Delegation with (nearly) optimal time/space overhead

Justin Holmgren MIT Ron Rothblum MIT

"
$$M(x) = y$$
", proof

"
$$M(x) = y$$
", proof

accept?

"
$$M(x) = y$$
", proof

accept?

Complexity << evaluating M(x)

M(x)=?, challenge

"M(x) = y", proof

accept?

Complexity << evaluating M(x)

Verifiable Computation In Practice

Figure 5. Prover overhead normalized to native execution cost for two computations. Prover overheads are generally enormous.

Verifiable Computation In Practice

"An additional bottleneck is memory: the prover must materialize a transcript of a computation's execution."

Our focus:

- Prover efficiency
- Computational assumptions

	Model	Assumptions	Prover Time	Prover Space
No-Signaling PCP [KRR14, KP15, B H K16]	RAM	PIR	poly(T)	poly(T)

	Model	Assumptions	Prover Time	Prover Space
No-Signaling PCP [KRR14, KP15, B H K16]	RAM	PIR	T^{60} ?	T^{60} ?

	Model	Assumptions	Prover Time	Prover Space
No-Signaling PCP [KRR14, KP15, B H K16]	RAM	PIR	T^3 ?	T^3 ?

	Model	Assumptions	Prover Time	Prover Space
No-Signaling PCP [KRR14, KP15, B H K16]	RAM	PIR	T^3 ?	T^3 ?
SNARKs [BC12, BCCT12,]	RAM	Non-Falsifiable	$T\cdot poly(\kappa)$	$S \cdot poly(\kappa)$
Succinct Garbling [GHRW14, KLW15, CH15, CCCLLZ15]	RAM	Obfuscation	$T\cdot poly(\kappa)$	$S\cdot poly(\kappa)$

	Model	Assumptions	Prover Time	Prover Space
No-Signaling PCP [KRR14, KP15, BHK16]	RAM	PIR	T^3 ?	T^3 ?
SNARKs [BC12, BCCT12,]	RAM	Non-Falsifiable	$T\cdot poly(\kappa)$	$S \cdot poly(\kappa)$
Succinct Garbling [GHRW14, KLW15, CH15, CCCLLZ15]	RAM	Obfuscation	$T\cdot poly(\kappa)$	$S\cdot poly(\kappa)$
[this work]	TM	"Slightly" Homomorphic Encryption	$T\cdot poly(\kappa)$	$S+poly(\kappa)$

	Model	Assumptions	Prover Time	Prover Space
No-Signaling PCP [KRR14, KP15, BHK16]	RAM	PIR	T^3 ?	T^3 ?
SNARKs [BC12, BCCT12,]	RAM	Non-Falsifiable	$T \cdot poly(\kappa)$	$S \cdot poly(\kappa)$
Succinct Garbling [GHRW14, KLW15, CH15, CCCLLZ15]	RAM	Obfuscation	$T\cdot poly(\kappa)$	$S \cdot poly(\kappa)$
[this work]	TM	"Slightly" Homomorphic Encryption	$T\cdot poly(\kappa)$	$S+poly(\kappa)$

Extends to (cache-efficient) RAM

	Model	Assumptions	Prover Time	Prover Space
No-Signaling PCP [KRR14, KP15, BHK16]	RAM	PIR	T^3 ?	T^3 ?
SNARKs [BC12, BCCT12,]	RAM	Non-Falsifiable	$T \cdot poly(\kappa)$	$S \cdot poly(\kappa)$
Succinct Garbling [GHRW14, KLW15, CH15, CCCLLZ15]	RAM	Obfuscation	$T\cdot poly(\kappa)$	$S \cdot poly(\kappa)$
[this work]	TM	"Slightly" Homomorphic Encryption	$T\cdot poly(\kappa)$	$S+poly(\kappa)$

Extends to (cache-efficient) RAM

Probabilistically Checkable Proofs

Probabilistically Checkable Proofs

Proof string π

Verifier

Probabilistically Checkable Proofs

Probabilistically Checkable Proofs

Probabilistically Checkable Proofs

Proof string π

 $x \in \mathcal{L} \implies$ exists convincing proof

every proof convinces $x \notin \mathcal{L} \implies$ with low probability

Verifier

Probabilistically Checkable Proofs

Not a standard-model delegation scheme

PCP-based Delegation [Biehl-Meyer-Wetzel 98]

Not sound in general
 [Dwork-Langberg-Naor-Nissim-Reingold 01]

- Not sound in general
 [Dwork-Langberg-Naor-Nissim-Reingold 01]
- Sound if the PCP is *no-signaling* sound [Kalai-Raz-Rothblum 14]

- Not sound in general
 [Dwork-Langberg-Naor-Nissim-Reingold 01]
- Sound if the PCP is *no-signaling* sound [Kalai-Raz-Rothblum 14]

- Not sound in general
 [Dwork-Langberg-Naor-Nissim-Reingold 01]
- Sound if the PCP is *no-signaling* sound [Kalai-Raz-Rothblum 14]

Observation 0

Observation 0

Observation 0

• If PIR = FHE, just need efficient "random-access" to PCP.

Observation 0

WANTED

No-Signaling PCP with efficient prover

If PIR = FI
 access" to

\$\$\$ reward

dom-

1 Simpler and direct NS-PCP(essentially BFLS) for any language $\mathcal{L} \in \mathsf{TISP}(T,S)$

Remove major component of KRR, namely "augmented circuit"

1 Simpler and direct NS-PCP(essentially BFLS) for any language $\mathcal{L} \in \mathsf{TISP}(T,S)$

- **1** Simpler and direct NS-PCP(essentially BFLS) for any language $\mathcal{L} \in \mathsf{TISP}(T,S)$
- **2** Super-efficient prover: Any symbol computable in time: $\tilde{O}(T)$ space: S + polylog(T)

- **1** Simpler and direct NS-PCP(essentially BFLS) for any language $\mathcal{L} \in \mathsf{TISP}(T,S)$
- **2** Super-efficient prover: Any symbol computable in time: $\tilde{O}(T)$ space: $S + \operatorname{polylog}(T)$
- 2' Limited efficiency loss under FHE

- **1** Simpler and direct NS-PCP(essentially BFLS) for any language $\mathcal{L} \in \mathsf{TISP}(T,S)$
- **2** Super-efficient prover: Any symbol computable in time: $\tilde{O}(T)$ space: $S + \operatorname{polylog}(T)$
- 2' Limited efficiency loss under FHE time: $T \cdot \operatorname{poly}(\lambda)$

- **1** Simpler and direct NS-PCP(essentially BFLS) for any language $\mathcal{L} \in \mathsf{TISP}(T,S)$
- **2** Super-efficient prover: Any symbol computable in time: $\tilde{O}(T)$ space: $S + \mathsf{polylog}(T)$
- 2' Limited efficiency loss under FHE time: $T \cdot \operatorname{poly}(\lambda)$ space: $S + \operatorname{poly}(\lambda)$

Remove major component of KRR, namely "augmented circuit"

1 Simpler and direct NS-PCP(essentially BFLS) for any language $\mathcal{L} \in \mathsf{TISP}(T,S)$

2 Super-efficient prover: Any

time: $\tilde{O}(T)$

space: S

BFLS already known to be complexity-preserving?
[BC12, BTVW14]

in

2' Limited efficiency loss under FHE time: $T \cdot \operatorname{poly}(\lambda)$ space: $S + \operatorname{poly}(\lambda)$

- 1 Simpler and direct NS-PCP(essentially BFLS) for any language $\mathcal{L} \in \mathsf{TISP}(T,S)$ for deterministic computations
- 2 Super-efficient prover: Any time: $\tilde{O}(T)$ space: BFLS already known to be complexity-preserving? [BC12, BTVW14]
- 2' Limited efficiency loss under FHE time: $T \cdot \operatorname{poly}(\lambda)$ space: $S + \operatorname{poly}(\lambda)$

Remove major component of KRR, namely "augmented circuit"

1 Simpler and direct NS-PCP(essentially BFLS) for any language $\mathcal{L} \in \mathsf{TISP}(T,S)$ for deterministic computations

2 Super-efficient prover: Any space: $\tilde{O}(T)$ BFLS already known to be complexity-preserving? [BC12, BTVW14] in

with **non-deterministic**

2' Limited efficiency loss under FIL time: $T \cdot \mathsf{poly}(\lambda)$ space: $S + \mathsf{poly}(\lambda)$

NOT proving NS-soundness of BFLS for deterministic circuits

NOT proving NS-soundness of BFLS for deterministic circuits

Part 1: Turing / RAM Machines → (non-succinct) deterministic circuits

NOT proving NS-soundness of BFLS for deterministic circuits

Part 1: Turing / RAM Machines → (non-succinct) deterministic circuits

Part 2: (part of) BFLS prover efficiency despite non-succinctness.

:

TM Configuration

Transcript / Circuit

Configuration:

OOOO

Configuration:

Configuration:

Configuration:

Configuration:

Configuration:

(diameter log S)

Important for BFLS: Graph is "regular"!

Graph is "regular"!

Graph is "regular"!

no routing networks!

Transcript / Circuit:

Important for BFLS: Graph is "regular"!

no Merkle trees!

no routing networks!

Transcript / Circuit:

Important for BFLS: Graph is "regular"!

Let $f:\{0,1\}^m \to \mathbb{F}$ be any function.

Let $f:\{0,1\}^m\to\mathbb{F}$ be any function.

0	0
0	1

Let $f:\{0,1\}^m\to\mathbb{F}$ be any function.

multilinear

$$\hat{f}: \mathbb{F}^m \to \mathbb{F}$$

Let $f:\{0,1\}^m\to\mathbb{F}$ be any function.

multilinear

$$\hat{f}: \mathbb{F}^m \to \mathbb{F}$$

$$\hat{f}(\mathbf{x}) = \sum_{\mathbf{x} \in \{0,1\}^m} f(\mathbf{x}) \cdot \hat{\mathbf{1}}_{\mathbf{x}}(\mathbf{x})$$

The PCP (BFLS) Part 1: Multilinear extension

Let $f:\{0,1\}^m\to\mathbb{F}$ be any function.

multilinear

$$\hat{f}: \mathbb{F}^m \to \mathbb{F}$$

"funny x"
$$\in \mathbb{F}^m$$

$$\hat{f}(\mathbf{x}) = \sum_{\mathbf{x} \in \{0,1\}^m} f(\mathbf{x}) \cdot \hat{\mathbf{1}}_{\mathbf{x}}(\mathbf{x})$$

The PCP (BFLS) Part 1: Multilinear extension

Let $f:\{0,1\}^m\to\mathbb{F}$ be any function.

multilinear

$$\hat{f}: \mathbb{F}^m \to \mathbb{F}$$

"funny x"
$$\in \mathbb{F}^m$$

$$\hat{f}(\mathbf{x}) = \sum_{\mathbf{x} \in \{0,1\}^m} f(\mathbf{x}) \cdot \hat{\mathbf{1}}_{\mathbf{x}}(\mathbf{x})$$
 "bold x" $\in \{0,1\}^m$

$$\hat{\mathcal{C}}(y, x) = \sum_{\mathbf{y}, \mathbf{x}} \mathcal{C}(\mathbf{y}, \mathbf{x}) \cdot \hat{\mathbf{1}}_{\mathbf{y}, \mathbf{x}}(y, x)$$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

1. Evaluating extension of transcript $\hat{\mathcal{C}}: \{0,1\}^{t+s} \to \{0,1\}$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

1. Evaluating extension of transcript $\hat{\mathcal{C}}: \{0,1\}^{t+s} \to \{0,1\}$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

1. Evaluating extension of transcript $\hat{\mathcal{C}}: \{0,1\}^{t+s} \to \{0,1\}$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

1. Evaluating extension of transcript $\hat{\mathcal{C}}: \{0,1\}^{t+s} \to \{0,1\}$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

1. Evaluating extension of transcript $\hat{\mathcal{C}}: \{0,1\}^{t+s} \to \{0,1\}$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

1. Evaluating extension of transcript $\hat{\mathcal{C}}: \{0,1\}^{t+s} \to \{0,1\}$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

1. Evaluating extension of transcript $\hat{\mathcal{C}}: \{0,1\}^{t+s} \to \{0,1\}$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

1. Evaluating extension of transcript $\hat{\mathcal{C}}: \{0,1\}^{t+s} \to \{0,1\}$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

1. Evaluating extension of transcript $\hat{\mathcal{C}}: \{0,1\}^{t+s} \to \{0,1\}$

$$\hat{\mathcal{C}}(y, x) = \sum_{\mathbf{y}, \mathbf{x}} \mathcal{C}(\mathbf{y}, \mathbf{x})$$

1. Evaluating extension of transcript $\hat{\mathcal{C}}: \{0,1\}^{t+s} \to \{0,1\}$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

Config₁

Config o

1. Evaluating extension of transcript $\hat{\mathcal{C}}: \{0,1\}^{t+s} \to \{0,1\}$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

Config₁

Config o

1. Evaluating extension of transcript $\hat{\mathcal{C}}: \{0,1\}^{t+s} \to \{0,1\}$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

$$\hat{\mathcal{C}}(y, x) = \sum_{y, x} \mathcal{C}(y, x)$$

$$\hat{\mathcal{C}}(y, x) = \sum_{\mathbf{y}, \mathbf{x}} \mathcal{C}(\mathbf{y}, \mathbf{x}) \cdot \hat{\mathbf{1}}_{\mathbf{y}, \mathbf{x}}(y, x)$$

$$\hat{\mathcal{C}}(y, x) = \sum_{\mathbf{y}, \mathbf{x}} \mathcal{C}(\mathbf{y}, \mathbf{x}) \cdot \hat{\mathbf{1}}_{\mathbf{y}, \mathbf{x}}(y, x)$$

1. Evaluating extension of transcript $\hat{\mathcal{C}}: \{0,1\}^{t+s} \to \{0,1\}$

$$\hat{\mathcal{C}}(y, x) = \sum_{\mathbf{y}, \mathbf{x}} \mathcal{C}(\mathbf{y}, \mathbf{x}) \cdot \hat{\mathbf{1}}_{\mathbf{y}, \mathbf{x}}(y, x)$$

Coefficients structured; all is still well

1. Evaluating extension of transcript $\hat{\mathcal{C}}: \{0,1\}^{t+s} \to \{0,1\}$

$$\hat{\mathcal{C}}(y, x) = \sum_{\mathbf{y}, \mathbf{x}} \mathcal{C}(\mathbf{y}, \mathbf{x}) \cdot \hat{\mathbf{1}}_{\mathbf{y}, \mathbf{x}}(y, x)$$

Coefficients structured; all is still well

1. Evaluating extension of transcript $\hat{\mathcal{C}}: \{0,1\}^{t+s} \to \{0,1\}$

$$\hat{\mathcal{C}}(y, x) = \sum_{\mathbf{y}, \mathbf{x}} \mathcal{C}(\mathbf{y}, \mathbf{x}) \cdot \hat{\mathbf{1}}_{\mathbf{y}, \mathbf{x}}(y, x)$$

Coefficients structured; all is still well

Other (sum-check) polynomials

- Other (sum-check) polynomials
- Getting rid of KRR's augmented circuit

- Other (sum-check) polynomials
- Getting rid of KRR's augmented circuit
- Prover efficiency under somewhat homomorphic encryption

- Other (sum-check) polynomials
- Getting rid of KRR's augmented circuit
- Prover efficiency under somewhat homomorphic encryption
 - Low multiplicative degree,
 O(1) field operations per step

- Other (sum-check) polynomials
- Getting rid of KRR's augmented circuit
- Prover efficiency under somewhat homomorphic encryption
 - Low multiplicative degree,
 O(1) field operations per step
 - Space stays $S + \operatorname{poly}(\kappa)$, not $S \cdot \operatorname{poly}(\kappa)$

Summary

		Assumptions	Prover Time	Prover Space
•	No-Signaling PCPs [KRR,]	PIR	$\geq T^3S^3$	$\geq T^3S^3$
	SNARKs [BC,BCCT,]	Non-Falsifiable	$T \cdot poly(\kappa)$	$S \cdot poly(\kappa)$
	Succinct Garbling [GHRW, KLW,]	Obfuscation/ multilinear maps	$T \cdot poly(\kappa)$	$S \cdot poly(\kappa)$
1	[this work]	"Slightly" Homomorphic Encryption	$T \cdot poly(\kappa)$	$S+poly(\kappa)$

Open Questions

- How does this compare in practice? What are the remaining bottlenecks?
- Can PCP query complexity be reduced?
- Is there an FHE scheme which is extra efficient for our prover?
 - Efficiently evaluate low-degree arithmetic circuits (large fields)

Open Questions

- How does this compare in practice? What are the remaining bottlenecks?
- Can PCP query complexity be reduced?
- Is there an FHE scheme which is extra efficient for our prover?
 - Efficiently evaluate low-degree arithmetic circuits (large fields)

degree (GSW) even

better