Delegation with (nearly) optimal
time/space overhead

Justin Holmgren Ron Rothblum
MIT MIT

Veritiable Computation

Veritiable Computation

Veritiable Computation

Veritiable Computation

Veritiable Computation

Veritiable Computation

Complexity
<< evaluating M(x)

Veritiable Computation

Complexity
~evaluating M(x) Complexity
<< evaluating M(x)

Verifiable Computation
N Practice

Figure 5. Prover overhead normalized to native execution cost for two computations.

Prover overheads are generally enormous.

101
-
.g 10-
®
Eo 100
[=]
c 3
==
gg 107
ne
o 10
Q
5
= 10°
10° N/A
0
- = - b | O -
8 g 8225 8 3 O &8 8§ 8 22 5 8 3 Q
o 2 m £ 5 5 a2z 2 e 2 & £ 5 a = 2
a O N g 2 = F ®© a o N g 2 = F @
o (a1
matrix multiplication (m = 128) PAM clustering (m = 20, d =128)

Walfish, Blumberg '15

Verifiable Computation
INn Practice

"An additional bottleneck is memory: the prover must
materialize a transcript of a computation's execution.”

10

101l

10°

107

10°

Worker's cost normalized
to native C

10°

10° N/A

0

| - | .

O o & 2 = @ 5 O o & 2 = @ 5 O

S g 8 2= 8 g © &8 8§ 8 £ 2 5 8 8 Q

a o é o © Q @ é O @

o £ ® © O ¢ £ 2 o £ @ © O » £ =2

a O N g 2 = F ® a O N g 2 Z - ©
£ < = c - c
o (a1

matrix multiplication (m = 128) PAM clustering (m = 20, d =128)

Walfish, Blumberg '15

Veritiable Computation

M(x)=?, challenge /h&<2
l ///// \\ t% »

Complexity ¢
~evaluating M(x) Complexity
<< evaluating M(x)

Our focus:

* Prover efficiency
 Computational assumptions

Prior Work

Prior WWork

Model Assumptions Prover Time Prover Space

No-Signaling PCP
[KRR14, KP15, BHK16]

Prior WWork

Model Assumptions Prover Time Prover Space

No-Signaling PCP
[KRR14, KP15, BHK16]

Prior WWork

Model Assumptions Prover Time Prover Space

No-Signaling PCP
[KRR14, KP15, BHK16]

No-Signaling PCP
[KRR14, KP15, BHK16]

SNARKSs
[BC12, BCCT12, ..]

Succinct Garbling

[GHRW14, KLW15,
CH15, CCCLLZ15]

Prior WWork

Model

Assumptions Prover Time Prover Space

No-Signaling PCP
[KRR14, KP15, BHK16]

SNARKSs
[BC12, BCCT12, ..]

Succinct Garbling

[GHRW14, KLW15,
CH15, CCCLLZ15]

[this work]

Prior WWork

Model

Assumptions Prover Time Prover Space

“Slightly”
Homomorphic
Encryption

Prior WWork

Model Assumptions Prover Time Prover Space

No-Signaling PCP
[KRR14, KP15, BHK16]

SNARKSs
[BC12, BCCT12, ..]

Succinct Garbling

[GHRW14, KLW15,
CH15, CCCLLZ15]

“Slightly”
[this work] Homomorphic
Encryption

Extends to

(cache-efticient)
RAM

Prior WWork

Model Assumptions Prover Time Prover Space

No-Signaling PCP
[KRR14, KP15, BHK16]

SNARKSs
[BC12, BCCT12, ..]

Succinct Garbling

[GHRW14, KLW15,
CH15, CCCLLZ15]

“Slightly”
[this work] Homomorphic
Encryption

Extends to

(cache-efticient)
RAM

Probabilistically Checkable
Proofs

Probabilistically Checkable
Proofs

Proof string mm | m | m L

Verifier

Probabilistically Checkable
Proofs

Proof string mm | m | m L

Verifier

Probabilistically Checkable
Proofs

Proof string mm | m | m L

Verifier

Probabilistically Checkable
Proofs

Proof string m | m | m L
) O

L A, RS
r € L = exists convincing proof [\‘Q\%
7 N
1/ \
: A '
very proof convin Qs
v &L every proot convinces ¥ S
with low probability) ¢

Verifier

Probabilistically Checkable

Proof string mm | m | m L
. s O
. -)
r € L = exXists convincing proof ,/%65%&
/ \ N
4 \
. ./\\\v_s)
Y every proof convinces s
with low probability) ¢
Verifier

Not a standard-model
delegation scheme

PCP-based Delegation

PCP-based Delegation

PCP prootf m PCP verifier
@) OOO

(@)
<
W

)

PCP-based Delegation

PCP proof m

Independent PIR queries

11

, [] [°

)

1k

PCP verifier

PCP-based Delegation

PCP proof m

Independent PIR queries

11

, [] [°

)

1k

PCP verifier

PCP-based Delegation

PCP proof m -
‘ independent PIR queries PCP verifier
@ : : O

O Z]_,...,Zk. @\ oo

e Not sound Iin general
[Dwork-Langberg-Naor-Nissim-Reingold 01}

PCP-based Delegation

PCP proot PCP verifier

Independent PIR queries
5
/A%<
é;p*

w
/
‘L’

O
O
\

e Not sound Iin general
[Dwork-Langberg-Naor-Nissim-Reingold 01}

e Sound if the PCP is no-signaling sound
|Kalai-Raz-Rothblum 14]

PCP-based Delegation

|Biehl-Meyer-Wetzel 98]

PCP proof m -
independent PIR queries PCP verifier

OO

no precomputatlonl

%?

[Dwork-Langberg-Naor-Nissim-Reingold 01]

e Not sound Iin general

e Sound if the PCP is no-signaling sound
|Kalal-Raz-Rothblum 14]

PCP-based Delegation

|Biehl-Meyer-Wetzel 98]

PCP proof m -
independent PIR queries PCP veritier

general
computations!

L]y e oo Uk \ OOO
| 2 no precomputation!
L7

e Not sound Iin general
[Dwork-Langberg-Naor-Nissim-Reingold 01]

e Sound if the PCP is no-signaling sound
|Kalal-Raz-Rothblum 14]

PCP proof m

Observation O

iIndependent PIR queries

11

7 L] [] L]

)

1k

PCP verifier

Observation O

FHE ciphertexts

er proot | e PCP verifier
independent PHR-gueries-

/L o o o /L A
1| | Uk é;/\\
- \
{
AN
)

Observation O

PCP proof i

FHE ciphertexts

independent RPiR-gueries™

11

PCP verifier

e [f PIR = FHE, just need efticient “random-

access” to PCP.

Observation O

PCP proof m PCP verifier

e fPIR=F
access’ t

Our Technical Contributions

Our Technical Contributions

1 Simpler and direct NS-PCP(essentially BFLS)
for any language £ € TISP(T, S)

Our Technical Contributions

Remove major component of KRR,

namely “augmented circuit”

1 Simpler and direct NS-PCP(essentially BFLS)
for any language £ € TISP(T, S5)

Our Technical Contributions

Remove major component of KRR,

namely “augmented circuit”

1 Simpler and direct NS-PCP(essentially BFLS)
for any language £ € TISP(T, S)

2 Super-efficient prover: Any symbol computable in
time: O(T) space: S + polylog(T)

Our Technical Contributions

Remove major component of KRR,

namely “augmented circuit”

1 Simpler and direct NS-PCP(essentially BFLS)
for any language £ € TISP(T, S)

2 Super-efficient prover: Any symbol computable in
time: O(T) space: S + polylog(T)

2’ Limited efficiency loss under FHE

Our Technical Contributions

Remove major component of KRR,

namely “augmented circuit”

1 Simpler and direct NS-PCP(essentially BFLS)
for any language £ € TISP(T, S)

2 Super-efficient prover: Any symbol computable in
time: O(T) space: S + polylog(T)

2’ Limited efficiency loss under FHE
time: T - poly(\)

Our Technical Contributions

Remove major component of KRR,

namely “augmented circuit”

1 Simpler and direct NS-PCP(essentially BFLS)
for any language £ € TISP(T, S)

2 Super-efficient prover: Any symbol computable in
time: O(T) space: S + polylog(T)

2’ Limited efficiency loss under FHE
time: T"- poly(\) space: S + poly(A)

Our Technical Contributions

Remove major component of KRR,

namely “augmented circuit”

1 Simpler and direct NS-PCP(essentially BFLS)
for any language £ € TISP(T, S)

2 Super-efficient prover: Any

time: O(T) space: 4

BFLS already knownto be | n
complexity-preserving?
[BC12, BTVW14]

2’ Limited efficiency loss under FHE
time: T"- poly(\) space: S + poly(A)

po

N

Our Technical Contributions

Remove major component of KRR,

namely “augmented circuit”

1 Simpler and direct NS-PCP(essentially BFLS
for any Ianguage L e T|SP(T, S) for deterministic

computations

2 Super-efficient prover: Any| BFLs already known to be
complexity-preserving?

time: O(T) space: {____ 5012 BTvwid,

2’ Limited efficiency loss under FHE
time: T"- poly(\) space: S + poly(A)

Our Technical Contributions

Remove major component of KRR,

namely “augmented circuit”

1 Simpler and direct NS-PCP(essentially BFLS
for any |anguage L e T|SP(T, S) for deterministic

computations

2 Super-efficient prover: Any| BFLS already known to be
complexity-preserving?

[BC12, BTVW14]

time: O(T) space:

with non-deterministic
computations

2’ Limited efficiency loss unde
time: T - poly(A) space: S + poly(A)

Talk Outline

Talk Outline

NOT proving NS-soundness of BFLS for deterministic
Circuits

Talk Outline

NOT proving NS-soundness of BFLS for deterministic
Circuits

Part 1: Turing / RAM Machines == (nON-succinct)
deterministic circuits

Talk Outline

NOT proving NS-soundness of BFLS for deterministic
Circuits

Part 1: Turing / RAM Machines == (nON-succinct)
deterministic circuits

Part 2: (part of) BFLS prover efficiency despite non-
succinctness.

Turing Machines as Circuits

O-O-0O-00

tape

TM Configuration

Turing Machines as Circuits

5
O-O-O-00

tape

TM Configuration

Turing Machines as Circuits

O-O-0O-00

tape

TM Configuration

Turing Machines as Circuits

O-O-0O0O0
O-O-0O-00

tape

TM Configuration

Turing Machines as Circuits

TM Configuration

Configr-1

Config

Configo

Transcript / Circuit

Turing Machines as Circuits

Configr-1

Fonjig:

TM Configuration Transcript / Circuit

RAM Machines as Circuits

Configuration:

O0O00O0

RAM Machines as Circuits

Configuration:
(diameter log S)

d leaves = memory

RAM Machines as Circuits

Configuration:
(diameter log S)

5 leaves = memory

RAM Machines as Circuits

Configuration:
(diameter log S)

0

leaves = memory

RAM Machines as Circuits

Configuration:
(diameter log S)

<

leaves = memory

RAM Machines as Circuits

Configuration:
(diameter log S)

<

Important for BFLS:
Graph is “regular”!

leaves = memory

RAM Machines as Circuits

Transcript / Circuit:
Configuration:

(diameter log S) Configr

~
~
~
~
~
~
5
~
5
~
~
~
 J
b
~
~

leaves = memory .
Config+

Configo

Important for BFLS:
Graph is “regular”!

RAM Machines as Circuits

Transcript / Circuit:
Configuration:

(diameter log S) Configr 1

~
~
~
~
~
~
5
~
5
~
~
~
 J
b
~
~

leaves = memory

Important for BFLS:
Graph is “regular”!

RAM Machines as Circuits

Transcript / Circuit:
Configuration:

(diameter log S) Configr

~
~
~
~
~
~
5
~
5
~
~
~
 J
~
~
~

leaves = memory

Important for BFLS:
Graph is “regular”!

RAM Machines as Circuits

Transcript / Circuit:

Configuration:
(diameter log S) Configr-

~
~
~
~
~
~
~
~
5
~
~
~
 J
~
~
~

leaves = memory

Important for BFLS:
Graph is “regular”!

The PCP (BFLS) Part 1:
Multilinear extension

The PCP (BFLS) Part 1:
Multilinear extension

et f:{0,1}"" > TF
0e any function.

The PCP (BFLS) Part 1:
Multilinear extension

et f:{0,1}"" > TF
0e any function.

010
O] 1

The PCP (BFLS) Part 1:
Multilinear extension

0

0

0

1

et f:{0,1}"" > TF
0e any function.

—

multilinear
f:F" > F

2 -4 -6

4 -2 -3
0/0 O
1|2 3

0| O O

The PCP (BFLS) Part 1:
Multilinear extension

et f:{0,1}"" > TF
0e any function.

0

0

0

1

multilinear
f:F" > F

2 -4 -6
-3

0

0 -1 -2
0100 O
0|12 3

The PCP (BFLS) Part 1:
Multilinear extension

et f:{0,1}" > F ?Pgu”ia%
0e any function. '

0 -2 -4 -6

0lo ' 0 -1 -2 -3

0| 1 0/0|0 O

“funny x” € ™ 0j1]2 3

. A
fx)= > f(x) 1k(x)

xe{0,1}™

The PCP (BFLS) Part 1:
Multilinear extension

0e any function.

0

0

et f:{0,1}" > F ?Pgu”ia%
0 -2 -4 -6
0 ' 0 -1 -2 -3
1 00| 0 O
“funny x” € ™ 0j1]2 3
)= D> f(x)-1x(x)
xe{0,1}™ \

“bold x” € {0,1}™

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}** — {0,1}

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}/"* — {0, 1}

ZCYX yxyx)

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}** — {0,1}

C(y,x) = ZC(y,X)é;;)

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}** — {0,1}

C(y,x) = ZC(y,X)é;;)

Configo

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}** — {0,1}

Cly.x) = Zc’(y,x)é;"\)

-/

Configo

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}** — {0,1}

Cly.x) = Zc<y,x>§;‘\)

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}** — {0,1}

Cly.x) = Zc<y,x>§;‘\)

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}** — {0,1}

Cly.x) = Zc’(y,x)é;"\)

W =

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}** — {0,1}

Cly.x) = Zc’(y,x)é;"\)

. EE

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}*** — {0,1}

Cly.x) = Zc’(y,x)é;"\)

=

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}*** — {0,1}

Cly.x) = Zc’(y,x)é;"\)

= o

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}*** — {0,1}

Cly.x) = Zc’(y,x)é;\)

W —

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}*** — {0,1}

Cly.x) = Zc’(y,x)é;\)

™

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}*** — {0,1}

C(y,x) = ZC(%X)%Q

W

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}*** — {0,1}

C(y,x) = ZC(%X)%Q

W

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}*** — {0,1}

C(y,x) = ZC(%X)%Q

M | Config+ ‘

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}*** — {0,1}

C(y,x) = ZC(%X)%Q

T Y o

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}*** — {0,1}

C(y,x) = ZC(%X)%Q

T Y o

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}*** — {0,1}

C(y,x) = ZC(%X)%Q

¥ Y

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}*** — {0,1}

C(y,x) = ZC(%X)%Q

was 3,
now O

\\ .
T Y

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}*** — {0,1}

C(y,x) = ZC(%X)%Q

was 3,
now O

R
-/ -] CEET

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}*** — {0,1}

C(y,x) = ZC(%X)%Q

was 3,
now O

\\ .
T Y

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}*** — {0,1}

C(y,x) = ZC(%X)%Q

was 3,
now O

\\ .
T Y

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}*** — {0,1}

=§;C(y,X)%Q

was 3,
NOW O

-

Configo

Config+

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}*** — {0,1}

=§;C(y,X)%Q

was 3, was 1,
now O / now 2
C onfigo

Config+

-

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}*** — {0,1}

=§;C(y,X)%Q

was 3, was 1,
now O / now 2
C onfigo

Config

@M

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}*** — {0,1}

=§;C(y,X)%Q

was 3, was 1,
now O / now 2
C onfigo

Config+

-

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}*** — {0,1}

=§;C(y,X)%Q

was 3, was 1,
now O / now 2
C onfigo

Config+

-

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}*** — {0,1}

=§;C(y,X)%Q

was 3, - was 1,
now O / now 2
C onfigo

Config+

-

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}*** — {0,1}

=§C(y,X)§;Q

ZC(& y)

was 3, - was 1,
now O / now 2
C onfigo

Config+

-

Prover Efficiency

1. Evaluating extension of transcript C : {0,1}*** — {0,1}

=§C(y,X)§;Q

ZC(X, y) |)

was 3, - was 1,
now O / now 2
C onfigo implicit
enumeration
Config1 of

-

Prover Efficiency

1. Evaluating extension of transcript C:{0,1}'" — {0,1}

ZCY7 yXY7)

was 3, - was 1
now O / now 2
—
\ Configz implicit
N\

enumeration
Config+ of

Prover Efficiency

1. Evaluating extension of transcript C:{0,1}'" — {0,1}

ZC}’U yx:Ya)

was 3, - was 1
now O / now 2
—
\ Configz implicit
N\

enumeration
Config+ of

Prover Efficiency

1. Evaluating extension of transcript C:{0,1}'" — {0,1}

ZC}’U yXYa)

Coefficients structured:

all 1s still well

> C(x,y)])
X,y was 3, - was 1,
’ now O / now 2

—

\ Configo implicit

p enumeration

@ @ Config+ of

Prover Efficiency

1. Evaluating extension of transcript C:{0,1}'" — {0,1}

ZCY7 yXY7)

Coefficients structured:

all 1s still well

> C(x,y)])
X,y was 3, - was 1,
’ now O / now 2

—

\ Configo implicit

p enumeration

@ @ Config+ of

Prover Efficiency

1. Evaluating extension of transcript C:{0,1}'" — {0,1}

ZCY7 yXY7)

Coefficients structured:

all I1s still well
> C(x,y)])
X,y was 3, - was 1,
’ now O / now 2
—
\ Configo implicit
p enumeration
Config+ of

g

Additional Challenges

Additional Challenges

e Other (sum-check) polynomials

Additional Challenges

e Other (sum-check) polynomials

* Getting rid of KRR’s augmented circuit

Additional Challenges

* Other (sum-check) polynomials
* Getting rid of KRR’s augmented circuit

* Prover efficiency under somewhat homomorphic
encryption

Additional Challenges

Other (sum-check) polynomials
Getting rid of KRR’s augmented circuit

Prover efticiency under somewhat homomorphic
encryption

* Low multiplicative degree,
O(1) field operations per step

Additional Challenges

* Other (sum-check) polynomials
* Getting rid of KRR’s augmented circuit

* Prover efficiency under somewhat homomorphic
encryption

* Low multiplicative degree,
O(1) field operations per step

* Space stays S + poly(k), not S - poly(x)

summary

Assumptions Prover Time Prover Space

No-Signaling
PCPs [KRR, ...]

“Slightly”
Homomorphic
Encryption

Open Questions

* How does this compare in practice”? What are the
remaining bottlenecks?

 Can PCP query complexity be reduced?

e |[sthere an FHE scheme which is extra efficient for
our prover?

* Efficiently evaluate low-degree arithmetic circuits
(large fields)

Open Questions

* How does this compare in practice”? What are the
remaining bottlenecks?

 Can PCP query complexity be reduced?

e |[sthere an FHE scheme which is extra efficient for
our prover?

* Efficiently evaluate low-degree arithmetic circuits
(large fields)

low “asymmetric”

degree (GSW) even
better

