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•  High-level principle: read the “latest” value stored in the system

•  Modern key-value stores - Amazon Dynamo DB, Couch DB,
Apache Cassandra DB, Google Spanner, Voldermort DB …..

•  Used for transactions, reservation systems, multi-player gaming, social 

networks, news feeds, distributed computing tasks etc.
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Servers

Write Clients Read Clients
(Decoders)

High level Distributed Storage Model



•  Asynchrony – packets don’t arrive at all the servers simultaneously

•  Distributed nature - nodes do not know which packets have been received by 
other nodes, or if they have failed.

•  Consistency – the reader/decoder needs the latest “possible” version.
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Servers

Write Clients Read Clients
(Decoders)

•  Asynchrony, Distributed Nature, Consistency

Analytical understanding of storage costs, latency, is very limited
Replication is used in every commercial solution to provide fault tolerance 

High level Distributed Storage Model
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The multi-version coding (MVC) problem
[Wang-C, ISIT, Allerton 2014, arxiv 2015]

As the data gets updated

•  Asynchrony: all servers may not simultaneously get the new version of the 
data

•  Distributed nature: each node is unaware of the versions received by the 
other nodes

•  Consistency: A decoder must get the latest possible version of the data 
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The multi-version coding problem
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The multi-version coding problem

In general, client connects to c servers, demands the latest common version among v 
versions

Ver. 1 Ver. 2

Latest common or 
something later: Ver. 

1 or Ver. 2

Ver. 3 Ver. 4 …
…

Ver. 1Ver. 1Ver. 2
Ver. 1Ver. 2 Ver. 1

[Wang-C, ISIT, Allerton 2014, arxiv 2015]



20	  

The multi-version coding problem
•  n servers
•  v versions
•  c connectivity
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The multi-version coding problem
•  n servers
•  v versions
•  c connectivity
•  Goal: decode the latest common version
  among the c servers
•  Minimize the storage cost	  	  
– Worst case, across all “states”
– across all servers 
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Version 1
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Storage size = size-of-one-version

Solution 1: Replication



1/2 1/2 1/2 1/2

1/2 1/2

Version 1

Version 2

Solution 2: MDS code

Separate coding across versions.
Each server stores all the versions received.

c=2

Storage size = (Number of versions / c)*size-of-one-version
     = v/c*size-of-one-version



Storage Cost
Normalized by size-of-

value
Replication 1
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Constructions
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v = Number of Versions

c = Connectivity

v/c
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. . . . . . . . .

z}|{ z}|{ z}|{

. . .

Partition 1 Partition 2
Partition v

Partition i: Version i is the latest version

There is at least one partition with dc/ve servers

Simple achievable scheme:

Server in partition i stores 1
dc/ve of version i
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Start with c servers
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. . .

Versions 1 and 2 decodable from c+1 symbols 

Propagate version 2 to a minimal set of servers
 such that it is decodable

�o(size-of-one-version)



•  Intuition: Find c+v-1 virtual servers, where all v versions 
can be decoded

•  A more intricate puzzle as compared to v=2.

•  Multi-version coding problem related to index-coding/

multiple-unicast/non-multicast network coding
–  More precisely, it is related to pliable index coding

Converse: v > 2

[Brahma-Fragouli 12]
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Converse: v=3

a1 is the smallest number such that, there is a version x, such that

Version x is decodable, given the symbols of the first a1 servers with all 3 versions

and the messages of versions {1, 2, 3}� {x}

a2 is the smallest number such that, there is a version y 2 {1, 2, 3}� {x}, such
that

Version y is decodable, given the symbols of the first a1 � 1 servers with all 3

versions and the remaining a2 � (a1 � 1) servers with versions {1, 2, 3}� {x}

and the message of version {1, 2, 3}� {x, y}
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Storage Cost
Normalized by size-of-one-

version
Replication 1

Naïve MDS codes

Constructions

Lower bound v
c+v�1

v = Number of Versions

c = Connectivity

1
dc/ve

�o(size-of-one-version)

v/c

Summary

*

*

These bounds can be improved.

See “Multi-version Coding – An Information Theoretic Perspective of Distributed Storage ”, 
Wang-Cadambe, arxiv, 2015

*



Multi-version codes – Main Insights

•  Redundancy required to ensure consistency in an 
asynchronous environment
–  Redundancy increases with the number of parallel versions in the 

system


•  Simple codes are (approximately) optimal
–  Separate coding across versions
–  Random linear codes within versions


•  More insights may be obtained by going beyond worst-
case measures
–  Correlated versions
–  Allow a small fraction of “erroneous” statess

See “Multi-version Coding – An Information Theoretic Perspective of Distributed Storage ”, 
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Insights from multi-version codes over toy model

Achievability “Theorem”:

Converse “Theorem”:

Number of versions ⌫, depends on degree of asynchrony T

There exists an achievable storage strategy that achieves a storage cost of

1

dT
c e

⇥ size-of-one-version

There exists no achievable storage strategy that achieves a storage cost smaller

than

T

T + c� 1

⇥ size-of-one-version� o(size-of-one-version)



Multi-version Coding

Toy model for distributed 
storage
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distributed systems 
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Servers
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Model studied in distributed systems – Key features


•  Arrival at clients: arbitrary

•  Channel from clients to servers:  arbitrary delay, reliable

•  Clients and servers are modeled as I/O automata, so their protocols can be 
designed.
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Servers

Write Clients Read Clients
(Decoders)

Model studied in distributed systems – Key features


•  Arrival at clients: arbitrary

•  Channel from clients to servers:  arbitrary delay, reliable

•  Clients and servers are modeled as I/O automata, so their protocols can be 
designed.


Multi-version coding converse for v=2 can be lifted to this setting.
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Future Work – Many open questions

•  Less conservative modeling assumptions,

-  Exploiting correlation between versions
-  Allow for a “small” number of erroneous states
-  Less distributed, knowledge of the state of other nodes.


•    Finer network and node models (beyond toy models).
-  Can lead to finer insights in to communication and storage costs
-  Allow for the design of protocols, for say, the read client (or the write client)



•  Study of errors/Byzantine adversaries instead of erasures - 

useful assumption for ensuring security.s
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