
Coding for Distributed Storage

Alex Dimakis (UT Austin)

Joint work with

Mahesh Sathiamoorthy (Google)
Megasthenis Asteris, Dimitris Papailipoulos, Karthik Shanmugam, Sriram
Vishwanath, Ankit Rawat (UT Austin)

Overview

• How distributed file systems work
• Three repair metrics
• Part 1: Regenerating Codes

• Part 2: Locally Repairable Codes

• Part 3: Availability of Codes
• Open problems

2

current hadoop architecture

file 1

file 2

file 3

1 2 3 4

1 2 3 4 5 6

1 2 3 4

NameNode
DataNode 1 DataNode 2 DataNode 3 DataNode 4

…

5

current hadoop architecture

file 1

file 2

file 3

1 2 3 4

1 2 3 4 5 6

1 2 3 4

NameNode
DataNode 1 DataNode 2 DataNode 3 DataNode 4

…

1 2 3 4 1 2 3 4

1 2 3 4 5 6

5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 6

current hadoop architecture

file 1

file 2

file 3

1 2 3 4

1 2 3 4 5 6

1 2 3 4

NameNode
DataNode 1 DataNode 2 DataNode 3 DataNode 4

1
2

3 41

36

1
3

4
…4

1

1 2 3 4 1 2 3 4

1 2 3 4 5 6

5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 6

current hadoop architecture

file 1

file 2

file 3

1 2 3 4

1 2 3 4 5 6

1 2 3 4

NameNode
DataNode 1 DataNode 2 DataNode 3 DataNode 4

1
2

3 41

36

1
3

4
…4

1

1 2 3 4 1 2 3 4

1 2 3 4 5 6

5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 6

current hadoop architecture

file 1

file 2

file 3

1 2 3 4

1 2 3 4 5 6

1 2 3 4

NameNode
DataNode 1 DataNode 2 DataNode 3 DataNode 4

1
2

3 41

36

1
3

4
…4

1

1
4

1 2 3 4 1 2 3 4

1 2 3 4 5 6

5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 6

erasure codes save space

8

erasure codes save space

9

Real systems that use distributed storage codes

• Windows Azure, (Cheng et al. USENIX 2012) (LRC Codes)
• Ships in Azure, Microsoft Server 2012 R2 and Windows 8.1

10

Real systems that use distributed storage codes

• Windows Azure, (Cheng et al. USENIX 2012) (LRC Codes)
• Ships in Azure, Microsoft Server 2012 R2 and Windows 8.1
• CORE (PPC Li et al. MSST 2013) (Regenerating EMSR Code)
• NCCloud (Hu et al. USENIX FAST 2012) (Regenerating Functional

MSR)
• ClusterDFS (Pamies Juarez et al.) (SelfRepairing Codes)
• StorageCore (Esmaili et al.) (over Hadoop HDFS)

11

Real systems that use distributed storage codes

• Windows Azure, (Cheng et al. USENIX 2012) (LRC Codes)
• Ships in Azure, Microsoft Server 2012 R2 and Windows 8.1
• CORE (PPC Li et al. MSST 2013) (Regenerating EMSR Code)
• NCCloud (Hu et al. USENIX FAST 2012) (Regenerating Functional

MSR)
• ClusterDFS (Pamies Juarez et al.) (SelfRepairing Codes)
• StorageCore (Esmaili et al.) (over Hadoop HDFS)
• HACFS (Xia, Saxena, Blaum) (IBM) FAST 2015
• HDFS Xorbas (Sathiamoorthy et al. VLDB 2013) (over Hadoop HDFS)

(LRC code on Facebook clusters)
• Facebook F4 uses local parities in production [OSDI 2014]

12

Coded hadoop

file 1

file 2

1 2 3 4

1 2 3 4 5 6

NameNode
DataNode 1 DataNode 2 DataNode 3 DataNode 4

…

1 2 3 4 1 2 3 4

1 2 3 4 5 6 1 2 3 4 5 6

Coded hadoop

file 1

file 2

1 2 3 4

1 2 3 4 5 6

NameNode
DataNode 1 DataNode 2 DataNode 3 DataNode 4

…

P1 P2

P1 P2 P1 P20 0

Code repair

file 1 1 2 3 4

DataNode 1 DataNode 2 DataNode 3 DataNode 4 …

P1 P2

DataNode 6 DataNode 6

DataNode 7 ‘newcomer’

1 2 3 4 P1 P2

1’

Three repair metrics of interest

16

1. Number of bits communicated in the network during single node
failures (Repair Bandwidth)

1. The number of bits read from disks during single node repairs
(Disk IO)

3. The number of nodes accessed to repair a single node failure
(Locality)

Three repair metrics of interest

17

1. Number of bits communicated in the network during single node
failures (Repair Bandwidth)

Capacity known for two points only. My 3-year old conjecture for
intermediate points was disproved. [ISIT13]

2. The number of bits read from disks during single node repairs
(Disk IO)

3. The number of nodes accessed to repair a single node failure
(Locality)

Three repair metrics of interest

18

1. Number of bits communicated in the network during single node
failures (Repair Bandwidth)

Capacity known for two points only. My 3-year old conjecture for
intermediate points was disproved. [ISIT13]

2. The number of bits read from disks during single node repairs
(Disk IO)

Capacity unknown.
Only known technique is bounding by Repair Bandwidth

3. The number of nodes accessed to repair a single node failure
(Locality)

Three repair metrics of interest

19

1. Number of bits communicated in the network during single node
failures (Repair Bandwidth)

Capacity known for two points only. My 3-year old conjecture for
intermediate points was disproved. [ISIT13]

2. The number of bits read from disks during single node repairs
(Disk IO)

Capacity unknown.
Only known technique is bounding by Repair Bandwidth

3. The number of nodes accessed to repair a single node failure
(Locality)

Capacity known for some cases.
Practical LRC codes known for some cases.
General constructions open

Three repair metrics of interest

20

1. Number of bits communicated in the network during single node
failures (Repair Bandwidth)

Capacity known for two points only. My 3-year old conjecture for
intermediate points was disproved. [ISIT13]

2. The number of bits read from disks during single node repairs
(Disk IO)

Capacity unknown.
Only known technique is bounding by Repair Bandwidth

3. The number of nodes accessed to repair a single node failure
(Locality)

Capacity known for some cases.
Practical LRC codes known for some cases. Almost all cases
General constructions open [Tamo-Barg!]

Code repair bandwidth

file 1 1 2 3 4

DataNode 1 DataNode 2 DataNode 3 DataNode 4 …

P1 P2

DataNode 6 DataNode 6

DataNode 7 ‘newcomer’

1 2 3 4 P1 P2

1’

Functional repair: 1’ ≠ 1
(but MDS distance maintained)

Exact repair: 1’=1

Repair Bandwidth Tradeoff Region

22

Min
Bandwidth
point (MBR)

Min Storage
point (MSR)

Exact repair region?

23

Exact repair feasible?

Min
Bandwidth
point (MBR)

Min Storage
point (MSR)

Status in 2011

24

Exact repair region

Status in 2012

25

Exact repair region

Code constructions
by:
Rashmi,Shah,Kumar
Suh,Ramchandran
El Rouayheb, Shum,
Oggier,Datta
Silberstein, Viswanath
et al.
Cadambe,Maleki,
Jafar
Le Scouarnec et al.
Papailiopoulos, Wu,
Dimakis
Wang, Tamo, Bruck
Tamo, Barg

?

Status in 2013

26

Exact repair region

Provable gap from CutSet Region.
(Chao Tian, ISIT 2013)

OP1:Exact Repair Region

Status in 2014

27

Exact repair region

Provable gap from CutSet Region.
(Chao Tian, ISIT 2013)

OP1:Exact Repair Region

Taking a step back

• Finding exact regenerating codes is still an open
problem in coding theory

• What can we do to make progress ?

28

Taking a step back

• Finding exact regenerating codes is still an open
problem in coding theory

• What can we do to make progress ?

29

Taking a step back

• Finding exact regenerating codes is still an open
problem in coding theory

• What can we do to make progress ?

• or change the question

30

Changing the question:
Locally Repairable Codes

Three repair metrics of interest

32

1. Number of bits communicated in the network during single node
failures (Repair Bandwidth)

Capacity known for two points only. My 3-year old conjecture for
intermediate points was just disproved. [ISIT13]

2. The number of bits read from disks during single node repairs
(Disk IO)

Capacity unknown.
Only known technique is bounding by Repair Bandwidth

3. The number of nodes accessed to repair a single node failure
(Locality)

Capacity known for some cases.
Practical LRC codes known and used!

33

•The distance of a code d is the minimum number of erasures after
which data is lost.

•Reed-Solomon (10,14) (n=14, k=10). d= 5

•R. Singleton (1964) showed a bound on the best distance possible:

Minimum Distance

d � n� k + 1

•Reed-Solomon codes achieve the Singleton bound (hence called MDS)

34

• A code symbol has locality r if it is a function of r other codeword
symbols.

• A systematic code has message locality r if all its systematic symbols
have locality r

• A code has all-symbol locality r if all its symbols have locality r.

• In an MDS code, all symbols have locality at most r <= k

• Easy lemma: Any MDS code must have trivial locality r=k for every
symbol.

Locality of a code

35

Example: code with message locality 5

1 2 3 4 5 6 7 8 9 RS p1 p2 p3 p410

x1

+

x2

+

All k=10 message blocks can be recovered by reading r=5 other
blocks.

A single parity block failure requires still 10 reads.

Best distance possible for a code with locality r?

Locality-distance tradeoff

36

Codes with all-symbol locality r can have distance at most:

d � n� k � �k
r
�+ 2

•Shown by Gopalan et al. for scalar linear codes (Allerton 2012)

•Papailiopoulos et al. information theoretically (ISIT 2012)

•r=k (trivial locality) gives Singleton Bound.

•Any non-trivial locality will hurt the fault tolerance of the storage
system

•Pyramid codes (Huang et al) achieve this bound for message-locality

All-symbol locality

37

1 2 3 4 5 6 7 8 9 RS p1 p2 p3 p410

x1

+

x2

+

x3

+

The coefficients need to make the local forks in general position compared to
the global parities.

Random works whp in exponentially large field. Checking requires exponential
time.

OP2: General Explicit LRCs that are maximally recoverable (MR) are open.

c1 c2 c3 c4 c5

Three repair metrics of interest

38

1. Number of bits communicated in the network during single node
failures (Repair Bandwidth)

Capacity known for two points only. My 3-year old conjecture for
intermediate points was just disproved. [ISIT13]

2. The number of bits read from disks during single node repairs
(Disk IO)

Capacity unknown.
Only known technique is bounding by Repair Bandwidth

3. The number of nodes accessed to repair a single node failure
(Locality)

Capacity known for some cases.
Practical LRC codes known and used!

Three repair metrics of interest

39

1. Number of bits communicated in the network during single node
failures (Repair Bandwidth)

Capacity known for two points only. My 3-year old conjecture for
intermediate points was just disproved. [ISIT13]

2. The number of bits read from disks during single node repairs
(Disk IO)

Capacity unknown.
Only known technique is bounding by Repair Bandwidth

3. The number of nodes accessed to repair a single node failure
(Locality)

Capacity known for some cases.
Practical LRC codes known and used!

RC Capacity open but some results [Mohajer, Tandon, Tian]
No practical High-rate MSR codes known. Would be useful if we can find some.

Three repair metrics of interest

40

1. Number of bits communicated in the network during single node
failures (Repair Bandwidth)

Capacity known for two points only. My 3-year old conjecture for
intermediate points was just disproved. [ISIT13]

2. The number of bits read from disks during single node repairs
(Disk IO)

Capacity unknown.
Only known technique is bounding by Repair Bandwidth

3. The number of nodes accessed to repair a single node failure
(Locality)

Capacity known for some cases.
Practical LRC codes known and used!

RC Capacity open but some results [Mohajer, Tandon, Tian]
No practical High-rate MSR codes known. Would be useful if we can find some.

Not much activity for Disk IO repair.
Maybe not a bottleneck for current technology

Three repair metrics of interest

41

1. Number of bits communicated in the network during single node
failures (Repair Bandwidth)

Capacity known for two points only. My 3-year old conjecture for
intermediate points was just disproved. [ISIT13]

2. The number of bits read from disks during single node repairs
(Disk IO)

Capacity unknown.
Only known technique is bounding by Repair Bandwidth

3. The number of nodes accessed to repair a single node failure
(Locality)

Capacity known for some cases.
Practical LRC codes known and used!

RC Capacity open but some results [Mohajer, Tandon, Tian]
No practical High-rate MSR codes known. Would be useful if we can find some.

Not much activity for Disk IO repair.
Maybe not a bottleneck for current technology?

Useful constructions and bounds. Influencing real systems.
MR LRCs would be directly useful.

Dealing with Hot data

42

Codes used for cold data, i.e. data not read very frequently
(Data Analytics clusters, Huge text file logs, Offline queries).

Dealing with Hot data

43

Codes used for cold data, i.e. data not read very frequently
(Data Analytics clusters, Huge text file logs, Offline queries).

Warm and Hot data (Haystack for photo storage, Video caching and
delivery, analytics in interactive time, adaptive training of big machine
learning models)

Dealing with Hot data

44

Codes used for cold data, i.e. data not read very frequently
(Data Analytics clusters, Huge text file logs, Offline queries).

Warm and Hot data (Haystack for photo storage, Video caching and
delivery, analytics in interactive time, adaptive training of big machine
learning models)

Multiple jobs or threads concurrently reading the same data blocks.

Some disks or servers become hot- use coding to relieve this.

Provide similar performance as replication with smaller cost.

45

• A symbol has locality r if it is a function of r other codeword
symbols.

• A code has all-symbol locality r if all its symbols have locality r.

• A symbol has availability t if it can be read in parallel by t+1 disjoint
groups of symbols.

• These t reads have locality r if they involve up to r symbols each.

Code Locality r, Code Availability t

46

Example of Locality r and availability t for
symbol 1
1 2 3 4 5 6 7 8 9 RS p1 p2 p3 p410

x1

+

x3

+

x2

+

47

Example of Locality r and availability t for
symbol 1
1 2 3 4 5 6 7 8 9 RS p1 p2 p3 p410

x1

+

x3

+

x2

+

Want to read
Block 1

48

Example of Locality r and availability t for
symbol 1
1 2 3 4 5 6 7 8 9 RS p1 p2 p3 p410

x1

+

x3

+

x2

+

Want to read
Block 1

49

Example of Locality r and availability t for
symbol 1
1 2 3 4 5 6 7 8 9 RS p1 p2 p3 p410

x1

+

x3

+

x2

+

Want to read
Block 1

50

message availability 2 (=2 parallel reads for a
block)
1 2 3 4 5 6 7 8 9 RS p1 p2 p3 p410

x1

+

x3

+

x2

+

• Therefore Block 1 can be read by 1 systematic read + 2 repair
reads simultaneously

• Block 1 has availability t=2 with groups of locality r1=5 and r2= 2
• Notice also that the group (2,3,4,5,6,7,8,9,10, p1) of locality r=10
can be used to recover 1 (but blocks all others, so not used)

1 2 3 4 5 6 7 8 9 10

Example: 3 replication

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

• Each symbol can be read in parallel t+1 =3 times.

• Distance d=3. Rate= 1/3.

• Availability t=2. Locality of these reads r=1.

• If you want to increase availability, rate goes to zero like 1 / (t+1)

• Can we get scaling availability with non-vanishing rate?

Our results

We construct codes with scaling availability and small locality.
For any high rate. With near-MDS distance.

• Polynomial Availability (using Combinatorial designs):
t= n1/3
r=n1/3 - ε

• Fundamental Bounds: For a given locality r and availability t
requirements, what is the best distance possible?

• We obtain some bounds – Sometimes tight.

Related work

• Locally decodable codes
(LDCs imply linear availability, t = c n)

• Batch Codes [Ishai, Kushilevitz, Ostrovsky, Sahai STOC‘04].

Very similar parallel reads requirement.

Not good distance.

In fact our results imply the first batch codes with near-MDS distance.

Conclusions and Open Problems

54

Which repair metric to optimize?

• Repair BW, All-Symbol Locality, Message-Locality, Fault tolerance, A
combination of all?

• Depends on type of storage cluster
(Cloud, Analytics, Photo Storage, Archival, Hot vs Cold data)

55

Which repair metric to optimize?

• Repair BW, All-Symbol Locality, Message-Locality, Fault tolerance, A
combination of all?

• Depends on type of storage cluster
(Cloud, Analytics, Photo Storage, Archival, Hot vs Cold data)

• Practice involves a spectrum of tradeoffs

56

Which repair metric to optimize?

• Repair BW, All-Symbol Locality, Message-Locality, Fault tolerance, A
combination of all?

• Depends on type of storage cluster
(Cloud, Analytics, Photo Storage, Archival, Hot vs Cold data)

• Practice involves a spectrum of tradeoffs

57

Which repair metric to optimize?

• Repair BW, All-Symbol Locality, Message-Locality, Fault tolerance, A
combination of all?

• Depends on type of storage cluster
(Cloud, Analytics, Photo Storage, Archival, Hot vs Cold data)

• Practice involves a spectrum of tradeoffs

58

Which repair metric to optimize?

• Repair BW, All-Symbol Locality, Message-Locality, Fault tolerance, A
combination of all?

• Depends on type of storage cluster
(Cloud, Analytics, Photo Storage, Archival, Hot vs Cold data)

• Practice involves a spectrum of tradeoffs

59

60

Seven open problems

Repair Bandwidth:
• 1. Exact repair region ?
• 2. Practical E-MSR codes for high rates ?
• 3. Better Repair for existing codes (EvenOdd, RDP, Reed-Solomon) ?

60

61

Seven open problems

Repair Bandwidth:
• 1. Exact repair region ?
• 2. Practical E-MSR codes for high rates ?
• 3. Better Repair for existing codes (EvenOdd, RDP, Reed-Solomon) ?
Locality:
• 4. Explicit LRCs with Maximum recoverability?

61

62

Seven open problems

Repair Bandwidth:
• 1. Exact repair region ?
• 2. Practical E-MSR codes for high rates ?
• 3. Better Repair for existing codes (EvenOdd, RDP, Reed-Solomon) ?
Locality:
• 4. Explicit LRCs with Maximum recoverability?
Availability:
• 5. Distance –availability tradeoff ?
• 6. Practical explicit codes ?

• 7. Approximating GLRC/Index Coding sum rate in polylog factor ?

62

63

Coding for Storage wiki

Distance vs. Locality-Availability trade-off

New Distance Bound
• For (r, t)-Information local codes*:

Distance vs. Locality-Availability trade-off

New Distance Bound:
• For (r, t)-Information local codes*:

*The dirty details:
• We can only prove this for scalar linear codes.
• Only one parity symbol per repair group is assumed.
• For some cases we can achieve this using combinatorial designs.

HDFS Xorbas

66

code we implemented in HDFS

67

1 2 3 4 5 6 7 8 9 RS p1 p2 p3 p410

x1

+

x2

+

x3

+

Single block failures can be repaired by accessing 5 blocks. (vs 10)
Stores 16 blocks
1.6x Storage overhead vs 1.4x in HDFS RAID.

Implemented this in Hadoop (system available on github/madiator)

c1 c2 c3 c4 c5

Java implementation

68

Some experiments

69

70

Some experiments

•100 machines on Amazon ec2

•50 machines running HDFS RAID (facebook version, (14,10) Reed
Solomon code)

•50 running our LRC code

•50 files uploaded on system, 640MB per file

•Killing nodes and measuring network traffic, disk IO, CPU, etc during
node repairs.

71

00:10 01:00 01:50 02:40 03:30 04:20 05:10 06:00 06:50
0

2

4

6

8

10

12

14

16

18
G

B

Time

NetworkIn

FacebookCluster
USC3XORCluster

Facebook HDFS RAID (RS code)

Xorbas HDFS (LRC code)

Repair Network traffic

7200:10 01:00 01:50 02:40 03:30 04:20 05:10 06:00 06:50
0

1000

2000

3000

4000

5000

6000

Time

Pe
rc

en
t

CPUUtilization

FacebookCluster
USC3XORCluster

Facebook HDFS RAID (RS code)

Xorbas HDFS (LRC code)

CPU

73
1 (16) 1 (17) 1 (14) 1 (19) 3 (41) 3 (47) 2 (35) 2 (40)

0

5

10

15

20

25

30

35
HDFS Bytes Read during Recovery from datanode loss

H
D

FS
 B

yt
es

 R
ea

d
in

 G
B

Events − Failed Datanodes (Lost Blocks)

Facebook
USC
Facebook HDFS RAID (RS code)

Xorbas HDFS (LRC code)

Disk IO

what we observe

74

New storage code reduces bytes read by roughly 2.6x

Network bandwidth reduced by approximately 2x

We use 14% more storage. Similar CPU.

In several cases 30-40% faster repairs.

Provides four more zeros of data availability compared to replication

Gains can be much more significant if larger codes are used (i.e. for
archival storage systems).

In some cases might be better to save storage, reduce repair
bandwidth but lose in locality
(PiggyBack codes: Rashmi et al. USENIX HotStorage 2013)

