
Implementations of probabilistic proofs
for verifiable outsourcing: survey and
next steps

Srinath Setty

Microsoft Research

(Thanks to Michael Walfish for some of the slides.)

without executing f,

can check that: “y = f(x)”
more generally: “prover knows w s.t. y =

f(x,w)”

• Efficiency

• Privacy of w zero-knowledge

GMR85

BCC88

Kilian92

Micali94

BG02

GOS06

IKO07

GKR08

CKV10

GGP10

Groth10

Lipmaa1

2

GGPR12

BCCT13

…

Practicality
efficiency privacy for w

• Running code; cost reductions of 1020 vs. theory

• Compilers from C to protocol entities

• Stateful computations; remote inputs, outputs

• Concretely efficient verifiers

• Extreme expense: 106x overhead vs. native

• Programming model is clumsy

• Useful only for special-purpose applications

SBW11

CMT12

SMBW12

TRMP12

SVPBBW12

SBVBPW13

VSBW13

PGHR13

Thaler13

BCGTV13

BFRSBW13

BFR13

DFKP13

BCTV14a

BCTV14b

BCGGMTV14

FL14

KPPSST14

FGV14

BBFR14

WSRHBW15

CFHKKNPZ15

CTV15

WHGSW16

DFKP16

FFGKOP16

ZGKPP17

WJBSTWW17

[Castro & Liskov TOCS02]

Intel SGX

Summary of state of the art implementations

back-end

(probabilistic proof protocol)

front-end

(program translator)

arithmetic circuit

(non-det. input)

x y, π

main(){

...

}

C program prover

verifier

interactive proof [GKR08]

interactive argument [IKO07]

non-interactive argument [Groth10, Lipmaa12,

GGPR12]

General “processor”

Custom circuit

Interactive proofs
[GKR08, CMT12, …]

Arguments

Interactive
[IKO07, SBW11, SMBW12, …]

Non-interactive
[Groth10, Lipmaa12, GGPR12,

…]

Circuit type Deterministic Non-

deterministic

Non-

deterministic

#Rounds Lots Two One

Assumptions None Simple, falsifiable Non-standard

Prover expense 10 to 100x 106x 106x

Verifier setup 0 or (10 to 100x) 106x 106x

Zero-knowledge No No Yes

Hardware impl. Yes Non-amenable Non-amenable

[GGPR12]

proververifier

Attempt 1: Use PCPs that are asymptotically

short [ALMSS92, AS92]

...

ACCEPT/REJEC

T

...

“short” PCP

[BGHSV05, BGHSV06, Dinur07, BS08, Meir12, BCGT13]

This does not meet the efficiency requirements (because

|PCP| > running time of f).

Attempt 2: Use arguments or CS proofs[Kilian92, Micali94]

proververifier

...

ACCEPT/REJEC

T

“short” PCP

But the constants seem too high …

prover

L() = <,v>

Attempt 3: Use long PCPs interactively[IKO07, SMBW12, SVPBBW12]

Achieves simplicity, with good constants …

… and prover’s work is quadratic; address that

shortly

ACCEPT/REJEC

T

z ⊗
z

z

v

verifier

Hadamard
encoding of Z

...
… but pre-processing is required (because |qi|=|v|)

prover

L() = <,v>

Attempt 4: Use long PCPs non-

interactively

[BCIOP13]

ACCEPT/REJEC

T

z ⊗
z

z

v

verifier

Hadamard
encoding of v

...
Query processing now happens “in the

exponent”

… prover’s work still quadratic; addressing that

soon

… pre-processing still required (again because |qi|=|v|)

efficient

(short) PCPs

arguments,

CS proofs

arguments w/

preprocessing

SNARGs w/

preprocessing

who ALMSS92, AS92,

BGSHV, Dinur, …

Kilian92,

Micali94

IKO07, SMBW12,

SVPBBW12,
SBVBPW13

GGPR12,

BCIOP13, …

what classical PCP commit to

PCP by

hashing

commit to

long PCP

using linearity

encrypt queries

to a long PCP

security unconditional CRHFs linearly HE knowledge-of-

exponent

why/why

not

not efficient

for V

constants

are

unfavorable

simple simple, non-

interactive

Recap

(Thanks to Rafael Pass.)

z

h

PCP structure implicit in GGPR. Made explicit in [BCIOP13,

SBVBBW13].

[Groth10, Lipmaa12, GGPR12]

Final attempt: apply linear query structure to GGPR’s

QAPs

prover

L() {

return <,v>;

}
z ⊗
z

z

v

Addresses the issue of quadratic costs.

• standard assumptions

• amortize over batch

• interactive

• non-falsifiable assumptions

• amortize indefinitely

• non-interactive, ZK, …

plaintex

t

queries

QAPs

queries in

exponent

“Pinocchio,” “libsnark”
[PGHR13, BCTV14a]

“Zaatar”
[SBVBBW13]

interactive

argument
[IKO07]

SNARG, zk-SNARK with pre-

processing
[Groth10, BCCT12, GGPR12]

pre-processing

avoidable in theory
[BCCT13, BCTV14b, CTV15]

back-end

(argument variants)

front-end

(program translator)

arithmetic circuit

(non-det. input)

y, π

main(){

...

}

C program prover

verifier

QAPs
[GGPR12]

x

State of the art front-

ends

Custom circuits

circuit is unrolled CPU execution

 Verbose circuits (costly)

 Good amortization

 Great programmability

 Concise circuits

 Amortization worse

 How is programmability?

“General” processor

[TinyRAM]

each line translates to gates

[SBVBPW13, VSBW13, PGHR13, BFRSBW13,

BCGGMTV14, BBFR14, FL14, KPPSST14, WSRBW15,
CFHKKNPZ15]

[BCGTV13, BCTV14a, BCTV14b, CTV15]

C prog MIPS

.exe

CPU state

…

fetch-decode-execute

C prog

applicable computations

concrete

costs special-purpose pure stateful

genera

l loops

function

pointers

lower
Thaler
CRYPTO13

CMT, TRMP
ITCS, Hotcloud12

Pepper, Ginger
NDSS12, Security12

Trueset, Zerocash
Security14,Oakland15

Zaatar
Eurosys13

Pinocchio
Oakland13

Geppetto
Oakland15

Pantry
SOSP13

Buffet
WSRHBW

NDSS15

higher

highest

(still theory)

Front-ends trade off performance and expressiveness

Proof-carrying data
CRYPTO14, Eurocrypt15

Short PCPs Eurocrypt17

BCTV
Security14

BCGTV
CRYPTO13

Custom circuit

General

“processor

”

?

Summary of common framework:

back-end

(argument variants)

front-end

(program translator)

y, π

main(){

...

}

prover

verifier

QAPs
[GGPR12]

x

…

“custom circuit”

“general processor”

Summary of state of the art implementations

Reality check with a performance evaluation

Back-end: libsnark i.e., BCTV’s optimized Pinocchio

implementation

Front-ends: implementations or re-implementations of

 Zaatar (Custom circuit) [SBVBPW Eurosys13]

 BCTV (General processor) [Security14]

 Buffet (Custom circuit) [WSRHBW NDSS15]

applicable computations

concrete

costs special-purpose pure stateful

genera

l loops

function

pointers

lower
Thaler
CRYPTO13

CMT, TRMP
ITCS, Hotcloud12

Pepper, Ginger
NDSS12, Security12

Trueset, Zerocash
Security14, Oakland15

Zaatar
Eurosys13

Pinocchio
Oakland13

Geppetto
Oakland15

Pantry
SOSP13

Buffet
NDSS15

higher

highest

(still theory)

BCTV
Security14

BCGTV
CRYPTO13

Landscape of front-ends (again)

Proof-carrying data
CRYPTO14, Eurocrypt15

Short PCPs Eurocrypt17

Quick performance study

Back-end: libsnark i.e., BCTV’s optimized Pinocchio

implementation

Front-ends: implementations or re-implementations of:

 Zaatar (Custom circuit) [SBVBPW Eurosys13]

 BCTV (General processor) [Security14]

 Buffet (Custom circuit) [WSRHBW NDSS15]

Evaluation platform: cluster at Texas Advanced Computing Center

(TACC)

Each machine runs Linux on an Intel Xeon 2.7 GHz with 32GB of RAM.

(1) What are the verifier’s costs?

(2) What are the prover’s costs?

(3) How do the front-ends compare to each

other?

(4) Are the constants good or bad?

Proof length 288 bytes

V per-instance 6 ms + (|x| + |y|)･3 µs

V pre-processing |C|･180 µs

P per-instance |C|･60 µs +|C|log |C|･0.9µs

P’s memory requirements O(|C|log|C|)

(|C|: circuit size)

Extrapolated prover execution time, normalized to

Buffet

How does the prover’s cost vary with the

choice of front-end?

Extrapolated prover execution time, normalized to native

execution

All of the front-ends have terrible concrete

performance

 Front-end: generality brings a concrete price (but better in theory)

 Verifier’s “variable costs”: genuinely inexpensive

 Prover’s computational costs: near-total disaster

 Memory: creates scaling limit for verifier and prover

One option: Target domains where verifier cannot simply execute
the computation

• Anonymous credentials: Cinderella [Oakland16]

• Anonymity for Bitcoin: Zerocash [Oakland14]

• Location-private tolling [Security09]: Pantry [SOSP13]

Another option: try to motivate theoretical advances

Summary of state of the art implementations

Reality check with a performance evaluation

Next steps: We need 3-6 orders of magnitude
speedup

• More efficient reductions from programs to circuits

• Inexpensive floating-point operations (to target
domains such as deep learning, machine learning, …)

• Better handling of state

Pantry [SOSP13]

ADSNARK [S&P15],

Geppetto [S&P15]

Hash first argue

later [CCS16]

Technique CRHF in circuit

(folklore)

SNARK already has

a CRHF

SNARK already

has a CRHF

Generality Any circuit Specific Any circuit

Prover expense O(k log(|D|)) O(k |D|) O(k |D|)

Concrete

expense

106 to 108x 106 to 108x 106 to108x

[S&P17]

• Construct short PCPs that are efficient
Ben-Sasson et al. [EUROCRYPT17] have taken steps toward this, but
concrete costs are quite high

• Endow IKO’s arguments with more properties or lower
costs

Reuse the verifier’s setup work beyond a batch

Make the protocol zero knowledge

• Add zero-knowledge inexpensively to GKR’s protocol

• Improve GGPR’s QAPs or the cryptography used to
query it

• Verifiable database

Lots of other ideas needed; we don’t know what they

are!

