data.
- Illustrations will use source of data that USCG uses to study shipping trends and vessel behavior: The Automatic Identification System (AIS).
 - AIS automatically transmits data identifying a ship, its location, course, destination port, estimated ETA, etc.
 - For over 1,000,000 ships worldwide.
 - Updates as frequently as every 2 seconds while ship is in motion, every 3 minutes while in anchor.
 - Original use: safety (collision avoidance).
 - Now, many national security uses.

4

- TrendFlagger developed by Paul Kantor.
- Two choices by the decision maker:
 - How long to wait to decide whether there is a trend.
 - How strong an increase or decrease merits attention.
- First choice involves a "window size"
- Second involves two thresholds, one for uptrend and one for downtrend.
- Use a "moving window."
- If latest data point confirms rate above upper target level, color data point **RED**. If below lower target level, color it YELLOW. Otherwise, WHITE.

Center for Advanced Data Analysis A Department of Homeland Security Center of Exc

- More precisely: look at change per unit, i.e., slope of line going through the last *n* data points if *n* is window size.
- Thresholds give upward and downward slopes that trigger a **RED** or <u>YELLOW</u>.
- This is a decision support tool.
- Gives decision maker a quick, easily visualized tool to:
 - Spot trends
 - Suggest more sophisticated analysis
 - Spur review of policies or resource allocations
- Depends heavily on human intervention and experimentation with choice of the three parameters.

Center for Advanced Data Analysis A Department of Homeland Security Center of Excellence

			Total	Houston/Total
• AIS data covers zones.		UpTrend	42.81	0.005
		DownTrend	42.81	0.005
• Zone 15 includes	Year.Month	AveragingWindow	5	5
Houston Ship Channel.	13.01 13.02		1801 1644	0.198778456
A	13.02	2	1874	0.196
• Compare total number	13.03	_	1818	0.191
ships arriving in Zone	13.04	5	1983	0.187
15 per month vs.	13.06		1861	0.202
▲	13.07	7	1931	0.190
number arriving in	13.08	8	1960	0.201
Houston.	13.09	9	1893	0.192
	13.10	10	2070	0.189
• First 4 entries pink	13.11	11	1947	0.216
because window size is	13.12	12	2026	0.194
	14.01	1	1915	0.207
5.	14.02	2	1816	0.172
• Last 5 entries in Total	14.03		2026	0.187
	14.04		2075	0.193
Column: slope of	14.05		1969	0.198
regression line =	14.06		1849	0.206
-116.4.	14.07	7	1918	0.209
	14.08		1866	0.214
• 116.4 > 42.81, so	14.09 14.10		1714	0.235
yellow.	14.10	10 11	1820 422	0.221
y CHOW.	14.11			0.338
	14.12	12	1930	0.210
			⊨ −−−+	

0.3

alpha

,

- If December 2014 entry in Total column were 2300, slope would be -42.4. Thus, white.
- If entry were 2700, slope 37.6. White.
- If entry were 2750, slope 47.6. Red.

			Total	Houston/Total
	UpTrend		42.81	0.005
	DownTrend		42.81	0.005
Year.Month	AveragingWindow		5	5
13.01		1	1801	0.198778456
13.02		2	1644	0.196
13.03		3	1874	0.191
13.04		4	1818	0.187
13.05		5	1983	0.184
13.06		6	1861	0.202
13.07		7	1931	0.190
13.08		8	1960	0.201
13.09		9	1893	0.192
13.10		10	2070	0.189
13.11		11	1947	0.216
13.12		12	2026	0.194
14.01		1	1915	0.207
14.02		2	1816	0.172
14.03		3	2026	0.187
14.04		4	2075	0.193
14.05		5	1969	0.198
14.06		6	1849	0.206
14.07		7	1918	0.209
14.08		8	1866	0.214
14.09		9	1714	0.235
14.10		10	1820	0.221
14.11		11	422	0.358
14.12		12	1930	0.216
			alpha	0.3

Moving Averages

- TrendFlagger similar to moving averages used to identify trends in stock prices, commodity prices, etc.
- Moving average chooses a window and reports average value (price) over the window.
- Average is "moving" each time period the oldest value is dropped and newest one added.
- Used to identify uptrends and downtrends.
- No right timeframe to use with moving averages. Literature suggests:
 - Figure out what is best for you.
 - Experiment with different time periods.
- Moving average should not be used alone.
- Use complementary tools.

- This figure shows the total data, but with different parameters in each column.
- In first column, window size has been changed from 5 to 3.
- Slope of regression line through last three points is 55.
- Now December 2014 entry here is red, not yellow.
- Second Total column changes thresholds. Now December 2014 entry is white.

			Total	Total
	UpTrend		42.81	55.26
	DownTrend		42.81	55.26
Year.Month	AveragingWindow		3	3
13.01		1	1801	1801
13.02		2	1644	1644
13.03		3	1874	1874
13.04		4	1818	1818
13.05		5	1983	1983
13.06		6	1861	1861
13.07		7	1931	1931
13.08		8	1960	1960
13.09		9	1893	1893
13.10	1	10	2070	2070
13.11	1	11	1947	1947
13.12	1	12	2026	2026
14.01		1	1915	1915
14.02		2	1816	1816
14.03		3	2026	2026
14.04		4	2075	2075
14.05		5	1969	1969
14.06		6	1849	1849
14.07		7	1918	1918
14.08		8	1866	1866
14.09		9	1714	1714
14.10	1	10	1820	1820
14.11	1	11	422	422
14.12	1	12	1930	1930
	alpha			0.3

- So how does one choose the parameters?
- There is no "right way" to do this.
- Experiment with different values.
- Use knowledge of the subject matter.
- E.g.: if we feel we can handle a 10% increase in tanker traffic, we might use a 10% uptrend threshold.
- We might feel that if there are other important ways to spend our money, we may reduce oil spill if we see a 15% decrease.
- One heuristic: relate thresholds to standard deviation.
 - If not all data is in, use s.d. s of first n data points. Then choose thresholds using s/\sqrt{n} .
 - Sometimes multiply this by a parameter α .
 - ➤ See earlier figures.
 - If all data is in, use s.d. of all data points.

- Comparing trends in two different data sets can be interesting.
- During 2013 after first 4 months, trend in Total is either Red or White.
- Reversal of trend in Feb. 2014, and especially in second half of 2014.

			Total	Houston/Total
	UpTrend		42.81	0.005
	DownTrend		42.81	0.005
Year.Month	AveragingWindow		5	5
13.01		1	1801	0.198778456
13.02		2	1644	0.196
13.03		3	1874	0.191
13.04		4	1818	0.187
13.05		5	1983	0.184
13.06		6	1861	0.202
13.07		7	1931	0.190
13.08		8	1960	0.201
13.09		9	1893	0.192
13.10		10	2070	0.189
13.11		11	1947	0.216
13.12		12	2026	0.194
14.01		1	1915	0.207
14.02		2	1816	0.172
14.03		3	2026	0.187
14.04		4	2075	0.193
14.05		5	1969	0.198
14.06		6	1849	0.206
14.07		7	1918	0.209
14.08		8	1866	0.214
14.09		9	1714	0.235
14.10		10	1820	0.221
14.11		11	422	0.358
14.12		12	1930	0.216
			İ	

alpha

- During 2013, in months when Total is showing upward trend, proportion going to Houston shows no trend.
- In latter half of 2014, Total shows downtrend, while proportion to Houston uptrend.
- TrendFlagger calls attention to these "opposites;" that calls for explanation.

			Total	Houston/Total
	UpTrend		42.81	0.005
	DownTrend		42.81	0.005
Year.Month	AveragingWindow		5	5
13.01		1	1801	0.198778456
13.02		2	1644	0.196
13.03		3	1874	0.191
13.04		4	1818	0.187
13.05		5	1983	0.184
13.06		6	1861	0.202
13.07		7	1931	0.190
13.08		8	1960	0.201
13.09		9	1893	0.192
13.10	1	lo	2070	0.189
13.11	1	1	1947	0.216
13.12	1	12	2026	0.194
14.01		1	1915	0.207
14.02		2	1816	0.172
14.03		3	2026	0.187
14.04		4	2075	0.193
14.05		5	1969	0.198
14.06		6	1849	0.206
14.07		7	1918	0.209
14.08		8	1866	0.214
14.09		9	1714	0.235
14.10	1	lo	1820	0.221
14.11	1	1	422	0.358
14.12	1	12	1930	0.216
		ľ		
		Ē		
		Ī	alpha	0.3

-				Total	Total_80s	Total_81	Hous	Hous_80s	Hous_81
•	AIS		UpTrend	25.01	8.47	1.61	12.49	6.44	0.99
	code		DownTrend	25.01	8.47	1.61	12.49	6.44	0.99
		Year.Month	AveragingWindow	3	3	3	3	3	3
	xy for	13.01	1	1801	528	46	358	163	· · · · · · · · · · · · · · · · · · ·
	vessel	13.02 13.03	2	1644 1874	488 538	44 53	323 358	149 150	13 15
	• • • • • • • • • •	13.04		1874	541	52	330	156	
•	$\mathbf{X} =$	13.05		1983	567	57	365	176	13
	vessel	13.06		1861	527	46	375	155	
	VC55CI	13.07		1931	561	49	366	162	17
	type, y	13.08	8	1960	566	61	393	170	24
		13.09	9	1893	553	51	364	163	16
	= cargo	13.10	10	2070	590	50	392	180	15
	type	13.11	11	1947	586	45	421	217	19
		13.12	12	2026	626	57	393	195	15
•	$\mathbf{x} = 8$	14.01	1	1915	566	57	396	201	20
	for	14.02		1816	512	39	312	138	8
		14.03		2026	575	50	378	175	16
	tanker	14.04		2075	595	56	401	181	22
•	1 —	14.05		1969	568 528	57 39	390	194	20
•	1 =	14.06 14.07		1849 1918	528	47	381 401	172 174	17
	hazard-	14.07		1866	564	39	399	1/4	16
		14.00		1714	483	39	402	173	10
	ous	14.10		1820	488	40	403	189	19
	cargo	14.11	11	422	154	18	151	74	12
		14.12	12	1930	580	50	417	198	28
		alpha	0.4					• for Advanced	

Center for Advanced Data Analysis A Department of Homeland Security Center of Excellence

•	Total			Total	Total_80s	Total_81	Hous	Hous_80s	Hous_81
	hazardous		UpTrend	25.01	8.47	1.61	12.4	9 6.44	0.99
			DownTrend	25.01	8.47	1.61	12.4	9 6.44	0.99
	tanker	Year.Month	AveragingWindow	3	3	3		3 3	3
	traffic can	13.01	1		528	46	35		
	have	13.02	2	1644	488	44	32	_	
	opposite	13.03	3	1874	538	53	35		
	trend from	13.04	4	1818	541	52	34		
	Total	13.05	5	1983	567	57	36	_	
	traffic	13.06	6	1861	527	46	37		
		13.07	7	1931	561	49	36		
•	Total	13.08	8	1960	566	61	39		
	tanker	13.09	9	1893	553	51	36		
	traffic	13.10	10	2070	590	50	39		
	never has	13.11	11	1947	586	45	42	_	
	opposite	13.12	12	2026	626	57	39		
	trend from	14.01	1	1915	566	57	39		. 20
		14.02	2	1816	512	39	31		
	Total	14.03	3	2026	575	50	37		
	traffic	14.04	4	2075	595	56	40	_	. 22
•	No	14.05	5	1969	568	57	39	_	
	opposite	14.06	6	1849	528	39	38		
	trends in	14.07	7	1918	561	47	40		
		14.08	8	1866	564	39	39		
	Total and	14.09	9	1714	483	39	40		
	hazardous	14.10	10	1820	488	40	40	3 189	19
	heading to	14.11	11	422	154	18	15		
	Houston	14.12	12	1930	580	50	41	7 198	28
		alpha	0.4						

A Department of Homeland Security Center of Excellence

Learning from Anomalies

- Look for situations where expect similar trends.
- Consider Total arrivals in Texas City in 2013 vs. 2014.
- Nov. 2013 upward, Nov. 2014 downward.
- Similar anomaly in same month if consider all tankers coming to Texas City.
- This led us to observe that Total and tanker traffic to Texas City is MUCH lower in Nov. 2014 than Nov. 2013. Why?

		Texas City 2013	Texas City 2014
	UpTrend	3.5	3.5
	DownTrend	3.5	3.5
Month	AveragingWindow	4	4
1		32	27
2		22	21
3		26	26
4		25	21
5		19	18
6		21	21
7		26	26
8		25	25
9		31	31
10		31	21
11		38	11
12		33	23

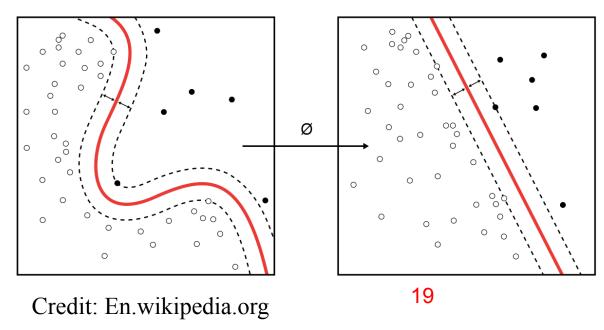
Texas City 80sTexas City 80s20132014

		UpTrend	2	2
		DownTrend	2	2
M	onth	AveragingWindow	3	3
1			25	17
2			10	11
3			20	17
4			20	11
5			11	13
6			13	13
7			17	22
8			15	16
9			19	23
10			20	16
11			29	9
12			25	15

								00	
				Total	Total_80s	Total_81	Hous	Hous_80s	Hous_81
•	This led		UpTrend	25.01	8.47	1.61	12.4	9 6.44	
	ug to		DownTrend	25.01	8.47	1.61	12.4		0.99
	us to	Year.Month	AveragingWindow	3	3	3		3 3	3
	look at	13.01		1801	528	46			
	the	13.02 13.03		1644 1874	488 538	44	32		15
		13.04		1818	541	52	34		
	Total	13.05		1983	567	57	36		
	and the	13.06	6	1861	527	46	37	5 155	19
		13.07	7	1931	561	49	36	6 162	17
	Houston	13.08	8	1960	566	61	39	3 170	24
	ontriog	13.09	9	1893	553	51	36	4 163	16
	entries	13.10		2070	590	50			
	for Nov.	13.11		1947	586	45			19
		13.12		2026	626	57	39		15
	2014.	14.01		1915	566	57	39		20
•	See they	14.02		1816	512	39			8
-	e e	14.03		2026	575	50			16
	too are	14.04		2075	595	56	40	_	22
	MUCH	14.05		1969	568	57	39	_	
	WIUCII	14.06 14.07		1849 1918	528 561	39 47	38		
	lower	14.07		1918	561	39	<u>+</u>		15
		14.08		1714	483	39			
	than	14.00		1/14	488	40			
	other	14.11		422	154	18			
		14.12		1930	580	50	41	-	
	entries.								
		alpha	0.4						
							l'ant	er for Advanced	Data Analysis

Center for Advanced Data Analysis A Department of Homeland Security Center of Excellence

- This led us to discover that magnitude of AIS data for Nov. 2014 • was lower for various zones.
- We found that there was an AIS tracking system update in Nov. • 2014.
- That probably makes all Nov. 2014 data suspect. •
- TrendFlagger led us to discover this problem. •


Credit: En.wikipedia.org

A Department of Homeland Security Center of Exe

Looking for Explanations

- When TrendFlagger highlights an upward or downward trend, we want to look further.
- One approach: statistical tests, e.g., multiple time series exhibiting trends.
- Trend flagging will require development of new statistical methods to provide early warning of changed shipping patterns.
- E.g., variants of sequential change detection methods.
- Alternatively, we can look for "explanations" for changes in data.

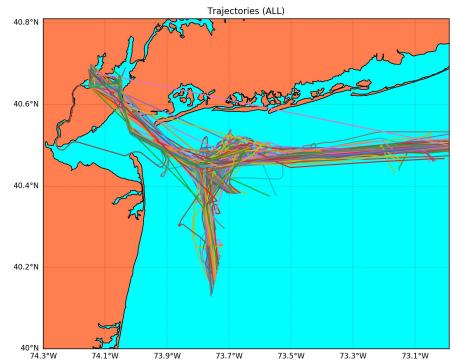
Looking for Explanations

- See uptrend in Zone 15 Total in April 2014. Why?
 We found that in late
- We found that in late March 2014, there was an oil spill in the region.
- Likely that some vessels
 were delayed, leading to
 uptrend in April that wasn't
 seasonal.
- See downtrend in Total in June 2014. Why?
- We found that in May 2014, there was major flooding in region.
 14.02 14.03 14.03 14.03 14.04 14.05 1
- Likely impacted downtrend ¹⁴ in vessel traffic into June. ¹⁴
- TrendFlagger led to need to 14.0 understand what happened.

			Total
		UpTrend	108
		DownTrend	108
	Year.Month	WindowSize	3
13.01			1801
13.02			1644
13.03			1874
13.04			1818
13.05			1983
13.06			1861
13.07			1931
13.08			1960
13.09			1893
13.10			2070
13.11			1947
13.12			2026
14.01			1915
14.02			1816
14.03			2026
14.04			2075
14.05			1969
14.06			1849
14.07			1918
14.08			1866
14.09			1714
14.10			1820

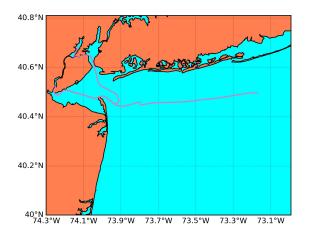
Total

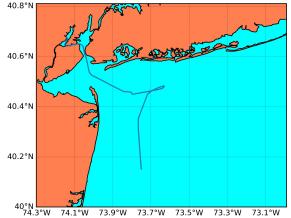
Aside: i-Group and i-Detect


- In another project, we are developing two statistical tools that use AIS data that can help with anomalies.
 - i-Group (individualized group learning to group similar vessels)
 - i-Detect (individualized detection to identify vessels deviating from the normal in their group)
- These methods give early warning of abnormalities for vessels.
- i-Group focuses on each individual vessel and forms one individualized group for each vessel, by locating vessels that share similar characteristics.
- **i-Detect**: detect outliers based on a vessel's own individualized baseline distribution

21

Aside: i-Group and i-Detect


- We focused on 534 vessels/ voyages (tankers, cargo vessels) arriving in Port of Newark between July and November 2014
- Investigated behaviors starting from crossing the 12 nautical mile US territorial sea (TS) boundary to arrival
- The trajectory, a functional feature, is used as the standard feature for i-Group
- Outliers in duration (time spent from TS boundary to port) are detected (based on the two standard deviation rule)



Aside: i-Group and i-Detect

- Looked for outliers that have abnormal time duration (from territorial sea boundary to Port) compared to vessels in their clique (vessels with similar trajectory)
- Outliers were detected by the 2 standard deviation rule: Vessels in a clique with time duration at least two s.d. from the clique mean
- 95 detected outliers: (a) 50 vessels had a prior dock before the Port of Newark (left); (b) 18 vessels were anchored somewhere outside the port for an extremely long time (middle); (c) the other 27 vessels were traveling too fast/slow compared with their cliques (right)

Future Directions

- Allow for monthly variations in traffic patterns. Automatically compare data in same month in earlier year.
- TrendFlagger weighs all data points equally. Can we have more recent data have greater influence on conclusions?
 - Compare Exponential Moving Average
- Choice of parameters in TrendFlagger should be primarily dependent upon experience and goals of the user. But could there be both theory and heuristics for parameter choice? (E.g., s/\sqrt{n} or $\alpha s/\sqrt{n}$)
- Trend flagging will require development of new statistical methods including variants of sequential change point detection methods and streaming algorithms suited to particular spatio-temporal characteristics relevant to the application area being studied.

Center for Advanced Data Analysis A Department of Homeland Security Center of Excellence

Thanks to my Collaborators and Co-Authors

Dennis Egan Paul Kantor Joonhee Lee Christie Nelson Helen Roberts

Trend Flagging to Aid Resource Allocation Decisions

For More Information:

Fred Roberts froberts@dimacs.rutgers.edu

CCICADA Center www.ccicada.org

