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Probabilistic proofs enable outsourcing

client server

program,
inputs

outputs
+ short proof

Goal: outsourcing should be less expensive
than just executing the computation
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Do systems achieve this goal?

Verifier: can easily check proof (asymptotically)

Prover

: has massive overhead (≈10,000,000×)

Precomputation

: proportional to computation size

How do systems handle these costs?

Precomputation: amortize over many instances

Prover: assume > 108× cheaper than verifier
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Our contribution

Giraffe: first system to consider all costs and win.

In Giraffe, P really is 108× cheaper than V!
(setting: building trustworthy hardware)

Giraffe extends Zebra [WHGsW, Oakland16] with:
• an asymptotically optimal proof protocol that improves on

prior work [Thaler, CRYPTO13]

• a compiler that generates optimized hardware designs
from a subset of C

Bottom line: Giraffe makes outsourcing worthwhile
(. . . sometimes).
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How can we build trustworthy hardware?

Firewall

e.g., a custom chip for network packet processing
whose manufacture we outsource to a third party

What if the chip’s manufacturer inserts a back door?

Threat: incorrect execution of the packet filter

(Other concerns, e.g., secret state, are important but orthogonal)

US DoD controls supply chain with trusted foundries.
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Trusted fabs are the only way to get strong guarantees

For example, stealthy trojans can thwart post-fab detection
[A2: Analog Malicious Hardware, Yang et al., Oakland16;
Stealthy Dopant-Level Trojans, Becker et al., CHES13]

But trusted fabrication is not a panacea:

7 Only 5 countries have cutting-edge fabs on-shore

7 Building a new fab takes $$$$$$, years of R&D

7 Semiconductor scaling: chip area and energy go with
square and cube of transistor length (“critical dimension”)

7 So using an old fab means an enormous performance hit
e.g., India’s best on-shore fab is 108× behind state of the art

Idea: outsource computations to untrusted chips
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Can Verifiable ASICs be practical?

w)
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output Fvs.

V overhead: checking proof is cheap

P overhead: high compared to cost of F...

...but P uses an advanced circuit technology

Precomputation: proportional to cost of F

Prior work assumes this away

Prior work:
V + P < F

Prior work:
V + P + Precomp > F

Our goal:
V + P + Precomp < F



Can Verifiable ASICs be practical?

w)

V P
x
y

proof that
y = F(x)

input

output Fvs.

V overhead: checking proof is cheap

P overhead: high compared to cost of F...

...but P uses an advanced circuit technology

Precomputation: proportional to cost of F

Prior work assumes this away

Prior work:
V + P < F

Prior work:
V + P + Precomp > F

Our goal:
V + P + Precomp < F



Can Verifiable ASICs be practical?

w)

V P
x
y

proof that
y = F(x)

input

output Fvs.

V overhead: checking proof is cheap

P overhead: high compared to cost of F...

...but P uses an advanced circuit technology

Precomputation: proportional to cost of F

Prior work assumes this away

Prior work:
V + P < F

Prior work:
V + P + Precomp > F

Our goal:
V + P + Precomp < F



Can Verifiable ASICs be practical?

w)

V P
x
y

proof that
y = F(x)

input

output Fvs.

V overhead: checking proof is cheap

P overhead: high compared to cost of F...

...but P uses an advanced circuit technology

Precomputation: proportional to cost of F

Prior work assumes this away

Prior work:
V + P < F

Prior work:
V + P + Precomp > F

Our goal:
V + P + Precomp < F



Can Verifiable ASICs be practical?

w)

V P
x
y

proof that
y = F(x)

input

output Fvs.

V overhead: checking proof is cheap

P overhead: high compared to cost of F...

...but P uses an advanced circuit technology

Precomputation: proportional to cost of F

Prior work assumes this away

Prior work:
V + P < F

Prior work:
V + P + Precomp > F

Our goal:
V + P + Precomp < F



Can Verifiable ASICs be practical?

w)

V P
x
y

proof that
y = F(x)

input

output Fvs.

V overhead: checking proof is cheap

P overhead: high compared to cost of F...

...but P uses an advanced circuit technology

Precomputation: proportional to cost of F

Prior work assumes this away

Prior work:
V + P < F

Prior work:
V + P + Precomp > F

Our goal:
V + P + Precomp < F



Can Verifiable ASICs be practical?

w)

V P
x
y

proof that
y = F(x)

input

output Fvs.

V overhead: checking proof is cheap

P overhead: high compared to cost of F...

...but P uses an advanced circuit technology

Precomputation: proportional to cost of F

Prior work assumes this away

Prior work:
V + P < F

Prior work:
V + P + Precomp > F

Our goal:
V + P + Precomp < F



Roadmap

1. Verifiable ASICs

2. Giraffe: a high-level view

3. Evaluation



Evolution of Giraffe’s back-end

GKR08 base protocol

CMT12 reduces P and precomp costs for all ckts

Thaler13 reduces precomp for structured circuits

Giraffe reduces P cost for structured circuits
(plus optimizations for V ; see paper)

Let’s take a high-level look at how these optimizations work.
(The following all use a nice simplification [Thaler15].)
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GKR08 (a quick reminder)

d

G

For each layer of an arithmetic circuit, P and V engage in a
sum-check protocol.

In the first round, P computes (q ∈ FlogG ):∑
h0∈{0,1}log G

∑
h1∈{0,1}log G

(
˜add(q, h0, h1)

(
Ṽ(h0) + Ṽ(h1)

)
+

m̃ul(q, h0, h1)
(

Ṽ(h0) · Ṽ(h1)
))

This has 22 logG = G 2 terms. In total, P ’s work is O(poly(G )).

Precomputation is one evaluation
of ˜add and m̃ul, costing O(poly(G )).
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CMT12: from polynomial to quasilinear

d
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add(gO , gL, gR) = 0 except when gO is + with inputs gL, gR

add(3, 2, 3) = 1, otherwise add(· · ·) = 0
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This means we can rewrite P ’s sum in the first round as:∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
(

Ṽ(h0) + Ṽ(h1)
)

+

∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
(

Ṽ(h0) · Ṽ(h1)
)

G terms/round for 2 logG rounds: P ’s work is O(G logG ).

Using a related trick, precomputing
˜add and m̃ul costs O(G ) in total.



CMT12: from polynomial to quasilinear

d

G

add(gO , gL, gR) = 0 except when gO is + with inputs gL, gR

add(3, 2, 3) = 1, otherwise add(· · ·) = 0

in in in in

121665

cnst

0

cnst

MUX

0

MUX

0

MUX

0

MUX

0

0 1

0

2 2

1

3 3

2

2 3

3

This means we can rewrite P ’s sum in the first round as:∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
(
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)

G terms/round for 2 logG rounds: P ’s work is O(G logG ).

Using a related trick, precomputing
˜add and m̃ul costs O(G ) in total.



CMT12: from polynomial to quasilinear

d

G

add(gO , gL, gR) = 0 except when gO is + with inputs gL, gR

add(3, 2, 3) = 1, otherwise add(· · ·) = 0

in in in in

121665

cnst

0

cnst

MUX

0

MUX

0

MUX

0

MUX

0

0 1

0

2 2

1

3 3

2

2 3

3

This means we can rewrite P ’s sum in the first round as:∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
(
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Thaler13: more structure, less precomputation

d

G G

· · ·
GN copies

Idea: for a batch of identical subckts, ˜add and m̃ul can be “small.”

add(3, 2, 3) = 1, otherwise add(· · ·) = 0

Notice that ˜add does not comprehend subcircuit number!
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Ô Precomp costs O(G ), amortized over N copies!

Now P’s sum in the first round is (q′ ∈ FlogN):∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
∑

h′∈{0,1}log N

ẽq
(
q′, h′

) (
Ṽ(h′, h0) + Ṽ(h′, h1)

)
+

∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
∑

h′∈{0,1}log N

ẽq
(
q′, h′

) (
Ṽ(h′, h0) · Ṽ(h′, h1)

)

eq(x , y) = 1 iff x = y

For each gate,

sum over each subcircuit.

NG terms/round in first 2 logG rounds: P’s work is Ω(NG logG ).
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)
+

∑
(h0,h1)∈Smul

m̃ul(q, h0, h1)
∑

h′∈{0,1}log N

ẽq
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ẽq
(
q′, h′

) (
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Ṽ(h′, h0) · Ṽ(h′, h1)
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sum over each gate.
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P does
(
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)
G + 2G logG = O(NG + G logG ) work.

Ô Linear in size of computation when N > logG !
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Ṽ(h′, h0) + Ṽ(h′, h1)
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Ṽ(h′, h0) + Ṽ(h′, h1)
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)

For each subcircuit, sum over each gate.

In round 1, h′ ∈ {0, 1}logNIn round 2, h′ ∈ {0, 1}logN−1In round 3, h′ ∈ {0, 1}logN−2

P does
(
N + N

2 + N
4 + ...

)
G + 2G logG = O(NG + G logG ) work.

Ô Linear in size of computation when N > logG !



Giraffe: leveraging structure to reduce P costs

d

G G

· · ·
GN copies

Idea: arrange for copies to “collapse” during sum-check protocol.

Rewriting the prior sum and changing sumcheck order:∑
h′∈{0,1}log N

ẽq
(
q′, h′

) ∑
(h0,h1)∈Sadd

˜add(q, h0, h1)
(
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Ṽ(h′, h0) · Ṽ(h′, h1)
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)

For each subcircuit,

sum over each gate.

In round 1, h′ ∈ {0, 1}logN

In round 2, h′ ∈ {0, 1}logN−1

In round 3, h′ ∈ {0, 1}logN−2

P does
(
N + N

2 + N
4 + ...

)
G + 2G logG = O(NG + G logG ) work.

Ô Linear in size of computation when N > logG !



Giraffe: leveraging structure to reduce P costs

d

G G

· · ·
GN copies

Idea: arrange for copies to “collapse” during sum-check protocol.

Rewriting the prior sum and changing sumcheck order:∑
h′∈{0,1}log N

ẽq
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)

For each subcircuit,

sum over each gate.

In round 1, h′ ∈ {0, 1}logNIn round 2, h′ ∈ {0, 1}logN−1In round 3, h′ ∈ {0, 1}logN−2

P does
(
N + N

2 + N
4 + ...

)
G + 2G logG = O(NG + G logG ) work.

Ô Linear in size of computation when N > logG !



Roadmap

1. Verifiable ASICs

2. Giraffe: a high-level view

3. Evaluation



Implementation

Giraffe is an end-to-end hardware generator:

a hardware design template

given computation, chip parameters (technology, size, . . . ),
produces optimized hardware designs for P and V

a (subset of) C compiler

produces the representation used by the design template



Implementation

Giraffe is an end-to-end hardware generator:

a hardware design template
given computation, chip parameters (technology, size, . . . ),
produces optimized hardware designs for P and V

a (subset of) C compiler

produces the representation used by the design template



Implementation

Giraffe is an end-to-end hardware generator:

a hardware design template
given computation, chip parameters (technology, size, . . . ),
produces optimized hardware designs for P and V

a (subset of) C compiler
produces the representation used by the design template



Evaluation questions

How does Giraffe perform on real-world computations?

1. Curve25519 point multiplication

2. Image matching

Goal: total cost of V , P , and precomputation
should be less than building F on a trusted chip



Evaluation questions

How does Giraffe perform on real-world computations?

1. Curve25519 point multiplication

2. Image matching

Goal: total cost of V , P , and precomputation
should be less than building F on a trusted chip



Evaluation method

w)

V P
x
y

proof that
y = F(x)

input

output Fvs.

Baselines: Zebra; implementation of F in same technology as V

Metric: total energy consumption

Measurements: based on circuit synthesis and simulation,
published chip designs, and CMOS scaling models

Charge for V, P, communication; precomputation; PRNG

Constraints: trusted fab = 350 nm; untrusted fab = 7 nm;
200 mm2 max chip area; 150 W max total power

350 nm: 1997 (Pentium II)
7 nm: ≈ 2018
≈ 20 year gap between
trusted and untrusted fab



Evaluation method

w)

V P
x
y

proof that
y = F(x)

input

output Fvs.

Baselines: Zebra; implementation of F in same technology as V

Metric: total energy consumption

Measurements: based on circuit synthesis and simulation,
published chip designs, and CMOS scaling models

Charge for V, P, communication; precomputation; PRNG

Constraints: trusted fab = 350 nm; untrusted fab = 7 nm;
200 mm2 max chip area; 150 W max total power

350 nm: 1997 (Pentium II)
7 nm: ≈ 2018
≈ 20 year gap between
trusted and untrusted fab



Evaluation method

w)

V P
x
y

proof that
y = F(x)

input

output Fvs.

Baselines: Zebra; implementation of F in same technology as V

Metric: total energy consumption

Measurements: based on circuit synthesis and simulation,
published chip designs, and CMOS scaling models

Charge for V, P, communication; precomputation; PRNG

Constraints: trusted fab = 350 nm; untrusted fab = 7 nm;
200 mm2 max chip area; 150 W max total power

350 nm: 1997 (Pentium II)
7 nm: ≈ 2018
≈ 20 year gap between
trusted and untrusted fab



Evaluation method

w)

V P
x
y

proof that
y = F(x)

input

output Fvs.

Baselines: Zebra; implementation of F in same technology as V

Metric: total energy consumption

Measurements: based on circuit synthesis and simulation,
published chip designs, and CMOS scaling models

Charge for V, P, communication; precomputation; PRNG

Constraints: trusted fab = 350 nm; untrusted fab = 7 nm;
200 mm2 max chip area; 150 W max total power

350 nm: 1997 (Pentium II)
7 nm: ≈ 2018
≈ 20 year gap between
trusted and untrusted fab



Application #1: Curve25519 point multiplication

Curve25519: a commonly-used elliptic curve

Point multiplication: primitive, e.g., for ECDH



Application #1: Curve25519 point multiplication

Energy consumption, Joules
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Application #2: Image matching

Image matching via Fast Fourier transform

C implementation, compiled by Giraffe’s front-end
to V and P hardware designs—no hand tweaking!



Application #2: Image matching
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Recap: is it practical?

w)

V P
x
y

proof that
y = F(x)

input

output

7 Giraffe is restricted to batched computations

Giraffe’s front-end includes two static analysis passes:

Slicing extracts only the parts of programs that
can be efficiently outsourced
Squashing extracts batch-parallelism from serial
computations

3 Giraffe’s proof protcol and optimizations save
orders of magnitude compared to prior work

3 Giraffe is the first system in the literature to
account for all costs—and win.

Giraffe is a step, but much work remains!

https://giraffe.crypto.fyi
http://www.pepper-project.org

https://giraffe.crypto.fyi
http://www.pepper-project.org


Recap: is it practical?

w)

V P
x
y

proof that
y = F(x)

input

output

7 Giraffe is restricted to batched computations

Giraffe’s front-end includes two static analysis passes:

Slicing extracts only the parts of programs that
can be efficiently outsourced
Squashing extracts batch-parallelism from serial
computations

3 Giraffe’s proof protcol and optimizations save
orders of magnitude compared to prior work

3 Giraffe is the first system in the literature to
account for all costs—and win.

Giraffe is a step, but much work remains!

https://giraffe.crypto.fyi
http://www.pepper-project.org

https://giraffe.crypto.fyi
http://www.pepper-project.org


Recap: is it practical?

w)

V P
x
y

proof that
y = F(x)

input

output

7 Giraffe is restricted to batched computations

Giraffe’s front-end includes two static analysis passes:

Slicing extracts only the parts of programs that
can be efficiently outsourced
Squashing extracts batch-parallelism from serial
computations

3 Giraffe’s proof protcol and optimizations save
orders of magnitude compared to prior work

3 Giraffe is the first system in the literature to
account for all costs—and win.

Giraffe is a step, but much work remains!

https://giraffe.crypto.fyi
http://www.pepper-project.org

https://giraffe.crypto.fyi
http://www.pepper-project.org


Recap: is it practical?

w)

V P
x
y

proof that
y = F(x)

input

output

7 Giraffe is restricted to batched computations

Giraffe’s front-end includes two static analysis passes:

Slicing extracts only the parts of programs that
can be efficiently outsourced
Squashing extracts batch-parallelism from serial
computations

3 Giraffe’s proof protcol and optimizations save
orders of magnitude compared to prior work

3 Giraffe is the first system in the literature to
account for all costs—and win.

Giraffe is a step, but much work remains!

https://giraffe.crypto.fyi
http://www.pepper-project.org

https://giraffe.crypto.fyi
http://www.pepper-project.org


Recap: is it practical?

w)

V P
x
y

proof that
y = F(x)

input

output

7 Giraffe is restricted to batched computations

Giraffe’s front-end includes two static analysis passes:

Slicing extracts only the parts of programs that
can be efficiently outsourced
Squashing extracts batch-parallelism from serial
computations

3 Giraffe’s proof protcol and optimizations save
orders of magnitude compared to prior work

3 Giraffe is the first system in the literature to
account for all costs—and win.

Giraffe is a step, but much work remains!

https://giraffe.crypto.fyi
http://www.pepper-project.org

https://giraffe.crypto.fyi
http://www.pepper-project.org


Recap: is it practical?

w)

V P
x
y

proof that
y = F(x)

input

output

7 Giraffe is restricted to batched computations

Giraffe’s front-end includes two static analysis passes:

Slicing extracts only the parts of programs that
can be efficiently outsourced
Squashing extracts batch-parallelism from serial
computations

3 Giraffe’s proof protcol and optimizations save
orders of magnitude compared to prior work

3 Giraffe is the first system in the literature to
account for all costs—and win.

Giraffe is a step, but much work remains!

https://giraffe.crypto.fyi
http://www.pepper-project.org

https://giraffe.crypto.fyi
http://www.pepper-project.org


Recap: is it practical?

w)

V P
x
y

proof that
y = F(x)

input

output

7 Giraffe is restricted to batched computations

Giraffe’s front-end includes two static analysis passes:

Slicing extracts only the parts of programs that
can be efficiently outsourced
Squashing extracts batch-parallelism from serial
computations

3 Giraffe’s proof protcol and optimizations save
orders of magnitude compared to prior work

3 Giraffe is the first system in the literature to
account for all costs—and win.

Giraffe is a step, but much work remains!

https://giraffe.crypto.fyi
http://www.pepper-project.org

https://giraffe.crypto.fyi
http://www.pepper-project.org

