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Disclaimer: This is an educational talk, about ideas which aren’t mine.
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A first example

T C ng

Random variables (Zy)xeT

Z, = (g, x) for a vector g with i.i.d. N(0,1) entries
Define gaussian mean width g(T) = Eg sup,c 1 Z«
How can we bound g(T)?

This talk: four progressively tighter ways to bound g(T),
then applications of techniques to some TCS problems
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Gaussian mean width bound 1: union bound

e g(T)=Esup,ct Z« =Esup,7(g,x)
e Z, is a gaussian with variance one

E sup Z :/ P(sup Zx > u)du
xeT 0 xeT

= / P(sup Z« > u) du—l—/ P(sup Zx > u) du
0 xeT Uy xeT

<1 <|T|-e=%*/2 (union bound)
2
Uy + | T| - e ¥/2

V0og|T| (set u, = /2log|T|)

IZANVAN
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* 9(T) =Esup.er (g %)
e Let S. be e-net of (T, ¥2)

e (g,x) = (g, xX') +(g,x —x) (X' = argmin 1 ||x — yl2)
9(T) < 9(S:) + Egsup,cr (g, x — X)
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Gaussian mean width bound 2: e-net

9(T) =Esup,c7(8,X)
Let S. be e-net of (T, ¥2)
<g7X> = <g7X/> + <g7X - X/> (XI = aI'grninyET ”X - }/||2)
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N——
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Gaussian mean width bound 2: e-net

9(T) =Esup,c7(8,X)
Let S. be e-net of (T, ¥2)
<g7X> = <g7xl> + <g7X - X/> (XI = aI'grninyET ”X - )/||2)
9(T) < a(S:) +Egsuper (g, x — x')
——
<e-|gll2
< Vlog[S:] + e(Eg ||g13)Y/?2
<log'? N(T,ly,e) +ey/n
————
smallest e—net size

Choose ¢ to optimize bound; can never be worse than last
slide (which amounts to choosing ¢ = 0)



Gaussian mean width bound 3: e-net sequence

o Scisa (1/2¢)-netof T, k>0

mix is closest pointin S to x € T, Apx = Tpx — Tp_1X



Gaussian mean width bound 3: e-net sequence

o Scisa (1/2¢)-netof T, k>0

mix is closest pointin S to x € T, Apx = Tpx — Tp_1X
e wlog |T| < oo (else apply this slide to e-net of T for ¢ small)
* (g,x) = (&, 7m0x) + 2421 (&, Dkx)



Gaussian mean width bound 3: e-net sequence

Sk is a (1/2¢)-netof T, k>0

mix is closest pointin S to x € T, Apx = Tpx — Tp_1X
wlog | T| < oo (else apply this slide to e-net of T for & small)
(g, x) = (g, mox) + 3421 (8 Aix)

o(T) = B sup (g, mox) + D=y By suPset (8 AkX)

|
0



Gaussian mean width bound 3: e-net sequence

Sk is a (1/2¢)-netof T, k>0

mix is closest pointin S to x € T, Apx = Tpx — Tp_1X
wlog | T| < oo (else apply this slide to e-net of T for & small)
(g, x) = (g, mox) + 3421 (8 Aix)

o(T) = B sup (g, mox) + D=y By suPset (8 AkX)

|
0

‘{AkX X E T}| SN(T,EQ,l/T() 'N(T,gg,l/Zkfl)
< ('N’(T7€271/2k))2



Gaussian mean width bound 3: e-net sequence

Sk is a (1/2¢)-netof T, k>0

mix is closest pointin S to x € T, Apx = Tpx — Tp_1X
wlog | T| < oo (else apply this slide to e-net of T for & small)
(g, x) = (g, mox) + 3421 (8 Aix)

o(T) = B sup (g, mox) + D=y By suPset (8 AkX)

|
0

HAkx :x € TH < N(T,l,1/2%) - N (T, lp,1/2k1)
< (N( T, 2, 1/2k))2
o(T) S X0 (Y24) - log! P N(T 2, 1/24)
< o2 log 2 N (T, £2, u)du (Dudley’s theorem)
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Gaussian mean width bound 4: generic chaining

e Again, wlog |T| < cc. Define o C T C---C Ty, =T
|To| = 1, | Ti| < 2% (call such a sequence “admissible”)
e Exercise: show Dudley’s theorem is equivalent to
9(T) Sinfir,y admissible Yope 2572 - supe 1 diy (X, Tk)
(should pick Ty to be the best ¢ = ¢(k) net of size 22k)
e Fernique'76™: can pull the sup, outside the sum
o o(T) S infyry supeer 3720 22 - dis(x, Tio) = 2(T, £2)
* equivalent upper bound proven by Fernique (who minimized

some integral over all measures over T), but reformulated in
terms of admissible sequences by Talgarand
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Gaussian mean width bound 4: generic chaining

Proof of Fernique's bound

g(T)<Es <g,7rox> +E sup Z (g, Axx) (from before)
g x g x€T | — 1T
%/_/ %
0

o Vi, P(Yy > t25/2||Akx])2) < et’2"/2 (gaussian decay)
o P(I K Vi > 02K Dyxa) < 30, (2% e €22

EsupZYk—/ supZYk>u

& xeT xeT
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Gaussian mean width bound 4: generic chaining

EsupZYk—/ supZYk>u)du

& xeT P xeT K
= 7(T, ¢2) / P(sup > Vi > tsupz2k/2HAka )dt
0 xeT P

(change of variables: u =t sup Z2k/2||Aka2 ty2(T, 42))
xeT
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Gaussian mean width bound 4: generic chaining

EsupZYk—/ supZYk>u)du

8 xeT P xeT =
= (T, l2) / (sup > Vi > tsupz2k/2HAka )dt
0 xeT P
(change of variables: u =t sup Z2k/2||Akx|]2 ty2(T, 42))
xeT
< (T, )2+ / (Z(zzk)%—mk”) o]
2 \k=1
~ 7(T, £2)

e Conclusion: g(T) < 42(T,42)
e Talagrand: g(T) >~ 72(T,¢2) (won't show today)

(“Majorizing measures theorem”)



Are these bounds really different?

® 72(Tv€2): imC{Tk} SUPyeT 220:1 2K/2. dgz(X, Tk)
e Dudley: infir3 372, 212 supy e di,(x, Tk)
~ [ log'/2 N (T, la, u)du



Are these bounds really different?

o 2T, l2): infyry supeer Doy 2572 - dp, (x, Ti)

e Dudley: infir3 372, 2K/2 . sup, o 1 dp, (x, Tx)
~ [ log'/2 N (T, la, u)du

e Dudley not optimal: T = By



Are these bounds really different?

Y2(T, €2): infyrysupeer > opey ok/2 dp, (x, Ti)
Dudley: inf7,3 3272, 2K/2 - sup, 7 dp, (x, Ty
o~ f log'/? N (T, 2, u)du

Dudley not optimal: T = B

SUPxeByp (g,x) = ||g|lco, 50 §(T) =~ \/logn

Exercise: Come up with admissible { Ty} yielding
v2 < /log n (must exist by majorizing measures)



Are these bounds really different?

72(T7£2): inf{Tk} SUPyeT Ziozl 2K/2. dg2(X, Tk)

Dudley: inf{7,3 > o0, 2%/ - sup,e 7 dp, (X, Tk)

~ [ log'/2 N (T, la, u)du

Dudley not optimal: T = B

SUPxes,, (8:X) = lIglloc: s0 8(T) = Viogn

Exercise: Come up with admissible { Ty} yielding

72 < /log n (must exist by majorizing measures)

Dudley: log N'(Byn, €2, u) =~ (1/u?) log n for u not too small
(consider just covering (1/u?)-sparse vectors with u? in each
coordinate). Dudley can only give g(Br) < log®? n



Are these bounds really different?

72(T7£2): inf{Tk} SUPyeT Ziozl 2K/2. dg2(X, Tk)

Dudley: inf{7,3 > o0, 2%/ - sup,e 7 dp, (X, Tk)

~ [ log'/2 N (T, la, u)du

Dudley not optimal: T = B

SUPxes,, (8:X) = lIglloc: s0 8(T) = Viogn

Exercise: Come up with admissible { Ty} yielding

72 < /log n (must exist by majorizing measures)

Dudley: log N'(Byn, €2, u) =~ (1/u?) log n for u not too small
(consider just covering (1/u?)-sparse vectors with u? in each
coordinate). Dudley can only give g(Br) < log®? n

Simple vanilla e-net argument gives g(Byr) < poly(n).
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High probability

e So far just talked about g(T) = Eg sup,c7 Z«

But what if we want to know sup,. 1 Zx is small whp, not just
in expectation?

e Usual approach: bound Egz sup,.7 Z& for large p and do
Markov (“moment method”)

Can bound moments using chaining too; see (Dirksen'13)



Applications in computer science

Fast RIP matrices (Candés, Tao'06), (Rudelson,
Vershynin'06), (Cheragchi, Guruswami, Velingker'13), (N.,
Price, Wootters'14), (Bourgain'14), (Haviv, Regev'15)

Fast JL (Ailon, Liberty'11), (Krahmer, Ward'11), (Bourgain,
Dirksen, N.'15), (Oymak, Recht, Soltanolkotabi'15)
Instance-wise JL bounds (Gordon'88), (Klartag,
Mendelson’'05), (Mendelson, Pajor, Tomczak-Jaegermann’'07),
(Dirksen'14)

Approximate nearest neighbor (Indyk, Naor'07)
Deterministic algorithm to estimate graph cover time (Ding,
Lee, Peres'11)

List-decodability of random codes (Wootters'13), (Rudra,
Wootters'14)



A chaining result for quadratic forms

Theorem
[Krahmer, Mendelson, Rauhut’14] Let A C R"™" be a family of
matrices, and let o1,...,0, be independent subgaussians. Then

2
E sup [||Ac|5 — E [|Ac|l3]
AcA g

SBAN o) +92(A | lese) - AF(A) + Ay (A) - Ar(A)

(Ax is diameter under X-norm)


http://people.seas.harvard.edu/~minilek/madalgo2015/
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A chaining result for quadratic forms

Theorem
[Krahmer, Mendelson, Rauhut'14] Let A C R"™*" be a family of
matrices, and let o1,...,0, be independent subgaussians. Then

E sup [[|Ac 3 — E||Ac|l3|

AcA g

SHA N lose) +72(A - i) - AF(A) + Ao, (A) - Ar(A)
(Ax is diameter under X-norm)
Won't show proof today, but it is similar to bounding g(T) (with

some extra tricks). See http://people.seas.harvard.
edu/-minilek/madalgo2015/, Lecture 3.


http://people.seas.harvard.edu/~minilek/madalgo2015/
http://people.seas.harvard.edu/~minilek/madalgo2015/

Instance-wise bounds for JL

Corollary (Gordon'88, Klartag-Mendelson'05, Mendelson,
Pajor, Tomczak-Jaegermann'07, Dirksen'14)

For TCS" land0<e< 1/2, let N € R™*" have independent
subgaussian independent entries with mean zero and variance 1/m
for m 2> (8*(T)+1)/c2. Then

E sup ]HI_IXH% —-1l<e
MxeT



Instance-wise bounds for JL

Proof of Gordon's theorem

e For x € T let A, denote the m x mn matrix:

X1 . Xn 0
0 e 0 X1 e Xn 0

X1

Xn
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Instance-wise bounds for JL

Proof of Gordon's theorem

e For x € T let A, denote the m x mn matrix:

X1 Xn 0 .
1 0 0 X1 e Xn 0
A=

e Then ||Mx||2 = ||Axc||3, where o is formed by concatenating
rows of I (multiplied by \/m).

o |Ax = Ayll = [[Ax—yll = (F/vm) - [Ix = y2
= V(AT || - [ly0,) = 72(T, €2) =~ 9(T)
o Ap(A7) =1, Apyspy (A7) = 1/V/m
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Instance-wise bounds for JL

Proof of Gordon's theorem

e For x € T let A, denote the m x mn matrix:

X1 Xn 0 .
1 0 0 X1 e Xn 0
A=

Then |[Mx||3 = ||Axc |3, where o is formed by concatenating
rows of I (multiplied by \/m).

[Ax = Ayl = [[Ax—y | = (F/vm) - lIx = yll2

= N2(AT, || - lease2) = 72(T, £2) =~ g(T)

Ap(AT) =1, Dpysp (A7) =1//m

Thus Ensupeer |INx)|3 — 1| < *(T)/m + o(T)/ym + 1/y/m

Xn



Instance-wise bounds for JL

Proof of Gordon's theorem

e For x € T let A, denote the m x mn matrix:

X1 Xn 0 .
1 0 0 X1 e Xn 0
A=

e Then ||Mx||2 = ||Axc||3, where o is formed by concatenating
rows of I (multiplied by \/m).

o [[Ax = Ayll = [Ax—y [l = (%/vm) - Ix = yl2
= 72(AT - llase) = 72(T 5 £2) = o(T)
* Ap(A7T) =1, Agmpy(AT) =1/V/m
o Thus Ensup,cr [|Mx|13 — 1| £ (M)/m + o(T)/ym + 1/ym
e Set m = (8(T)+1)/2

Xn



Consequences of Gordon's theorem

m > @(T)+1)/.2

o |T| < oo g%(T) < log|T| (JL)
e T a d-dim subspace: g?(T) ~ d (subspace embeddings)
e T all k-sparse vectors: g?(T) ~ klog(n/k) (RIP)



Consequences of Gordon's theorem

m > @(T)+1)/.2

o |T| < oo g%(T) < log|T| (JL)
e T a d-dim subspace: g?(T) ~ d (subspace embeddings)
e T all k-sparse vectors: g?(T) ~ klog(n/k) (RIP)

e more applications to constrained least squares, manifold
learning, model-based compressed sensing, ...

(see (Dirksen'14) and (Bourgain, Dirksen, N.'15))



Chaining isn’t just for gaussians



Chaining without gaussians: RIP (Rudelson, Vershynin'06)

“Restricted isometry property” useful in compressed sensing.
T ={x:lixllo <k, [Ix]2 = 1}.
Theorem (Candés-Tao'06, Donoho'06, Candés'08)

If T satisfies (4, k)-RIP for e, < /2 — 1 then there is a linear
program which, given lNx and I as input, recovers X in polynomial
time such that ||x — %[|2 < O(Y/vk) - miny, o< [[X = ¥ll1.



Chaining without gaussians: RIP (Rudelson, Vershynin'06)

“Restricted isometry property” useful in compressed sensing.
T ={x:lixllo <k, [Ix]2 = 1}.
Theorem (Candés-Tao'06, Donoho'06, Candés'08)

If 1 satisfies (4, k)-RIP for €, < /2 — 1 then there is a linear
program which, given lNx and I as input, recovers X in polynomial
time such that ||x — %[|2 < O(Y/vk) - miny, o< [[X = ¥ll1.

Of interest to show sampling rows of discrete Fourier matrix is RIP
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¢ (Unnormalized) Fourier matrix F, rows: zf,...,z}

e 41,...,0, independent Bernoulli with expectation m/n



Chaining without gaussians: RIP (Rudelson, Vershynin'06)

¢ (Unnormalized) Fourier matrix F, rows: zf,...,z}
e 41,...,0, independent Bernoulli with expectation m/n
e Want
T *
E sup ||IT——Z(5,, )||<€
TC[n]

| T|<k
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Chaining without gaussians: RIP (Rudelson, Vershynin'06)

It
LHS = sup | E— 25 (M1 _ Za,z,.(T)z}T)*n
S T1Cln) M —
| T|<k
1 )27
< =
<L E Sl;pll Z | (Jensen)
T 1 ) (T)
= E 1197 ! (
5 mm, pH Z!g!a(é d)z; |



Chaining without gaussians: RIP (Rudelson, Vershynin'06)

IT
L .
LHS = E sup | E— 25;2’_(7')21_(T) —*25/2’-(7-)2,-(7-) I
TC[n] 6 m 1 m =
| T|<k
S;g%,st (67 = 67)2 2| (Jensen)

T (T)*
- ~ E i|Oj - I P P
\fz LB ol §j\gra A7)

<V2r-— Esup] Zg,-é,-zi(T)zi(T)*H (Jensen+-triangle ineq)
miég 1T



Chaining without gaussians: RIP (Rudelson, Vershynin'06)

IT

L .
LHS = E sup | E— 25;2’_(7')2’_(T) _7251'21‘(7-)2:‘(7-) I
S Tcln) M m

=1 =1
| T|<k
1 T)
< E (8, — 67)2" J
< méyé,sngZ 77| (Jensen)

T (T)*
- ~ E i|Oj - I P P
\fz LB ol §j\gra A7)

<V2r-— Esup] Zg,-é,-zi(T)zi(T)*H (Jensen+-triangle ineq)
mog 1T %

1 2 . .
~ —EE su Zj, X aussian mean width!
mégXEBp !Z;g,, W x)°| (g )



The End



June 22n9 4239, workshop on concentration of measure /
chaining at Harvard, after STOC'16. Details+website forthcoming.



