
1/21

Our result Features A peak under the hood Summary

Scalable Transparent ARguments-of-Knowledge

Michael Riabzev

Department of Computer Science, Technion

DIMACS Workshop on Outsourcing Computation Securely

Joint work with Eli Ben-Sasson, Iddo Bentov, and Yinon Horesh



2/21

Our result Features A peak under the hood Summary

Talk outline

• Our result

• Novel theory review (Low degree testing)

• Concrete implementation performance review
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Our result
Today I will tell you about STARK:

• “Scalable Transparent ARgument
of Knowledge”

• New construction
(theory+implementation1)
featuring:

• Perfect
witness-indistinguishability

• Publicly verifiable
• No trusted-setup
• Universal
• Succinct verification

• And additionally:
• Post-quantum secure
• Scalable prover (quasi-linear)

W

Prover Verifier

(P,X,T )

P(X,W) ⊢<T accept

1
Proof-of-concept in C++
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Computational model
Interactive Oracle Proofs (IOP)[BCS16, RRR16]2:

• A generalization of IP[GMR89] and PCP[BFL91, AS98]

• Verifier interacts with the Prover
• Prover’s messages too big for the verifier to read entirely

• Also known as oracles

Realistic argument-system:

• Using Merkle trees [Kil92, Kil95, Mic00, BCS16]

• Noninteractive system : Fiat-Shamir heuristic

2also known as PCIP in [RRR16]
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Cryptographic assumption

• Inner protocol (IOP):
• Provably sound3

• Provably perfect zero-knowledge

• Compilation to (noninteractive) argument system:
• Using the random oracle model

• Implementation:
• Simulating a random-oracle using a hash-function

3Implementation uses security conjectures to improve concrete efficiency.
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STARK (this work) introduces improvements over SCI
[BBCGGHPRSTV17] in several aspects: (Ben-Sasson, Bentov,
Chiesa, Gabizon, Genkin, Hamilis, Pergament, R, Silberstein,
Tromer, Virza)

• Privacy — witness indistinguishability based on [BCGV16]

• Arithmetization — optimized for interactive systems

• Disclaimer: RAM usage introduces ∼ 8T logT additive
overhead to witness size

• in addition to O(T ) witness size when no RAM is used
• Derived from SCI

• Low degree test — optimized for interactive systems

• Hash-tree commitment — optimization based on queries
patter

• Reducing communication complexity

• System — code optimizations

In this talk we focus on the novel low-degree test
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IOPP novel low-degree test

Theorem ([BBHR17])

Given oracle access to an evaluation f ∶ S → F2n over F2 linear
subspace S ⊂ F2n , there is an IOPP protocol to verify f is close to

degree d < ∣S ∣3 , with the following properties:

• Total proof size < ∣S ∣2 .

• Round complexity log ∣S ∣
2 .

• Prover complexity < 4∣S ∣ arithmetic operations over F2n .
• Highly parallelizable.

• Query complexity is 2 log ∣S ∣.
• Soundness:

Pr[Reject∣dist(f ,C) = δ] ≥ min (δ, 1
4 −

3d
4∣S ∣) − 3 ∣S ∣

∣F2n ∣
.

• Close to δ in the unique-decoding-radius.
• Shown to be tight there.
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Low-degree testing in the Interactive-Oracle-Proof model

• Redundancy addition: Prover
transforms univariate polynomial
p(x) into a bivariate polynomial
Q(x , y)

• Invariant: degy(Q) = deg(p)/4

• Verification: Verifier chooses
random x0 and verifies
q(y) = Q(x0, y) is low-degree

• By repeating the test recursively
• Until deg(q) is small enough

⋰ ⋮ ⋱ ⋰ ⋮ ⋱
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Low-degree testing — more details

The transformation T ∶ F[x] → F[x , y]
is basically a biased version of [?]:

• p(x) ∈ F[x] is evaluated over
V = Span{b1,b2, . . . ,bn}

• Define:
• V0 ∶= Span{b1,b2}
• V1 ∶= Span{b3, . . . ,bn}
• ZV0(x) ∶= ∏

α∈V0

(x − α)

• T (p) = Q(x , y) where
Q(x , y) ∶= p(x) mod (y − ZV0(x))

• Features:
• ∀x ∶ Q(x ,Zv0(x)) = p(x)
• degx(Q) < 4
• degy(Q) = deg(p)/4

⋰ ⋮ ⋱ ⋰ ⋮ ⋱
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Low-degree testing — advantages of interactivity

• Deeper recursion is possible due to
provers adaptivity

• ‘Lightweight’ prover algorithm

• Better soundness:
• Rows are low degree by definition
• Any column can be queried

⋰ ⋮ ⋱ ⋰ ⋮ ⋱
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Benchmark : Forensics DNA blacklist

• FBI has the forensics DB

• knows hash digest of the DB
• Davies-Meyer-AES160

• FBI provide Andy’s DNA
profiling4result with an integrity
proof

• The program verified:

def prog ( d a t a b a s e ) :
cu r rH as h = 0

f o r c u r r E n t r y i n d a t a b a s e :
i f c u r r E n t r y matches AndysDNA :

REJECT
cu r rH ash = Hash ( c u r r E n t r y , c u r r V a l )

i f cu r rH ash == expectedHash : ACCEPT
e l s e : REJECT

Any match for Andy?

No match found

4
Based on https://www.fbi.gov/services/laboratory/biometric-analysis/codis

https://www.fbi.gov/services/laboratory/biometric-analysis/codis
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Machine specifications:
Prover: CPU: 4 X AMD Opteron(tm) Processor 6328 (32 cores total, 3.2GHz), RAM: 512GB
Verifier: CPU: Intel(R) Core(TM) i7-4600 2.1GHz, RAM: 12GB, Circuit: runtime simulated for long inputs
Security: Security level: 80 bits (Probability of cheating < 2−80)
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Conclusions: Verifier asymptotic behaviour as predicted; Speedup achieved only for a few generated arguments
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Comparison to other approaches
Machine specifications:
CPU: 4 X AMD Opteron(tm) Processor 6328 (32 cores total, 3.2GHz), RAM: 512GB
Benchmark:
Executing subset-sum solver for 64K TinyRAM steps (9 elements — exhaustive algorithm).

Prover (mins) Verifier (mSec) Comm. (bytes)
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9
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41
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Comparison to other systems - lower is better (log scale)

Fastest prover;
Verification ∼ fastest so far;

CC lowest; Argument ∼ ×1K longer “best”

• STARK

• SCI[BBCGGHPRSTV17] — based on
IOP.

• KOE[BCGTV13] — zkSNARK based
on Knowledge Of Exponent hardness.
Non-succinct setup required.

• IVC[BCTV14] — Incrementally
Verifiable Computation based on
KOE. Setup required (succinct).
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Summary

STARK Introduction:
Any match for Andy?

No match found

New low-degree test:

⋰ ⋮ ⋱ ⋰ ⋮ ⋱

Concrete measurements:
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Preliminary version in FOCS ’92.
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Computational Complexity, 1:3–40, 1991.
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Shafi Goldwasser, Silvio Micali, and Charles Rackoff.
The knowledge complexity of interactive proof systems.
SIAM Journal on Computing, 18(1):186–208, 1989.
Preliminary version appeared in STOC ’85.

Joe Kilian.
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In Proceedings of the 24th Annual ACM Symposium on
Theory of Computing, STOC ’92, pages 723–732, 1992.

Joe Kilian.
Improved efficient arguments.
In Proceedings of the 15th Annual International Cryptology
Conference, CRYPTO ’95, pages 311–324, 1995.
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Silvio Micali.
Computationally sound proofs.
SIAM Journal on Computing, 30(4):1253–1298, 2000.
Preliminary version appeared in FOCS ’94.
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In Proceedings of the 48th Annual ACM SIGACT Symposium
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June 18-21, 2016, pages 49–62, 2016.
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