# "Atmospheric pollution"

Controversy and of public policy analytics in terms of risks prevention

#### Myriam MERAD, Dominique GUIONNET, Laurence ROUIL

Paris, december 15<sup>th</sup> 2015

# Scope

- **I- Problem**
- **II-** State of Art
- **III- Methodology**
- **IV- Findings**

# I- The problem

## The starting point

#### **Topic "Atmospheric pollution":**

We have the impression that things are going better
But

The public opinion seems to think the contrary »

#### **Another underlying question**

« assessment of public policies in terms of risk prevention of atmospheric pollution »

#### **Questions**

#### Improvement:

- For and according to who?
- Why and according to what? What are the criteria?
- Starting from when?
- On all the territory or on some parts of the territory?
- Is that sustainable?
- What is an improvement?
- How can we measure or estimate it?

#### Public opinion :

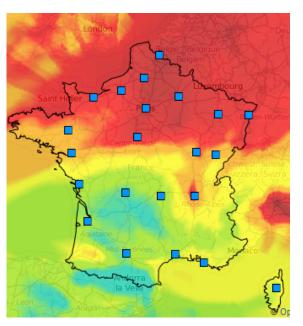
- What does it mean? How do we assess this public opinion?
- What are their criteria to assess an improvement or a degradation?
- How this public opinion is framed?
- Why is there a gap in perception between some actors and the public opinion?

#### State of Art

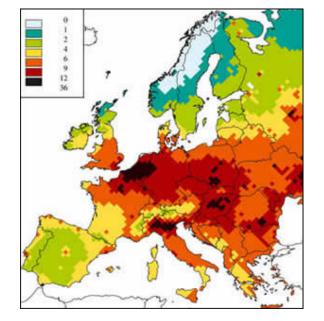
What can we say about the different existing studies?



# Inventories and balance sheets: concentration and emissions

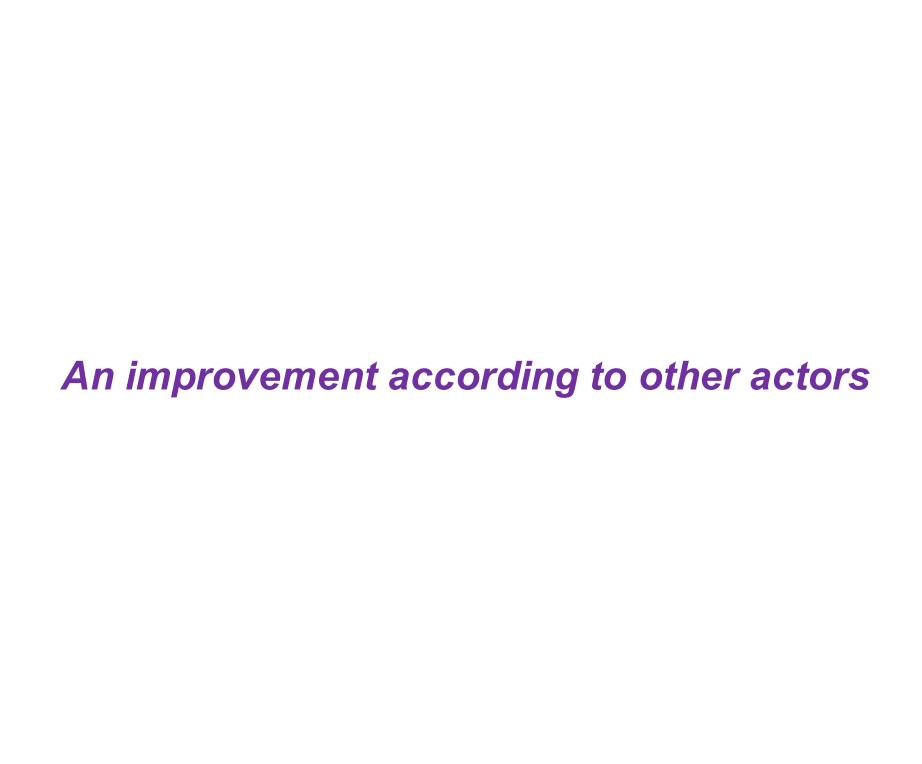

#### PM<sub>10</sub>

#### EMISSIONS DANS L'AIR EN FRANCE METROPOLITAINE


Source CITEPA / format SECTEN - avril 2014 secten 90-xx-d.xls 1990 1995 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Gg = kt 2012 Chimie 2,7 2,5 2,2 1,9 1,7 2,0 2,3 2,7 2,5 2,5 1,9 1,4 1,2 1,2 1,1 Construction 43.0 38,4 41,5 42,7 42,9 48,1 38,6 37,4 30,2 24,9 27,7 46,4 32,9 25,8 26,8 Biens d'équipements, matériels de 0,4 0,4 0,3 0,2 0,2 0,2 0,2 0,2 0,1 0,1 0,1 0,1 0,1 0,1 0,1 transport Agro-alimentaire 5,6 5,7 5,6 5,1 5,4 4,7 5,2 5,4 6,1 6,6 6,4 6,8 6,7 6,8 6,8 Métallurgie des métaux ferreux 8,5 25,7 18,6 13,7 11,6 10,4 8,6 7,1 8,2 7,2 7,0 6,0 7,2 6,4 5,4 Métallurgie des métaux non-ferreux 2,8 1,4 1,4 1,3 1,2 0,8 0,6 0,8 0,7 0,6 0,4 0,3 0,3 0,3 0,4 Minéraux non-métalliques, matériaux 28,4 23,3 21,1 20,2 19,4 19,4 19,6 19,4 19,7 20,1 19,2 15,9 15,3 15,3 15,7 de construction Papier, carton 1,7 2,0 1,0 0,9 0,9 1,1 1,8 1,9 1,8 1,7 1,5 1,3 1,5 1,4 1,4 Traitement des déchets 1,7 1,5 0,6 0,4 0,3 0,2 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 Autres industries manufacturières 15,6 15,7 17,1 16,9 17,0 16,8 17,2 17,3 17,0 17,3 18,0 18,9 18,8 18,6 19,5 109,4 104,3 101,3 99,3 101,8 102,0 93,5 93,6 89,3 85,0 75,9 76,9 78,1 Industrie manufacturière 127,5 76,9

# **Maps: simulations and indicators**

#### **Concentration maps**




Air quality maps (Atmo, Citair, ...)





μg/m³

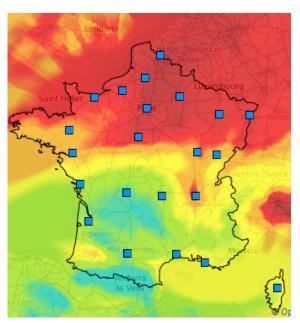


# Differents categories of informations (1/4)

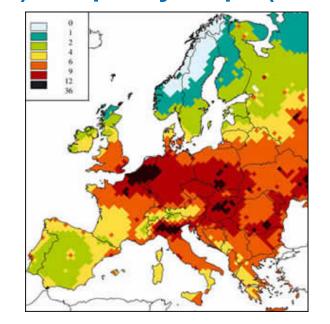
#### 1) Emission sources






2) Effects –observable consequences: during pollution peaks and episode



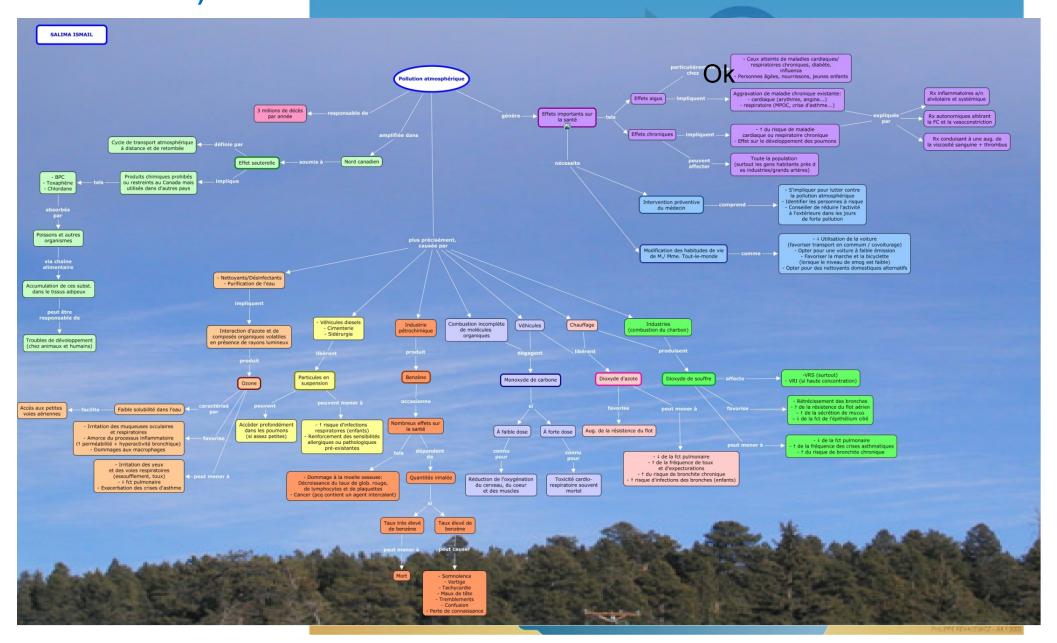



# Different categories of information (2/4)

#### 3) Concentration Maps



3<sup>bis</sup>) Air quality maps (Atmo, Citair, ...)






O₃ µg/m³

#### Different categories of information (3/4)

4) Explaining schemes (phenomenology, causes-consequences, effects)



# Different categories of information (4/4)

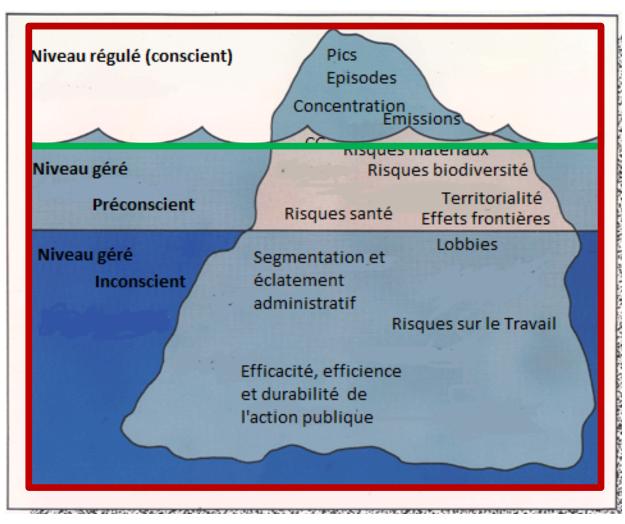
#### 5) Inventories (ex. CITEPA)

 $PM_{10}$ 

#### **EMISSIONS DANS L'AIR EN FRANCE METROPOLITAINE**

| Source CITEPA / format SECTEN - avril 2014 secten_90-xx-d.xls |       |       |       |       |      |       |       |      |      |      |      |      |      |      |      |
|---------------------------------------------------------------|-------|-------|-------|-------|------|-------|-------|------|------|------|------|------|------|------|------|
| Gg = kt                                                       | 1990  | 1995  | 2000  | 2001  | 2002 | 2003  | 2004  | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
| Chimie                                                        | 2,7   | 2,5   | 2,2   | 1,9   | 1,7  | 2,0   | 2,3   | 2,7  | 2,5  | 2,5  | 1,9  | 1,4  | 1,2  | 1,2  | 1,1  |
| Construction                                                  | 43,0  | 38,4  | 41,5  | 42,7  | 42,9 | 48,1  | 46,4  | 38,6 | 37,4 | 32,9 | 30,2 | 24,9 | 25,8 | 26,8 | 27,7 |
| Biens d'équipements, matériels de<br>transport                | 0,4   | 0,4   | 0,3   | 0,2   | 0,2  | 0,2   | 0,2   | 0,2  | 0,1  | 0,1  | 0,1  | 0,1  | 0,1  | 0,1  | 0,1  |
| Agro-alimentaire                                              | 5,6   | 5,7   | 5,6   | 5,1   | 5,4  | 4,7   | 5,2   | 5,4  | 6,1  | 6,6  | 6,4  | 6,8  | 6,7  | 6,8  | 6,8  |
| Métallurgie des métaux ferreux                                | 25,7  | 18,6  | 13,7  | 11,6  | 10,4 | 8,5   | 8,6   | 7,1  | 8,2  | 7,2  | 7,0  | 6,0  | 7,2  | 6,4  | 5,4  |
| Métallurgie des métaux non-ferreux                            | 2,8   | 1,4   | 1,4   | 1,3   | 1,2  | 0,8   | 0,6   | 0,8  | 0,7  | 0,6  | 0,4  | 0,3  | 0,3  | 0,3  | 0,4  |
| Minéraux non-métalliques, matériaux<br>de construction        | 28,4  | 23,3  | 21,1  | 20,2  | 19,4 | 19,4  | 19,6  | 19,4 | 19,7 | 20,1 | 19,2 | 15,9 | 15,3 | 15,3 | 15,7 |
| Papier, carton                                                | 1,7   | 2,0   | 1,0   | 0,9   | 0,9  | 1,1   | 1,8   | 1,9  | 1,8  | 1,7  | 1,5  | 1,3  | 1,5  | 1,4  | 1,4  |
| Traitement des déchets                                        | 1,7   | 1,5   | 0,6   | 0,4   | 0,3  | 0,2   | 0,1   | 0,1  | 0,1  | 0,1  | 0,1  | 0,1  | 0,1  | 0,1  | 0,1  |
| Autres industries manufacturières                             | 15,6  | 15,7  | 17,1  | 16,9  | 17,0 | 16,8  | 17,2  | 17,3 | 17,0 | 17,3 | 18,0 | 18,9 | 18,8 | 18,6 | 19,5 |
| Industrie manufacturière                                      | 127,5 | 109,4 | 104,3 | 101,3 | 99,3 | 101,8 | 102,0 | 93,5 | 93,6 | 89,3 | 85,0 | 75,9 | 76,9 | 76,9 | 78,1 |




# How individuals and groups get their information AP?

|            |                               | Sense                                                                          |       |         |       |  |  |  |  |
|------------|-------------------------------|--------------------------------------------------------------------------------|-------|---------|-------|--|--|--|--|
|            |                               | Sight                                                                          | Smell | Hearing | Touch |  |  |  |  |
| ce         | Direct (without intermediate) | Interviews and investigations                                                  |       |         |       |  |  |  |  |
| Experience | Direct (collective)           | Medias (news, scientific reports, social media,) Interviews and investigations |       |         |       |  |  |  |  |
| EX         | Telling-stories               | Medias (news, scientific reports, social media,) Interviews and investigations |       |         |       |  |  |  |  |

#### Why is there a gap in perception?

#### Risk perception and assessment of public policies

#### Things are going better



Things are going worse



# II- The state of Art

#### State of Art- the so-called « societal » factor

Sociology of controversies and alerts

Risks perception (cognition, context, etc.)

Risks gouvernance
(organization, etc.)

4 Policy analysis

(Regulatory Impact Assessment, Reseach impacts analysis, etc.)

Analysis of media area

(linguistic and semantic analysis, etc.)

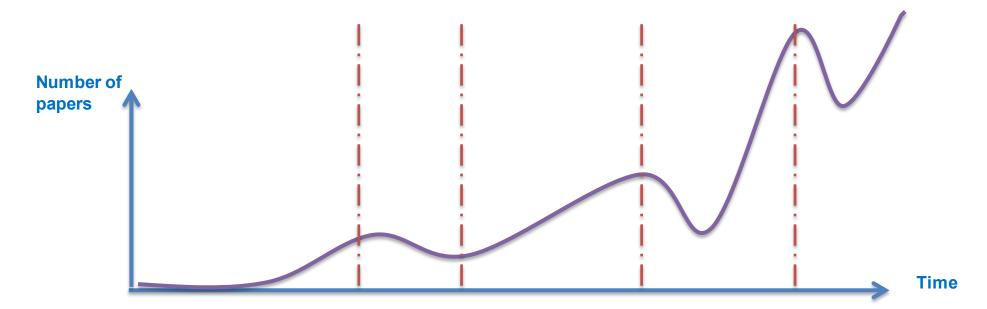
Sharing solution in practice

(acceptability, Cooping, RSO, etc.)

**Pollution peaks** 

**7** General

**Diachronic view** 




## Methodology (1/4)

#### A. Following the dynamic of the issue « Atmospheric pollution »

- In France in french language
- In the world in english language
- 1) From 1900 now
- 2) Within the social media:each 100 days
- 3) What we observe:
  - What are the main actors?
  - What are the subjects that emerge?
  - What are the arguments?
  - What are the main controversies and uncertainties? On what topics?
  - What are the different territories?
  - Are there conflicts?

**Objective:** trajectory and a dynamic of the case within the public domain



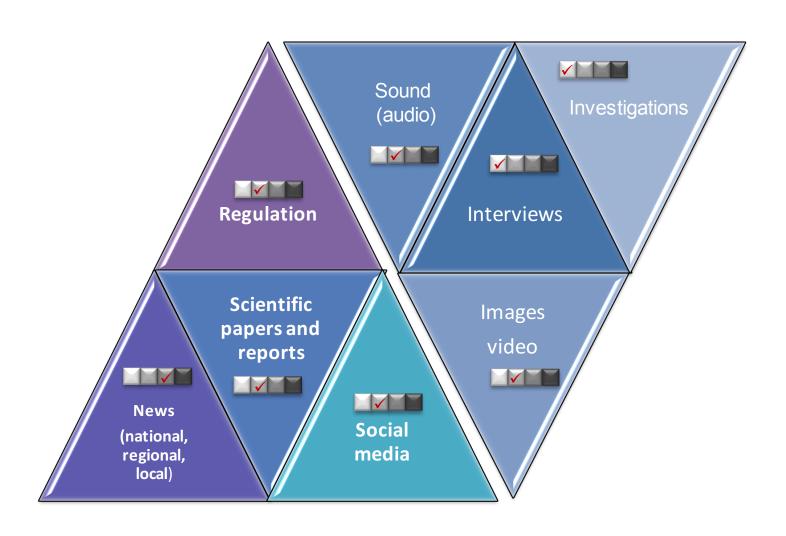
#### Methodology (2/4)

# B. Analysis and diagnosis of majors events and catastrophes

- In France and around the world from 1900 until now
- Events or catastrophes: peaks and pollution episodes, smog, acid rains
- Majors: scandals, in terms of consequences (health and environment), in terms of media impact and treatment, in terms of influence on regulation, trials, scientific, ...

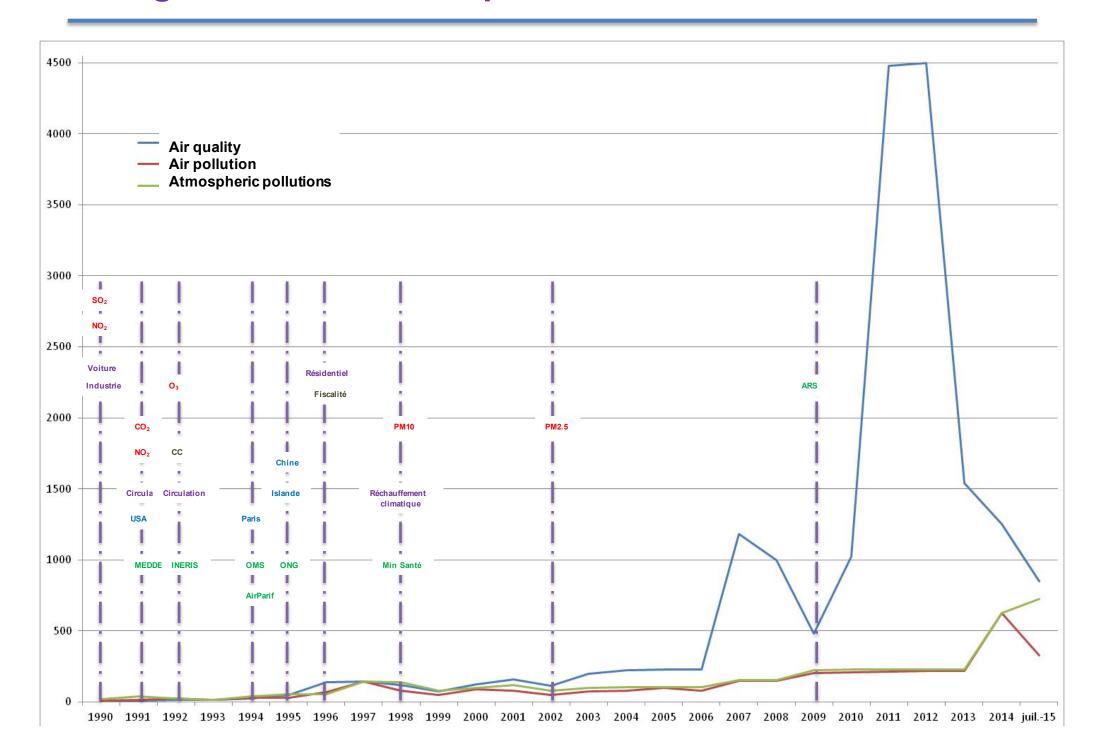
#### **Objective:**

Identify root causes of success and failure of public policies

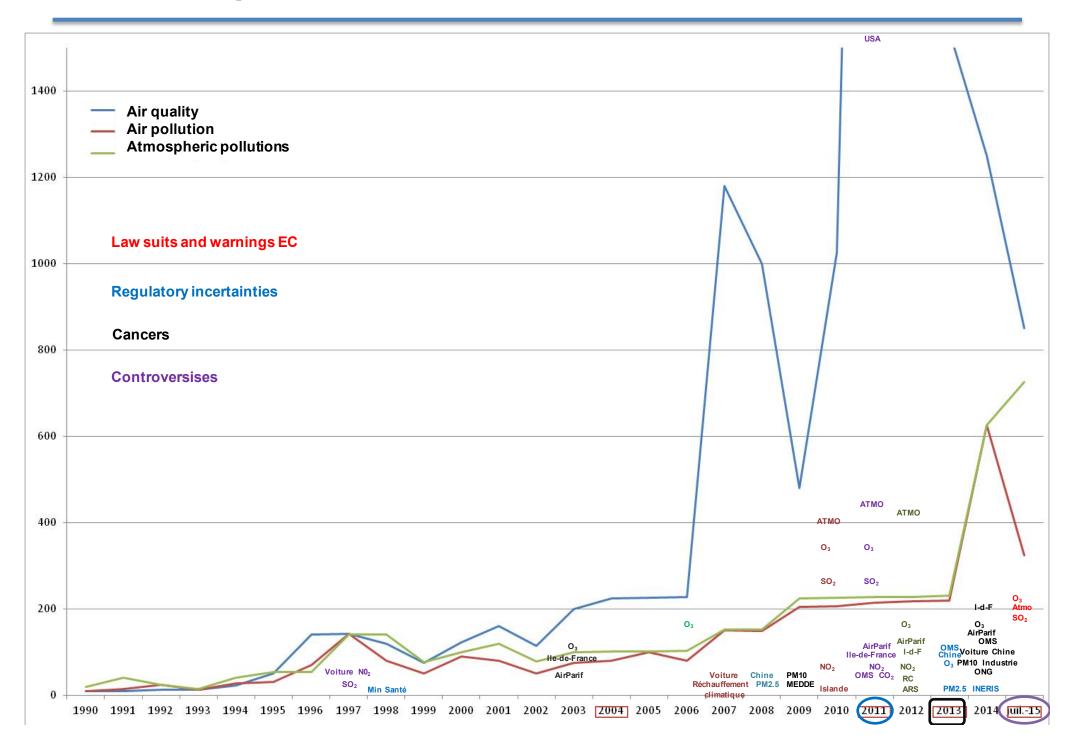

# Methodology (3/3)

- C. Emergence of the regulations and norms
- D. Interviews and investigation

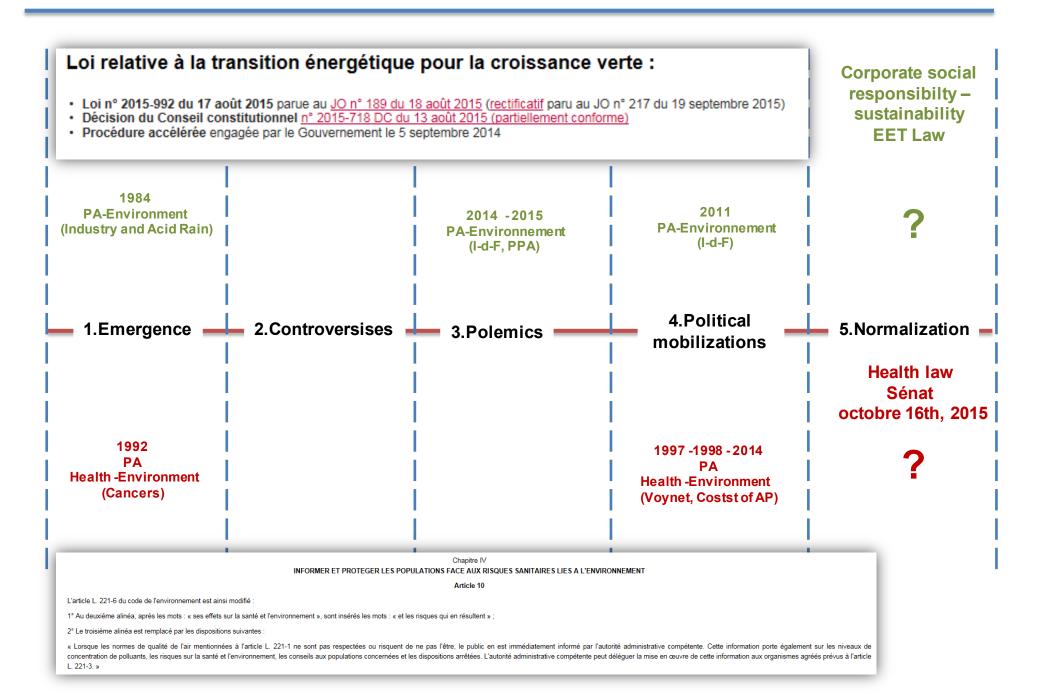
# **Informations**


# How can we investigate the "societal factor"?

Progress level




# **IV- Findings**


## **Emergence of different topics**



## Main hot topics



#### What should we think about all that?



# Main conclusions

#### Some conclusions

#### The gap in perception Experts- Regulators- Public opinion

- •a hyper- mediatization of air quality indicators focusing on pollution peaks (urgency syndrome),
- •a transformation in the way we deal with AP case: environmental → health and environment,
- •politico-administrative « scramble » in Paris Region. Decredibilization of the administrative, scientific and political governance of AP.

#### Public policies:

- •Re-frame the link between the different administrations and Scientifics communities in terms of AP risk prevention : Environment-Health-Industry.
- From emergency management to risks prevention management