
An Information-Theoretic Perspective 
of Consistent Distributed Storage

Viveck R. Cadambe 
 

Pennsylvania State University


Joint with  Prof. Zhiying Wang (UCI) Prof. Nancy Lynch (MIT), Prof. Muriel Medard 
(MIT) and Dr. Peter Musial (EMC Corporation)



Distributed 
Storage 
Systems



•  Failure tolerance, Low storage costs, Fast reads and writes

3	  

Distributed 
Storage 
Systems



•  Failure tolerance, Low storage costs, Fast reads and writes

•  This talk: Consistency

4	  

•  High-level principle: read the “latest” value stored in the system


Distributed 
Storage 
Systems



•  Failure tolerance, Low storage costs, Fast reads and writes

•  This talk: Consistency

5	  

•  High-level principle: read the “latest” value stored in the system

•  Modern key-value stores - Amazon Dynamo DB, Couch DB,
Apache Cassandra DB, Google Spanner, Voldermort DB …..

•  Used for transactions, reservation systems, multi-player gaming, social 

networks, news feeds, distributed computing tasks etc.

Distributed 
Storage 
Systems



6	  

Servers

Write Clients Read Clients
(Decoders)

High level Distributed Storage Model



•  Asynchrony – packets don’t arrive at all the servers simultaneously

•  Distributed nature - nodes do not know which packets have been received by 
other nodes, or if they have failed.

•  Consistency – the reader/decoder needs the latest “possible” version.

7	  

Servers

Write Clients Read Clients
(Decoders)

High level Distributed Storage Model



8	  

Servers

Write Clients Read Clients
(Decoders)

•  Asynchrony, Distributed Nature, Consistency

Analytical understanding of storage costs, latency, is very limited
Replication is used in every commercial solution to provide fault tolerance 

High level Distributed Storage Model



Standard model in 
distributed systems 

theory



Multi-version Coding

Standard model in 
distributed systems 

theory



Multi-version Coding

Toy model for distributed 
storage

Standard model in 
distributed systems 

theory



12	  

The multi-version coding (MVC) problem
[Wang-C, ISIT, Allerton 2014, arxiv 2015]

As the data gets updated

•  Asynchrony: all servers may not simultaneously get the new version of the 
data

•  Distributed nature: each node is unaware of the versions received by the 
other nodes

•  Consistency: A decoder must get the latest possible version of the data 





Ver. 1

Ver. 1Ver. 1
Ver. 1

13	  

The multi-version coding problem

Ver. 1

[Wang-C, ISIT, Allerton 2014, arxiv 2015]



Ver. 1 Ver. 2

Ver. 1Ver. 1Ver. 2
Ver. 1Ver. 2

14	  

The multi-version coding problem

Ver. 1

[Wang-C, ISIT, Allerton 2014, arxiv 2015]



Ver. 1 Ver. 2

Ver. 1Ver. 1Ver. 2
Ver. 1Ver. 2

Ver. 3 Ver. 4 ……	  

15	  

The multi-version coding problem

Ver. 1

[Wang-C, ISIT, Allerton 2014, arxiv 2015]



Ver. 1 Ver. 2

Ver. 1Ver. 1Ver. 2
Ver. 1Ver. 2

Ver. 3 Ver. 4 ……	  

16	  

The multi-version coding problem

Ver. 1

Latest common 
or something 
later: Ver. 2

[Wang-C, ISIT, Allerton 2014, arxiv 2015]



Ver. 1 Ver. 2

Latest common or 
something later: Ver. 

1

Ver. 3 Ver. 4 …
…

17	  

The multi-version coding problem

Ver. 1Ver. 1Ver. 2
Ver. 1Ver. 2 Ver. 1

[Wang-C, ISIT, Allerton 2014, arxiv 2015]



Ver. 1 Ver. 2

Latest common or 
something later: Ver. 

1 or Ver. 2

Ver. 3 Ver. 4 …
…

18	  

The multi-version coding problem

Ver. 1Ver. 1Ver. 2
Ver. 1Ver. 2 Ver. 1

[Wang-C, ISIT, Allerton 2014, arxiv 2015]



19	  

The multi-version coding problem

In general, client connects to c servers, demands the latest common version among v 
versions

Ver. 1 Ver. 2

Latest common or 
something later: Ver. 

1 or Ver. 2

Ver. 3 Ver. 4 …
…

Ver. 1Ver. 1Ver. 2
Ver. 1Ver. 2 Ver. 1

[Wang-C, ISIT, Allerton 2014, arxiv 2015]



20	  

The multi-version coding problem
•  n servers
•  v versions
•  c connectivity

Ver. 
1

Ver. 
2

Latest common or 
something later: 
Ver. 1 or Ver. 2

Ver. 
3

Ver. 
4

……

Ver. 
1

Ver. 
1

Ver. 
2

Ver. 
1

Ver. 
2

Ver. 
1



21	  

The multi-version coding problem
•  n servers
•  v versions
•  c connectivity
•  Goal: decode the latest common version
  among the c servers
•  Minimize the storage cost	  	  
– Worst case, across all “states”
– across all servers 

Ver. 
1

Ver. 
2

Latest common or 
something later: 
Ver. 1 or Ver. 2

Ver. 
3

Ver. 
4

……

Ver. 
1

Ver. 
1

Ver. 
2

Ver. 
1

Ver. 
2

Ver. 
1



Solution 1: Replication

Ver 1 Ver 1 Ver 1 Ver 1Version 1

Version 2

Storage size = size-of-one-version



Ver 1 Ver 1

Ver 2 Ver 2

Version 1

Version 2

Storage size = size-of-one-version

Solution 1: Replication



1/2 1/2 1/2 1/2

1/2 1/2

Version 1

Version 2

Solution 2: MDS code

Separate coding across versions.
Each server stores all the versions received.

c=2

Storage size = (Number of versions / c)*size-of-one-version
     = v/c*size-of-one-version



Storage Cost
Normalized by size-of-

value
Replication 1

Naïve MDS codes

Constructions

Lower bound v
c+v�1

v = Number of Versions

c = Connectivity

v/c
1

dc/ve

�o(size-of-one-version)



Storage Cost
Normalized by size-of-

value
Replication 1

Naïve MDS codes

Constructions

Lower bound v
c+v�1

v = Number of Versions

c = Connectivity

1
dc/ve

v/c

�o(size-of-value)



Achievability	  

. . . . . . . . .

z}|{ z}|{ z}|{

. . .

Partition 1 Partition 2
Partition v

Partition i: Version i is the latest version



Achievability	  

. . . . . . . . .

z}|{ z}|{ z}|{

. . .

Partition 1 Partition 2
Partition v

Partition i: Version i is the latest version

There is at least one partition with dc/ve servers



Achievability	  

. . . . . . . . .

z}|{ z}|{ z}|{

. . .

Partition 1 Partition 2
Partition v

Partition i: Version i is the latest version

There is at least one partition with dc/ve servers

Simple achievable scheme:

Server in partition i stores 1
dc/ve of version i



Converse: v = 2, storage cost & 2
c+1

Start with c servers

Ver 1 Ver 1 Ver 1 Ver 1. . .

. . .



Converse: v = 2, storage cost & 2
c+1

Start with c servers

Ver 1 Ver 1 Ver 1 Ver 1

Ver 2 Ver 2

. . .

. . .

. . .

Propagate version 2 to a minimal set of servers
 such that it is decodable



Ver 1

Ver 2

Virtual server

Versions 1 and 2 decodable from c+1 symbols 

Converse: v = 2, storage cost & 2
c+1

Start with c servers

Ver 1 Ver 1 Ver 1 Ver 1

Ver 2 Ver 2

. . .

. . .

. . .

Propagate version 2 to a minimal set of servers
 such that it is decodable



Ver 1

Ver 2

Virtual server

=) Storage � 2
c+1

Converse: v = 2, storage cost & 2
c+1

Start with c servers

Ver 1 Ver 1 Ver 1 Ver 1

Ver 2 Ver 2

. . .

. . .

. . .

Versions 1 and 2 decodable from c+1 symbols 

Propagate version 2 to a minimal set of servers
 such that it is decodable



Ver 1

Ver 2

Virtual server

=) Storage � 2
c+1

Converse: v = 2, storage cost & 2
c+1

Start with c servers

Ver 1 Ver 1 Ver 1 Ver 1

Ver 2 Ver 2

. . .

. . .

. . .

Versions 1 and 2 decodable from c+1 symbols 

Propagate version 2 to a minimal set of servers
 such that it is decodable

�o(size-of-one-version)



•  Intuition: Find c+v-1 virtual servers, where all v versions 
can be decoded

•  A more intricate puzzle as compared to v=2.

•  Multi-version coding problem related to index-coding/

multiple-unicast/non-multicast network coding
–  More precisely, it is related to pliable index coding

Converse: v > 2

[Brahma-Fragouli 12]



Ver 1

Ver 2 Ver 2

. . .

. . .

. . .

Converse: v=3

Ver 1 Ver 1

Ver 2

Ver 3 Ver 3 Ver 3. . .



Ver 1

Ver 2 Ver 2

. . .

. . .

. . .

Converse: v=3

Ver 1 Ver 1

Ver 2

Ver 3 Ver 3 Ver 3. . .

Ver 2Ver 1 Ver 3

a1

Server a1



Converse: v=3

a1 is the smallest number such that, there is a version x, such that

Version x is decodable, given the symbols of the first a1 servers with all 3 versions

and the messages of versions {1, 2, 3}� {x}



Ver 1

Ver 2 Ver 2

. . .

. . .

. . .

Converse: v=3

Ver 1 Ver 1 Ver 1

Ver 2

Ver 3 Ver 3 Ver 3. . .

Ver 2

Ver 3

. . .

. . .

. . . Ver 3

Ver 1 Ver 3

Ver 1

Ver 1 Ver 3

a1

a2

Server a2Server a1



Converse: v=3

a1 is the smallest number such that, there is a version x, such that

Version x is decodable, given the symbols of the first a1 servers with all 3 versions

and the messages of versions {1, 2, 3}� {x}

a2 is the smallest number such that, there is a version y 2 {1, 2, 3}� {x}, such
that

Version y is decodable, given the symbols of the first a1 � 1 servers with all 3

versions and the remaining a2 � (a1 � 1) servers with versions {1, 2, 3}� {x}

and the message of version {1, 2, 3}� {x, y}



Ver 1

Ver 2 Ver 2

. . .

. . .

. . .

Converse: v=3

Ver 1 Ver 1 Ver 1

Ver 2

Ver 3 Ver 3 Ver 3. . .

Ver 2

Ver 3

. . .

. . .

. . . Ver 3

Ver 1 Ver 3

Ver 1

Ver 1 Ver 3

a1

a2

Server a2Server a1



Ver 1

Ver 2 Ver 2

. . .

. . .

. . .

Converse: v=3

Ver 1 Ver 1 Ver 1

Ver 2

Ver 3 Ver 3 Ver 3. . .

Ver 2

Ver 3

. . .

. . .

. . . Ver 3

Ver 1 Ver 3

Ver 1

Ver 3Ver 3

Ver 1 Ver 3

. . .

. . .

a1

a2 c

Server a2Server a1



Storage Cost
Normalized by size-of-one-

version
Replication 1

Naïve MDS codes

Constructions

Lower bound v
c+v�1

v = Number of Versions

c = Connectivity

1
dc/ve

�o(size-of-one-version)

v/c

Summary

*

*

These bounds can be improved.

See “Multi-version Coding – An Information Theoretic Perspective of Distributed Storage ”, 
Wang-Cadambe, arxiv, 2015

*



Multi-version codes – Main Insights

•  Redundancy required to ensure consistency in an 
asynchronous environment
–  Redundancy increases with the number of parallel versions in the 

system


•  Simple codes are (approximately) optimal
–  Separate coding across versions
–  Random linear codes within versions


•  More insights may be obtained by going beyond worst-
case measures
–  Correlated versions
–  Allow a small fraction of “erroneous” statess

See “Multi-version Coding – An Information Theoretic Perspective of Distributed Storage ”, 
Wang-Cadambe, arxiv, 2015



Multi-version codes – Main Insights

•  Redundancy required to ensure consistency in an 
asynchronous environment
–  Redundancy increases with the number of parallel versions in the 

system


•  Simple codes are (approximately) optimal
–  Separate coding across versions
–  Random linear codes within versions


•  More insights may be obtained by going beyond worst-
case measures
–  Correlated versions
–  Allow a small fraction of “erroneous” statess

See “Multi-version Coding – An Information Theoretic Perspective of Distributed Storage ”, 
Wang-Cadambe, arxiv, 2015



Multi-version Coding

Toy model for distributed 
storage

Standard model in 
distributed systems 

theory



47	  

Servers

Write Clients Read Clients
(Decoders)

Toy Model for packet arrivals, links



48	  

Servers

Write Clients Read Clients
(Decoders)


•  Arrival at client: One packet in every time slot. Sent immediately to the servers.

•  Channel from the write client to the server: Delay is an integer in [0,T-1].

•  Channel from server to read client: instantaneous (no delay).

•  Goal: decoder invoked at time t, gets the latest common version among c servers

Toy Model for packet arrivals, links



49	  

Servers

Write Clients Read Clients
(Decoders)


•  Arrival at client: One packet in every time slot. Sent immediately to the servers.

•  Channel from the write client to the server: Delay is an integer in [0,T-1].

•  Channel from server to read client: instantaneous (no delay).

•  Goal: decoder invoked at time t, gets the latest common version among c servers

Toy Model for packet arrivals, links



Insights from multi-version codes over toy model

Achievability “Theorem”:

Converse “Theorem”:

There exists an achievable storage strategy that achieves a storage cost of

1

dT
c e

⇥ size-of-one-version

There exists no achievable storage strategy that achieves a storage cost smaller

than

T

T + c� 1

⇥ size-of-one-version� o(size-of-one-version)



Insights from multi-version codes over toy model

Achievability “Theorem”:

Converse “Theorem”:

Number of versions ⌫, depends on degree of asynchrony T

There exists an achievable storage strategy that achieves a storage cost of

1

dT
c e

⇥ size-of-one-version

There exists no achievable storage strategy that achieves a storage cost smaller

than

T

T + c� 1

⇥ size-of-one-version� o(size-of-one-version)



Multi-version Coding

Toy model for distributed 
storage

Standard model in 
distributed systems 

literature



53	  

Servers

Write Clients Read Clients
(Decoders)

Model studied in distributed systems – Key features


•  Arrival at clients: arbitrary

•  Channel from clients to servers:  arbitrary delay, reliable

•  Clients and servers are modeled as I/O automata, so their protocols can be 
designed.





54	  

Servers

Write Clients Read Clients
(Decoders)

Model studied in distributed systems – Key features


•  Arrival at clients: arbitrary

•  Channel from clients to servers:  arbitrary delay, reliable

•  Clients and servers are modeled as I/O automata, so their protocols can be 
designed.


Multi-version coding converse for v=2 can be lifted to this setting.



55	  

Future Work – Many open questions

•  Less conservative modeling assumptions,

-  Exploiting correlation between versions
-  Allow for a “small” number of erroneous states
-  Less distributed, knowledge of the state of other nodes.


•    Finer network and node models (beyond toy models).
-  Can lead to finer insights in to communication and storage costs
-  Allow for the design of protocols, for say, the read client (or the write client)



•  Study of errors/Byzantine adversaries instead of erasures - 

useful assumption for ensuring security.s



56	  

Future Work – Many open questions

•  Less conservative modeling assumptions,

-  Exploiting correlation between versions
-  Allow for a “small” number of erroneous states
-  Less distributed, knowledge of the state of other nodes.


•    Finer network and node models (beyond toy models).
-  Can lead to finer insights in to communication and storage costs
-  Allow for the design of protocols, for say, the read client (or the write client)


•  Study of errors/Byzantine adversaries instead of erasures - 

useful assumption for ensuring security.s



57	  

Future Work – Many open questions

•  Less conservative modeling assumptions,

-  Exploiting correlation between versions
-  Allow for a “small” number of erroneous states
-  Less distributed, knowledge of the state of other nodes.


•    Finer network and node models (beyond toy models).
-  Can lead to finer insights in to communication and storage costs
-  Allow for the design of protocols, for say, the read client (or the write client)


•  Study of errors/Byzantine adversaries instead of erasures - 

useful assumption for ensuring security.



Thanks	  


