
 

 

Highly-Functional Highly-Scalable      

Search on Encrypted Data 

 

Hugo Krawczyk, IBM 

 

Joint work with IBM-UCI teams:                                                

David Cash, Sky Faber, Joseph Jaeger, Stas Jarecki, Charanjit 

Jutla, Quan Nguyen, Marcel Rosu, Michael Steiner 

 

DIMACS Big Data Workshop – 12/15/2015 

 

 

1 



Your data is in the cloud. 
 

Do you know where your data is? Do You? 

2 



The Data-in-the-Cloud Conundrum 

 Your data in the cloud: email, backups, financial/medical info, etc. 

 Data is visible to the cloud and to anyone with access (legitimate or not) 

 At best, data is encrypted “at rest” with the server’s keys and decrypted upon use 

 

 Q: Why not encrypt it with your (data owner) own keys? 

 A: Utility, e.g. allow the cloud to search the data (e.g. gmail) 

 Can we keep the data encrypted and search it too? 

 

 

 

3 

Can I eat the cake 
and have it too? 

© Webweaver.nu  



SSE: Searchable Symmetric Encryption 

 Owner outsources data to the cloud: Pre-processes data,  stores the 

processed and encrypted data at the cloud server  

 Keeps a small state (e.g. a cryptographic key) 

 Later, sends encrypted queries to be searched by the server  

 e.g. return all emails with Alice as Recipient, not sent by Bob,  and containing    
at least two of the words {searchable, symmetric, encryption} 

 Goal: Server returns the encrypted matching documents w/o learning 

the plaintext query or plaintext data 

 Some forms of statistical leakage allowed:  data access patterns (e.g. repeated 

retrieval, size info), query patterns (e.g., repeated queries),  etc. 

 Plaintext data/queries never directly exposed, but statistical inference possible 

 Protects against break-ins, cloud insiders, even “surveillance attacks” 

4 



ENCowner(DB) 

5 

 

The cloud cannot disclose your data...    not even at gun point! 

With SSE… 



SSE before 2013 

 Generic tools: FHE, ORAM, PIR  

 very expensive,  

 great* security  

 *assumes all  raw data is ORAM-encrypted, o/w leakage via access patterns 

 

 Deterministic + order preserving encryption: e.g. CryptDB [PRZB’11] 

 Practical but significant leakage (see Seny Kamara’s talk) 

 

6 



Deterministic and order preserving 

 

7 

Name Lastname Age 

Elaine Samuels 24 

Mary  Stein 37 

Jim  Stein 81 

John Sommers 3 

Mary Williams 17 

John Garcia 43 

John Gould 52 

Name Lastname  Age 

Ge5$#u Q*6sh# 223 

E89(%y  2@#3Br 340 

2Tr^#7  2@#3Br 
 

736 

qM@9*h gYv6%t 34 

E89(%y  X%3oL7 160 

qM@9*h wnM7#1 308 

qM@9*h 8vy8$Z 475 



SSE before 2013 

 Generic tools: FHE, ORAM, PIR  

 very expensive,  

 great* security  

 *assumes all  raw data is ORAM-encrypted, o/w leakage via access patterns 

 

 Deterministic + order preserving encryption: e.g. CryptDB [PRZB’11] 

 Practical but significant leakage (see Seny Kamara’s talk) 

 

 Name of the game: Security-Functionality-Performance 

 

8 

Tradeoffs 



SSE before 2013 (cont.) 

 Dedicated SSE solutions:  

 Single-Keyword Search (SKS)  [SWP’00, Goh’03, CGKO’06, ChaKam’10, …] 

 “privacy optimal“ (if we don’t count encrypted query results as leakage) 

 Conjunctions: Very little work 

 naive (n single-keyword searches),  

 GSW’04: structured-data, LINEAR in DB, communication-pairings tradeoff 

 Practicality limitations 

 single-keyword only support, limited support for dynamic data 

 non-scalable design (esp. adaptive solutions), no I/O support for large DBs 

 little experimentation/prototyping 

 

 
9 



This work: Extends SSE in 4 dimensions 

1. Functionality (well beyond single-keyword search): 

□ Conjunctions       □ General Boolean expressions (on keywords)                   

□ Range queries      □ Substring/wildcard queries, phrase queries 

Search on structured data (relational DBs) as well as free text 

2. Scalability: 

 terabyte-scale DB,  millions documents/records,                                          

billions indexed document-keyword pairs   

 Dynamic data 

 Validated implementation, tested by a third party (IARPA, Lincoln Labs) 

3. Provability:  “imperfect security” but with provable leakage profiles 

(establishing upper bounds on leakage), well-defined adversarial models 

 

 

10 



This work: extends SSE in 4 dimensions 

4.    New application settings and trust models 

 Multiple clients: Data owner D outsources Encrypted DB to cloud;     

clients run queries at the cloud but only for queries authorized by D 

 Leakage to cloud as in basic SSE, client only learns documents matching 

authorized queries (policy-based authorization enforced by data owner) 

 Blind authorization: As above but authorizer enforces policy without 

learning the queried values (we call it “Outsourced Symmetric PIR”) 

 Assumes non-collusion between cloud and data owner 

 

 Note: multi-reader, single-writer system (no public key encryption) 

11 



Example Applications 

 Example: Hospital outsources DB, provides access to clients   

(doctors, administrators, insurance companies, etc.) 

 Policy-based authorization on a client/query-basis 

 Hospital doesn’t need to learn the query, only (blindly) enforce policy 

 Good for security, privacy, regulations 

 Warrant scenario (extended 4-party setting) 

 Judge provides warrant for a client C (e.g. FBI) to query a DB  

 DB owner enables access but only to queries allowed by judge 

 DB owner does not learn warrant content or queries 

 Client C (e.g., FBI) gets the matching documents for the allowed queries 

and  nothing else 

12 

Obama’s 3rd Party 
Solution (phone data) 



Large-Scale & Functional Implementation 

 Support for arbitrary Boolean queries on all 3 (extended) SSE models 

 Validated on synthetic census data: 10Terabytes, 100 million records,                  

> 100,000,000,000=1011 indexed record-keyword pairs ! 

 Equivalent to a DB with one record for each American household and 1000 

keywords  in each record and any boolean query (including textual fields) 

 Smaller DB’s: Enron email repository, ClueWeb (>> English Wikipedia) 

 Support for range queries, substring/wildcards, phrase queries (5x perf. cost) 

 Dynamic data: Supports additions, deletions and modifications of records 

 

 
13 



Scalability 

 Preprocessing scales linearly w/ DB size (minutes-days for above DBs) 

 Careful data structure, crypto and I/O optimizations 

 Can benefit on any improvement on single-keyword search 

 Search proportional to # documents matching the least frequent 

term: w1 Λ B(w2,…, wn) 

 Single round to retrieve matching document indexes  (tokens from client 

to server, matching indices back; retrieve encrypted documents) 

 Query response time: Competitive w/ plaintext queries on indexed DB 

 

14 

4 seconds:  fname='CHARLIE' AND sex='Female' AND                                                

          NOT (state='NY' OR state='MA' OR state='PA' OR state='NJ)              

on 100M records/22Billion index entries US-Census DB 



Crypto Design-Engineering Synergy 

 Major effort to build I/O-friendly data structures  

 Critical decision: Do not design for RAM-resident data structures          

(it severely limits scalability) 

 Challenge: need to avoid random access (e.g., avoid Bloom filters on disk) 

 Need randomized data structures to reduce leakage and need 
structured ones to improve I/O performance (locality of access) 

 Cryptographic index based on elliptic curve cryptography      

(optimized for very fast exponentiation, esp. with same-base)                        

Typically: I/O and network latency dominate cost   

 On a midsize storage system: ~300 IOPS (I/O Operations Per Second) 

 ~1000 expon’s per random I/O access (133 w/o same-base optimization) 

 Data encryption uses regular symmetric crypto (e.g., AES) 
15 

500,000/sec, 8 cores, same-
base opt , 100-1000 per IO  



Security: The challenge of being imperfect 

 
 Good news: Semantic security for data; no deterministic or order 

preserving data encryption 

 But: Security-Performance trade-offs    Leakage to server  

 Leakage in the form of access patterns to retrieved data and queries 

 Data is encrypted but server can see intersections b/w query results (e.g. 
identify popular document, intersection b/w results of two ranges, etc.) 

 Server learns query function (not values/attrib’s); identifies repeated query  

 Additional specific leakage (more complex functions of DB and query history): 

 E.g. we leak |Doc(w1)| and in query w1 Λ w2 Λ…Λ wn  we leak |Doc(w1 Λ wi)| 

 E.g. the server learns if two queries have the same w1 (other terms are hidden) 

 Leads to statistical inference based on side information on data 

(effect  depends on application), masking techniques may help 

 
16 



Security: The challenge of being imperfect 

 
 Security proofs: Formal model and precise provable leakage profile 

 Leakage profile: provides upper bounds on what’s learned by the  attacker   

 Security modeling and definitions follow simulation paradigm [CGKO, CK] 

 Syntactic leakage vs “semantic leakage”  

 Need to assess on an application basis and relative to a-priori knowledge  

 For example, formal leakage proven even if attacker can choose data and 
queries – but in practice, in this case, semantic leakage will be substantial 

 Yet, we expect in many cases to provide meaningful (if imperfect) security    
(in particular, relative to property-preserving solutions) 

 

 Detour: Is CryptDB sufficient in practice? Who is the attacker?    
Enough to not being the weakest link?  What do regulations say? 

 17 



Security Formalism (adversarial server) 

 Based on the simulation-based definitions given for SKS [CGKO,CK].  

 There is an attacker E (acting as the server), a simulator Sim and a 

leakage function L(DB, queries): 

 Real: Attacker E chooses DB and gets the pre-processed encrypted DB, 

then interacts with client on adaptively chosen queries  

 Ideal: Attacker E chooses DB and queries (adaptively),                               

E gets Sim(L(DB)) and Sim(L(DB,queries)) 

A SSE scheme is semantically secure with leakage L if for all 

attackers E,  there is a simulator Sim such that the views of E in 

both experiments are indistinguishable 

 Server learns nothing beyond the specified leakage L even if it knows 

(and even if it chooses adaptively) the plaintext DB and queries 

   
18 



Basic ideas 

 Focus on conjunctions w1,…,wn  (will be extended to Boolean queries)  

1. Choose the least frequent conjunctive term, say w1 (“s-term”),     

find encrypted indexes of documents containing w1  (w/o revealing w1) 

 Pre-computed encrypted index stored at Eddie (part of EDB):                      

∀ w, Enc(w)  Enc(ind1), Enc(ind2), … , Enc(indk) 

2. For each wj and indi, check if wj appears in indi.                 

 Uses an “oracle” that given Enc(ind)  and  Enc(w) says if keyword w 

appears in document ind (without revealing ind or w) 

 Oracle implemented as a function H(ind,w) and a set Hset stored at the 

server of all values H(ind,w) such that w appears in record ind 

 Server computes H(ind,w) jointly (and “non-interactively”) with client; 

server does not learn w or ind (it is encrypted), client learns nothing  

 computation based on DH-based Oblivious PRF  

 

 

19 



Columbia/Bell Labs Solution (Blind Seer) 

 Parallel work: Same IARPA project – papers at [Oakland’14, 15] 

 Elegant solution based on Bloom filter trees with Garbled Yao for 

privacy and authorization 

 Conceptually simpler than ours  

 Uses MPC techniques (Yao) instead of homomorphic operations 

 Less scalable: Bloom filters are inherently random access                   

DB sizes limited by the size of RAM 

 Single client 

 Incomparable leakage (e.g., Bloom filter path vs. w1-related leakage) 

 

20 



Research Questions 

 Leveraging other tools (carefully): MPC, ORAM, homomorphic encryp’n 

 Fundamental limits (leakage-computation tradeoffs), e.g.: 

 leakage from returned ciphertexts (ORAM helps but at significant cost) 

 Frequency of w1 (least frequent term)   (reduction from 3SUM) 

 “Semantic leakage”: Proving formal leakage is nice but how bad is it 

for a given particular application, what forms of masking can help? 

 Can we have a theory to help us reason about it (cf. differential privacy)? 

 A theory of leakage composition? Guidance for masking techniques 

 Attacks welcome!  (Also easier to get accepted to conferences  ) 

 Characterizing privacy-friendly  plaintext search algorithms/data str.  

 A more complete SQL query set (esp. joins) 
21 



Summary 
 Great progress relative to work on single-keyword single-client SSE 

 Rich queries: General Boolean queries (structured data, free text),      

Plus: range, substring, wildcards, phrase, proximity 

 Huge DBs: 10 TB, 100M records, 1011 indexed keyword-document pairs 

 EDB creation linear in DB size, queries competitive with MySQL 

 Single- and Multi-Client models, policy-based delegation of queries 

 Authorization w/o learning query (“Outsourced Symmetric PIR”) 

 Privacy, insider security, surveillance protection, warrant enforcement 

 Imperfect security: Leakage from access- and query-patterns, but 

well defined leakage profiles, and simulation-based adaptive security 

 Many challenging theoretical and engineering questions 

 Going for practice? Don’t forget simplicity, engineering and… proofs! 

 
22 



Join the (multi) Party… 

 An exciting & large space to explore with many many research 
opportunities!  

 … and many practical applications  

 Very timely given cloud migration, explosion of private info, and strong 

attackers (including surveillance, espionage, mafia, and just hackers…) 

 An opportunity for sophisticated crypto in the real world? 

23 



 Crypto’2013: Boolean search, single client    eprint.iacr.org/2013/169 

 CCS’2013: Multi-client, Blind authorization   eprint.iacr.org/2013/720 

 NDSS’2014: Dynamic data, implementation   eprint.iacr.org/2014/853 

 ESORICS 2015: Range, Substrings, Wildcards, Phrases     2015/927 

 

24 

Thanks! 


