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Verifiable Computation
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Figure 5. Prover overhead normalized to native execution cost for two computations.

Prover overheads are generally enormous.
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Verifiable Computation
INn Practice

"An additional bottleneck is memory: the prover must
materialize a transcript of a computation's execution.”
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Veritiable Computation

M(x)=?, challenge /h&<2
l ///// \\ t% »

Complexity ¢
~evaluating M(x) Complexity
<< evaluating M(x)

Our focus:

* Prover efficiency
 Computational assumptions
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computations

2 Super-efficient prover: Any| BFLS already known to be
complexity-preserving?

[BC12, BTVW14]

time: O(T) space:
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computations

2’ Limited efficiency loss unde
time: T - poly(A) space: S + poly(A)
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Talk Outline

NOT proving NS-soundness of BFLS for deterministic
Circuits

Part 1: Turing / RAM Machines == (nON-succinct)
deterministic circuits

Part 2: (part of) BFLS prover efficiency despite non-
succinctness.
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Additional Challenges

* Other (sum-check) polynomials
* Getting rid of KRR’s augmented circuit

* Prover efficiency under somewhat homomorphic
encryption

* Low multiplicative degree,
O(1) field operations per step

* Space stays S + poly(k), not S - poly(x)
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* How does this compare in practice”? What are the
remaining bottlenecks?

 Can PCP query complexity be reduced?

e |[sthere an FHE scheme which is extra efficient for
our prover?

* Efficiently evaluate low-degree arithmetic circuits
(large fields)

low “asymmetric”

degree (GSW) even
better




