Implementations of probabilistic proofs
for verifilable outsourcing: survey and
next steps

Srinath Setty
Microsoft Research

(Thanks to Michael Walfish for some of the slides.)

Client . x . Server
(verifier) (prover)
<« Y, prOOf

without executing f,

can check that: "y = f(x)"
more generally: “prover knows w s.t. y =

f(x,w)"

Motivation: Third-party computing

Cloud computing, distributed ledger technologies (DLITs)

Requirements:

Efficiency (client CPU, communication, server CPU, etc.)
Privacy of w (zero-knowledge, desirable in some applications)

GMR85
BCC88
Kilian92
Micali94
BGO2
GOs06
KOO0/
GKRO8
CKV10
GGP10
Groth10
Lipmaal
2
GGPR12
BCCT13

A naive implementation of the theory results in
outrageous Costs

Thousands of CPU years to veritiably execute even
simple computations

What do we need?

Practicality (as real people understand the term) in
addition to efficiency and privacy for w

Good news

Running code; cost reductions of 104° vs. theory
Compilers from C to protocol entities

Stateful computations; remote inputs, outputs
Concretely efficient verifiers

Bad news

Extreme expense: 10°x overhead vs. native
’rogramming model is clumsy
Useful only for special-purpose applications

sewll
CMT12
SMBW12
TRMP12
SVPBBW12
SBVBPW13
VSBW13
PGHR13
Thalerl3
BCGTV13
BFRSBW13
BFR13
DFKP13
BCTv14a
BCTv14b
BCGGMTV14
FL14
KPPSST14
FGv14
BBFR14
WSRHBW15
CFHKKNPZ15
CTV15
WHGSW16
DFKP16
FFGKOP16
ZGKPP17
WJBSTWW17

Note: There are pragmatic alternatives

Replication [Castro & Liskov TOCS02]
Far less expensive, but it does not support privacy for w

Trusted hardware such as Intel SGX

-ar less expensive, but requires significant trust

No formal security guarantees

Hard (or impossible) to reason about end-to-end security

Rest of this talk

Summary of state of the art implementations
Reality check with a performance evaluation

Next steps

Common framework in state of the art systems

front-end back-end

(program translator) (probablllstlc proof protocol)
| \ 'I \\I
[main()(THyg o verifier |
| — — |
) ! X l Ty, T i
. C program arithmetic circuit i i orover i
] (non-det. input) '+ k
General “processor” interactive proof [GKRog]
Custom circuit Interactive argument [iko07]

non-interactive argument [Groth10, Lipmaal2,
GGPR12]

Arguments

Interactive Non-interactive

Interactive prOOfS [IKOO07, SBW11, SMBW12, ..] [Groth10, Lipmaal2, GGPR12,
[GKROS8, CMT12, ...]]

Circult type Deterministic Non- Non-
deterministic deterministic

#Rounds Lots Two One

Assumptions None Simple, falsifiable Non-standard

Prover expense 10 to 100x 10°x 10°x

Verifier setup 0 or (10 to 100x) 106x 100x

Zero-knowledge No No Yes

Hardware impl. _ Yes Non-amenable ., Non-amenable

Ar-feeehtthpremehtattonsuse
the QAP encoding [GGPR12]

Attempt 1. Use PCPs that are asymptotically

ALMSS92, AS92 BGHSVO5, BGHSV06, DinurQ7, BSO8, Meirl2, BCGT13
short | I]

verifier prover
>
> g
ACCEPT/REJEC ‘short” PCP
T

This does not meet the efficiency requirements (because
|IPCP| > running time of f).

Attempt 2: Use arguments or CS proofn92, Micalio4]

verifier ——— | prover
hash tree digest
H
e — ﬁu
:
ACCEPT/REJEC “short” PCP
— g o0

But the constants seem too high ...

Attempt 3: Use Iong PCPs interactivakyoz SMBW12, svPBBW12]

__ commit request
verifier | prover
ommit response

C N
 ‘ A L(e) = <o v> | T T
W ZQ g
L v’ zZ < ﬂjtr
W, S
ACCEPT/REJEC Hadamard R y4

T I:l I:l I;l encoding of Z ~ L
o

Achieves simplicity, with good constants ...
... but pre-processing is required (because |q|=|v|)

... and prover’s work I1s quadratic; address that
shortly

Attempt 4: Use long PCPs non- [BCIOP13]
Interactively

verifier prover
Y = N R I
z® .
L v’ S Al
———— Y NS
ACCEPT/REJEC adamard S
T/ I:l I:l encoding of v N

E(@:°V) E(@z*V) E(gs°V)

Query processing now happens “in the
eEXpRNSIbcessing still required (again because |qg|=|v])
... prover’s work still quadratic; addressing that

CAA\N

efficient arguments, ‘arguments w/ SNARGs w/
(short) PCPs CS proofs preprocessing preprocessing
WhO ALMSS92, AS92, Kilian92, IKOO7, SMBW12, GGPR12,

BGSHV, Dinur, ... Micali94 SVPBBW12, BCIOP13, ...
__ e
what classical PCP committo commit to encrypt queries

PCP by long PCP to a long PCP
__ hashing _ Jusinglineanty
security unconditional CRHFs linearly HE knowledge-of-
... ¢€xponent

why/why not efficient constants simple simple, non-
not forV are Interactive

unfavorable

(Thanks to Rafael Pass.)

Final attempt: apply linear query structure to GGPR's

QAPS [Groth10, Lipmaal2, GGPR12]
prover
L(*) { Nt /
\ ° \
W } return <e,v>;) 2 —~ h_
TR [e

Addresses the issue of quadratic costs.

PCP structure implicit in GGPR. Made explicit in [Bcior13,
SBvBBW13].

avoidable in theory
[BCCT13, BCTV14b, CTV15]

"Zaatar" !~ o ' “Pinocchio,” “libsnark”
[SBVBBW13] | r ~ | 1 [PGHR13, BCTV14a]
! | plaintex | | 1 |queriesin| !
. _ ! t ' | |exponent| _
interactive ! | gueries [1 | SNARG, zk-SNARK with pre-
argument | | : | processing
[ko07] | I : : [Groth10, BcCT12, GGPR12]
I I I
I P! I - i
: QAE;S | pre-processing
| ! |
I P! I
I I I
I I I

« standard assumptions * non-falsifiable assumptions
* amortize over batch « amortize indefinitely
* Interactive * non-interactive, ZK, ...

front-end back-end

(program translator) (argument variants)
m—— g b ~ | verifier
. X | TC
} 1| Qaps l Ty
C program arithmetic circuit i i [GGPR1Z] orover
(non-det. input) '+ |

———

el e e

State of the art front-

ends

MIPS
.exe

C prog | —

fetch-decode-execute

/ \

\ /
CPU state

circuit is unrolled CPU execution
[BCGTV13, BCTV14a, BCTV14b, CTV15]

C prog

—k

each line translates to gates

[SBVBPW13, VSBW13, PGHR13, BFRSBW13,
BCGGMTV14, BBFR14, FL14, KPPSST14, WSRBW15,

CFHKKNPZ15]

"General” processor
[Tin)</RAI\/I] o

= Verbose circuits (costly)
= Good amortization

= Great programmability

Custom circuits
= Concise circuits
= Amortization worse

= How is programmability?

Front-ends trade off performance and expressiveness

applicable computations

General
~ "processor

I

concrete genera function
costs special-purpose pure stateful | loops pointers
\
lower Thaler &
CRYPTO13 N0)2
CMT, TRMP
ITCS, Hotcloud12 .]
~ Custom circuit
Pepper, Ginger Zaatar Geppetto
NDss12, Securityl2 Eurosys13 Oakland15 ?
Trueset, Zerocash Pinocchio Pantry y
Security14,0akland15 Oakland13
y aklan sosp13 J scrv
Securityl4
higher BCGTV
CRYPTO13
highest Proof-carrying data

(still theory)

CRYPTO14, Eurocryptl5

Short PCPs Eurocryptl7

—

Summary of common framework:

front-end back-end
(program translator) (argument variants)
/7 igeneral processor”
| o verifier
| mainQ{ |_— o |
i i : . T
| N Hi- 1| QAPs l Iy
I ﬂﬁ ' 1| [GGPR12]
| L prover
\ ‘custom circuit”

e o e o Em mm Em o o Em Em Em O o Em Em Em o Em Em Em = N o e e e e e e e e e e e e Em e e e e Em e Em Em o

N e e e e o e o o o o e e =

Summary of state of the art implementations
Reality check with a performance evaluation

Next steps

Quick performance study

Back-end: libsnark i.e., BCTV's optimized Pinocchio
Implementation

Front-ends: implementations or re-implementations of
» Zaatar (Custom circuit) [SBVBPW Eurosys13]
» BCTV (General processor) [Security14]

= Buffet (Custom circuit) [WSRHBW NDSS15]

Landscape of front-ends (again)

concrete
costs

lower

higher

highest
(still theory)

applicable computations

genera function

special-purpose pure stateful | loops pointers

Thaler e

CRYPTO13 N0)2

CMT, TRMP

ITCS, Hotcloud12

Pepper, Ginger Zaatar Geppetto

NDsS12, Security12 Eurosys13 Oakland1l5> — Byffet

Trueset, Zerocash Pinocchio Pantry NDsS15

Securityl4, Oakland15 Oakland13

y aklan SOsP13 BCTV

Securityl4
BCGTV
CRYPTO13

Proof-carrying data
CRYPTO14, Eurocryptl5

Short PCPs Eurocryptl7

Quick performance study

Back-end: libsnark i.e., BCTV's optimized Pinocchio
Implementation

Front-ends: implementations or re-implementations of:
» Zaatar (Custom circuit) [SBVBPW Eurosysl13]
= BCTV (General processor) [Securityl4]

= Buffet (Custom circuit) [WSRHBW NDSS15]

Evaluation platform: cluster at Texas Advanced Computing Center
(TACC)

Each machine runs Linux on an Intel Xeon 2.7 GHz with 32GB of RAM.

(1) What are the verifier’s costs?

(2) What are the prover’s costs?

Proof length 288 bytes

V per-instance 6ms + (|x| + |y))-3 ps

V pre-processing |IC|-180 ps

P per-instance |IC|-60 us +|C|log |C|-0.9us

P's memory requirements O(|C|log|C|)

(|C|: circuit size)

(3) How do the front-ends compare to each
other?

How does the prover’s cost vary with the
choice of front-end?

Extrapolated prover execution time, normalized to

o~ Buffet
104 > 5 5
O ™ S
R S
103
> >
102 - =
Q 2

10

Zaatar

(ASIC 2)
uffet
uffet

©
&
=
/M

1

as aa

Matrix multiplication Merge sort Knuth-Morris-Pratt
m=215 k=512 n=256, £=2900

All of the front-ends have terrible concrete

erlgo rmance S | |
P xtrapore]\ged prover execution time, normalized to native
> 5 execution .
= > Sp—
1010 A § 5 ; S a ks
8 - N ch - Eg ﬂg
% 5ol 50 -
00 S< Il E<
104
1o Z 2 E
1 S S S
H H H
Matrix multiplication Merge sort Knuth-Morris-Pratt

m=215 k=512 n=256, £=2900

Summary of concrete
pa{rm{m%erality brings a concrete price (but better in theory)

= \erifier's “variable costs”: genuinely inexpensive
* Prover’'s computational costs: near-total disaster

= Memory: creates scaling limit for verifier and prover

Where d Caution!

* Proof generation takes many
minutes

* Needs trusted setup

* Prover needs queries that are many

One option:
the computa

« Anonymous credentials: Cinderella [Oakland16]
« Anonymity for Bitcoin: Zerocash [Oakland14]
» Location-private tolling [Security09]: Pantry [SOSP13]

Another option: try to motivate theoretical advances

ly execute

Summary of state of the art implementations
Reality check with a performance evaluation

Next steps: We need 3-6 orders of magnitude
speedup

Wish list (1): front-end
« More efficient reductions from programs to circuits

» Inexpensive floating-point operations (to target
domains such as deep learning, machine learning, ...)

- Better handling of state

Status quo: systems that handle external state

ADSNARK [S&P15], Hash first argue
Pantry [SOSP13] Geppetto [S&P15] later [CCS16]

Technique CRHF in circuit SNARK already has SNARK already
(folklore) a CRHF has a CRHF
Generality Any circuit Specific Any circuit
Prover expense O(k log(|D|)) O(k [DI) O(k |D])
Concrete 10° to 108x 100 to 10%x 100 to108x

SXRSOHE [sep17]. recently propased.an approach based.on
polynomial commitments, but it also opens the entire database
inside circuit.

« Bottom line: handling state adds additional expense.

Wish list (2): back-eno

« Construct short PCPs that are efficient

Ben-Sasson et al. [EUROCRYPT17] have taken steps toward this, but
concrete costs are quite high

» Endow IKO's arguments with more properties or lower
COSts
Reuse the verifier's setup work beyond a batch
Make the protocol zero knowledge

 Add zero-knowledge inexpensively to GKR's protocol

» Improve GGPR’'s QAPs or the cryptography used to
qguery it

Wish list (3): Mission-critical applications

o Verifiable data
features: multi

: SRk

pase with support for industrial-grade

ole users, concurrency, indexes, etc.

the Lots of other ideas needed; we don't know what they

are!

« Why? DBs process financial transactions worth trillions of
dollars. Connections with emerging distributed ledgers.

Conclusions and takeaways

» Exciting area with good news and bad news

- Lots of progress, but ...
- ... extreme expense in general-purpose systems

 Overheads rooted in QAPs and circuit representation
» Theoretical breakthroughs are needeac

» Incentive: the potential is huge, especially with
emerging distributed ledgers
(http://www.pepper-project.org/)

