
vSQL: Verifying Arbitrary SQL Queries
over Dynamic Outsourced Databases

Yupeng Zhang, Daniel Genkin, Jonathan Katz,

Dimitrios Papadopoulos and Charalampos Papamanthou

Verifiable Databases

client server

result + proof
digest δ

Verification: or database

SQL database query

Efficiency Measures of Verifiable Databases

client server

database

result + proof
digest δ

Verification: or

setup
time prover time

proof size

verification
time

SQL database query

Prior Work in Verifiable Databases

1. Customized Approach (E.g., ADS [Tamassia03])

• Range [LHKR06, MNT06, …], multi-range [PPT14, …], join[PJRT05, …]

Efficient

× Only support limited operations

• IntegriDB [ZKP15]

Efficiency

Expressiveness

range

multi-
range

join

IntegriDB

Prior Work in Verifiable Databases

2. Generic Approach (E.g., SNARK [PHGR13, BCGTV13, BFRS+13, …]

& PCP [Kilian92, Micali94, ….])

Supports all functions that can be modeled as arithmetic circuits

Constant proof size, fast verification time

× Large setup time & prover time

× Function specific setup

Efficiency

Expressiveness

range

multi-
range

join

IntegriDB

SNARK

Our Contribution: vSQL

• Supports arbitrary SQL queries

• Comparable prover time to IntegriDB, faster setup time

• Up to 2 orders of magnitude faster than SNARKs

• No function specific setup

Efficiency

Expressiveness

range

multi-
range

join

IntegriDB

SNARK vSQL

1. SELECT SUM (l_extendedprice * (1 - l_discount)) AS revenue FROM lineitem, part
WHERE
2. (p_partkey = l_partkey
3. AND p_brand = ‘Brand#41’
4. AND p_container IN (‘SM CASE’, ‘SM BOX’, ‘SM PACK’, ‘SM PKG’)
5. AND l_quantity >= 7 AND l_quantity <= 7 + 10
6. AND p_size BETWEEN 1 AND 5
7. AND l_shipmode IN (‘AIR’, ‘AIR REG’)
8. AND l_shipinstruct = ‘DELIVER IN PERSON’)
9. OR
10. (p_partkey = l_partkey
11. AND p_brand = ‘Brand#14’
12. AND p_container IN (‘MED BAG’, ‘MED BOX’,‘MED PKG’, ‘MED PACK’)
13. AND l_quantity >= 14 AND l_quantity <= 14 + 10
14. AND p_size BETWEEN 1 AND 10
15. AND l_shipmode IN (‘AIR’, ‘AIR REG’)
16. AND l_shipinstruct = ‘DELIVER IN PERSON’)
17. OR
18. (p_partkey = l_partkey
19. AND p_brand = ‘Brand#23’
20. AND p_container IN (‘LG CASE’, ‘LG BOX’, ‘LG PACK’, ‘LG PKG’)
21. AND l_quantity >= 25 AND l_quantity <= 25 + 10
22. AND p_size BETWEEN 1 AND 15
23. AND l_shipmode IN (‘AIR’, ‘AIR REG’)
24. AND l_shipinstruct = ‘DELIVER IN PERSON’);

Query #19 of the TPC-H benchmark
http://www.tpc.org/tpch

Example

Our Construction

Interactive Proof (IP)[GKR08, CMT12, …]

1. SELECT SUM (l_extendedprice * (1 - l_discount)) AS revenue FROM lineitem, part
WHERE
2. (p_partkey = l_partkey
3. AND p_brand = ‘Brand#41’
4. AND p_container IN (‘SM CASE’, ‘SM BOX’, ‘SM PACK’, ‘SM PKG’)
5. AND l_quantity >= 7 AND l_quantity <= 7 + 10
6. AND p_size BETWEEN 1 AND 5
7. AND l_shipmode IN (‘AIR’, ‘AIR REG’)
8. AND l_shipinstruct = ‘DELIVER IN PERSON’)
9. OR
10. (p_partkey = l_partkey
11. AND p_brand = ‘Brand#14’
12. AND p_container IN (‘MED BAG’, ‘MED BOX’,‘MED PKG’, ‘MED PACK’)
13. AND l_quantity >= 14 AND l_quantity <= 14 + 10
14. AND p_size BETWEEN 1 AND 10
15. AND l_shipmode IN (‘AIR’, ‘AIR REG’)
16. AND l_shipinstruct = ‘DELIVER IN PERSON’)
17. OR
18. (p_partkey = l_partkey
19. AND p_brand = ‘Brand#23’
20. AND p_container IN (‘LG CASE’, ‘LG BOX’, ‘LG PACK’, ‘LG PKG’)
21. AND l_quantity >= 25 AND l_quantity <= 25 + 10
22. AND p_size BETWEEN 1 AND 15
23. AND l_shipmode IN (‘AIR’, ‘AIR REG’)
24. AND l_shipinstruct = ‘DELIVER IN PERSON’);

Example

+ × ×……

× × +……

…
…

× + +……

× ×……

Input (database)

Output (result)

fin(x)

fout(x)
client serverOutput

Input

fin(rin)

fout(rout)

f1(x)

f2(x)

fd-2(x)

fd-1(x)

r1

f1(r1)

…
…

rin

fin(rin)

Check the relationship at a random point
(Sumcheck protocol)

…
…

(Low degree extension)

Interactive Proof (IP)[GKR08, CMT12, …]

Using IP for Verifiable Databases

 No setup time

 Fast prover time (no crypto operations)

× Storage of the database locally
(Last step: evaluate a polynomial defined by the input at a random point)

Delegating Database to the Server

• Our solution: Verifiable Polynomial Delegation (VPD)

[KZG10, PST13]

evaluation point aclient server

f(a) + proof
digest δf

(32Bytes)

Verification: or f(x)

vSQL protocol

SQL query
(modeled as a circuit)

client server

database

digest δfin of fin(x)
for the database

result

Interactive proof
(except last step)

…
…

rin

fin (rin) + proofs

fin (rin) or
Verification of polynomial

delegation

fin(rin)

IP

VPD

Using IP for Verifiable Databases

 No setup time

 Fast prover time (no crypto operations)

× Storage of the database locally

(Last step: evaluate a polynomial defined by the input at a random point)

Verifying Computations in NP

• Some functions are hard to compute using arithmetic circuits

E.g., Integer division a÷b

• They are easy to verify with inputs from the server: a = q × b + r

• Interactive Proof does not support auxiliary input

• Our solution: Extractable Verifiable Polynomial Delegation (VPD)

evaluation point a

client server

f(a) + proof

digest δf

Verification: or f(x)

commitment of the auxiliary inputs
with extractability

Result: extending IP (GKR, CMT etc.) to NP computations
without using FHE [CKLR11, …]

Verifying Computations in NP

vSQL

 Setup only for the database, not for queries

 Faster prover time
(crypto operations is only linear to the database size,
does not depend on the circuit size)

 Supports auxiliary inputs

 Expressive SQL updates (details in the paper)

Experimental Results

Comparison with Prior Work

Query
#19

IntegriDB SNARK vSQL

Setup

Prover

Verification

Communication

7 hours 100 hours* 0.4 hour

1.8 hours 54 hours* 1.3 hours

232 ms 6 ms 148 ms

Queries and database: TPC-H benchmark
Database size: 6 million rows × 13 columns (2.8GB) in the largest table.

184 KB 0.3 KB 28 KB

Follow-up:
4× faster!

Update

Query #15: create a new table on the fly by range and sum

Old table: 2.8GB new table: 1.7MB

Prover Verification Communication

0.5 hour 85ms 85.7KB

Summary of vSQL

• vSQL: Verifiable Polynomial Delegation + Interactive Proof

Comparable efficiency, better expressiveness compared
to customized VC

Up to 2 orders of magnitude faster compared to SNARKs

Setup only for database, no query dependent setup

One Preprocessing to Rule Them All:
Verifiable Computation with Circuit-Independent

Preprocessing and Applications to
Verifiable RAM Programs

• Interactive argument for NP, with function
independent preprocessing

• Apply to verifiable RAM computations

• Theorem: Prover time linear in #of CPU steps T

vs. quasi-linear using SNARKs [BCTV14]

• 8× faster prover time, 120× smaller memory
consumption, up to 2 million CPU steps

RAM to Circuit Reduction [BCTV14]

state1

state2

state3

stateT

…
…

By time:

CPU state

• Time
• Program counter
• Instruction number
• Flag
• Registers
• …..

RAM to Circuit Reduction [BCTV14]

state1

state2

state3

stateT
…

…

CPU
step

CPU
step

CPU
step

By time:

E.g., Add r1, r2, r3

state'1

state'2

state'3

state'T

…
…

By memory:

Memory
consistency

Memory
consistency

Memory
consistency

Sorting
Network

Inefficiency: Preprocessing

CPU
step

CPU
step

CPU
step

CPU step

All possible CPU instructions:

ADD, MUL, JMP, CMP,
LOAD,…

Our New RAM to Circuit Reduction

state1

state2

state3

stateT

…
…

state''1

state''2

state''3

state''T
…

…

Add

Add

By time:By Instruction:

Sorting
Network

Load

of
Add

of
Load

state'1

state'2

state'3

state'T

…
…

By Memory:

Sorting
Network

Our New RAM to Circuit Reduction

state1

state2

state3

stateT

…
…

state''1

state''2

state''3

state''T
…

…

Add

Add

By time:By Instruction:

Permuta
-tion

protocol

Load

of
Add

of
Load

state'1

state'2

state'3

state'T

…
…

By Memory:

Permuta
-tion

protocol

Our New Verifiable RAM

• 8× faster prover time

• 120× smaller memory consumption

(up to 2 million CPU steps)

• Prover time linear in #of CPU steps T

• One preprocessing for both RAM and circuit

Summary

Verifiable Polynomial Delegation + Interactive Proof
 vSQL, verifiable databases

 Verifiable RAM

Ongoing work:
 Verifiable RAM with states

 Zero-knowledge with applications to crypto-currencies

