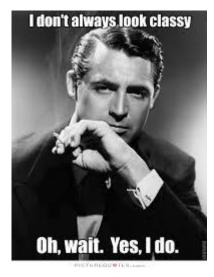
"Classy" sample correctors¹



Ronitt Rubinfeld MIT and Tel Aviv University

joint work with Clement Canonne (Columbia) and Themis Gouleakis (MIT)

¹thanks to Clement and G for inspiring this classy title

Distributions on BIG domains

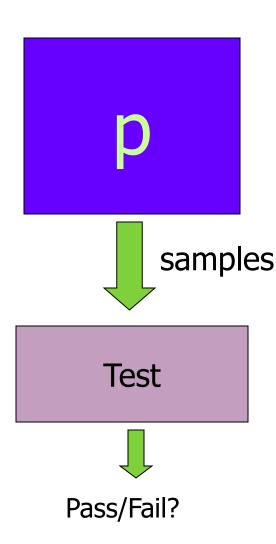
- Given samples of a distribution, need to know, e.g.,
 - entropy
 - number of distinct elements
 - "shape" (monotone, bimodal,...)
 - closeness to uniform, Gaussian, Zipfian...
 - learn parameters
- Considered in statistics, information theory, machine learning, databases, algorithms, physics, biology,...

Key Question

- How many samples do you need in terms of domain size?
 - Do you need to estimate the probabilities of each domain item?
 - -- OR --
 - Can sample complexity be *sublinear* in size of the domain?

Rules out standard statistical techniques

Our usual model:



p is arbitrary black-box distribution over [*n*], generates iid samples.

• Sample complexity in terms of *n*?

Great Progress!

- Some optimal bounds:
 - Additive estimates of entropy, support size, closeness of two distributions: n/log n [Raskhodnikova Ron Shpilka Smith 2007][Valiant Valiant 2011]
 - Two distributions the same or far (in L1 distance)? $n^{\frac{1}{2}}$, $n^{\frac{2}{3}}$ [Goldreich Ron][Batu Fortnow R. Smith White 2000] [Valiant 2008]
 - γ-multiplicative estimate of entropy: n^{1/γ2} [Batu Dasgupta Kumar R. 2005] [Raskhodnikova Ron Shpilka Smith 2007] [Valiant 2008]
 - And much much more!!

So now what do you do?

You tested your distribution, and it's pretty much ok,

BUT

What if your samples aren't quite right?

What are the traffic patterns?

Some sensors lost power, others went crazy!

Astronomical data

A meteor shower confused some of the measurements

Teen drug addiction recovery rates

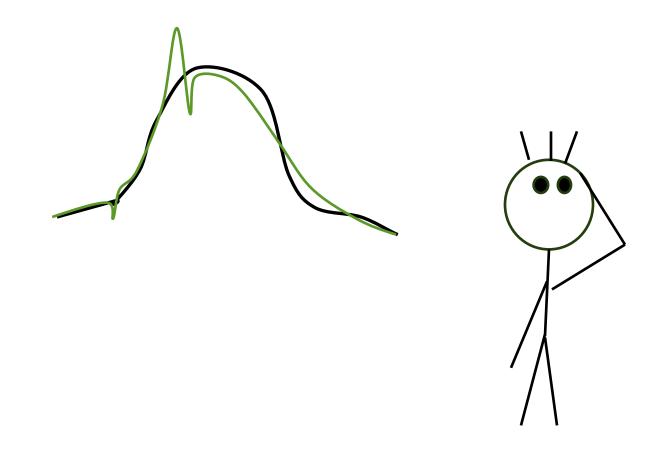
Never received data from three of the community centers!

Whooping cranes

Correction of location errors for presence-only species distribution models [Hefley, Baasch, Tyre, Blankenship 2013]

What is correct?

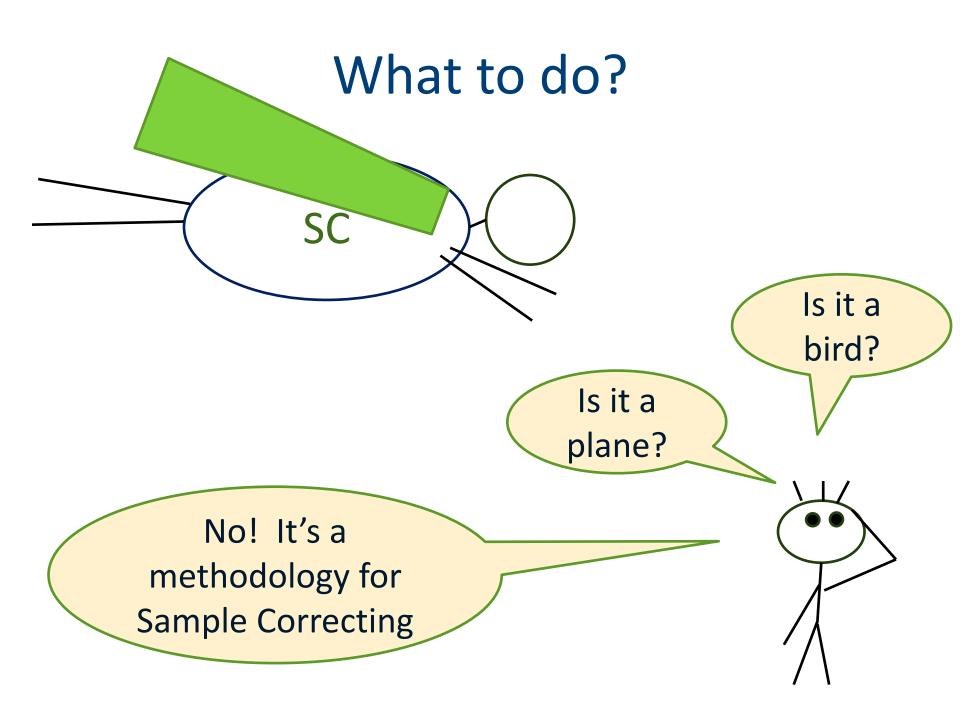
What is correct?



What to do?

- Outlier detection/removal
- Imputation
- Missingness

What if you don't know that the distribution is supposed to be normal, Gaussian, ...?



What is correct?

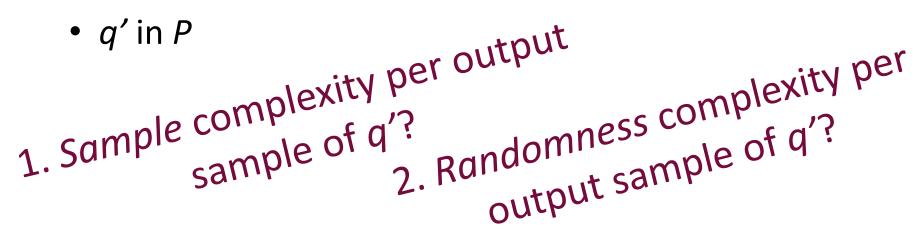
Sample corrector assumes that original distribution in class *P*

(e.g., *P* is monotone, Lipshitz, *k*-modal, *k*histogram distributions)

Classy Sample Correctors

 Given: Samples of distribution *q* assumed to be ε-close to class *P*

- Output: Samples of some q' such that
 - q' is ϵ' -close to distribution q



An observation

Corollaries: Sample correctors for

- monotone distributions
- histogram distributions under promises (e.g., distribution is MHR or monotone)

The big open question:

When can sample correctors be *more* efficient than agnostic learners?

- Some answers for monotone distributions:
 - Error is REALLY small
 - Have access to powerful queries
 - Missing data errors
 - Unfortunately, not likely in general case (constant arbitrary error, no extra queries)

Learning monotone distributions

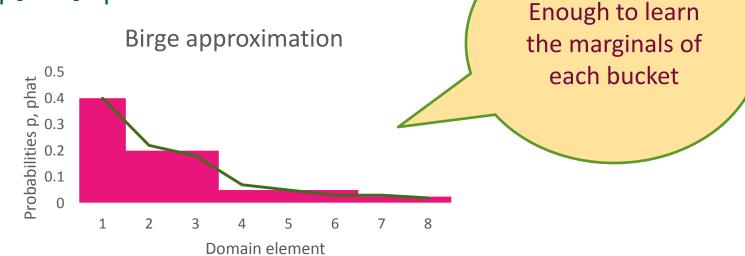
Learning monotone distributions requires $\theta(\log n)$ samples [Birge][Daskalakis Diakonikolas Servedio]

Birge Buckets

Partition of domain into buckets (segments) of size $(1 + \epsilon)^i$ ($O(\log n)$ buckets total)

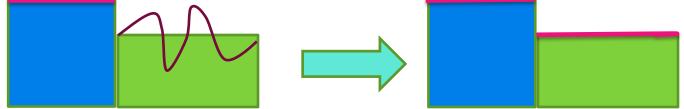
For distribution p, let \hat{p} be such that uniform on each bucket, but same marginal in each bucket

Then $||p - \hat{p}|| \le \epsilon$



A very special kind of error

Suppose ALL error located internally to Birge Buckets



Then, easy to correct to \hat{p} :

 Pick sample x from p
Output y chosen UNIFORMLY from x's Birge Bucket

"Birge Bucket Correction"

Learning monotone distributions

Thm: Exists Sample Corrector which given p which is $\left(\frac{1}{\log^2 n}\right)$ -close to monotone, uses O(1) samples of p per output sample. OBLIVIOUS CORRECTION!!

Proof Idea:

Mix Birge Bucket correction with slightly decreasing distribution (flat on buckets with some space between buckets)

A recent lower bound [P. Valiant]

Sample correctors for $\Omega(1)$ -close to monotone distributions require $\Omega(\log n)$ samples

What do we do now?

What about stronger queries?

What if have lots and lots of sorted samples?

Easy to implement both samples, and queries to cumulative distribution function (cdf)!

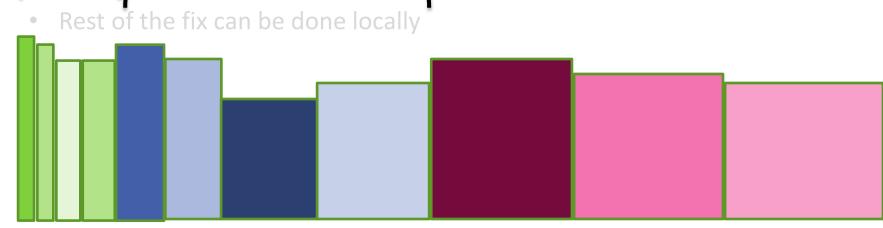
Thm: Exists Sample Corrector such that given p which is ϵ —close to monotone, uses $O((\log(n))^{1/2})$ queries to p per output sample.

Fixing with CDF queries

- Each *super bucket* is $\sqrt{\log n}$ consecutive Birge buckets
- Query conditional distribution of superbuckets and reweight if needed
- Within super busices and next super buckets in order to "fix"

• Gan always "move" weight to first bucket

• Can always "take away" weight from last buckets



Fixing with CDF queries

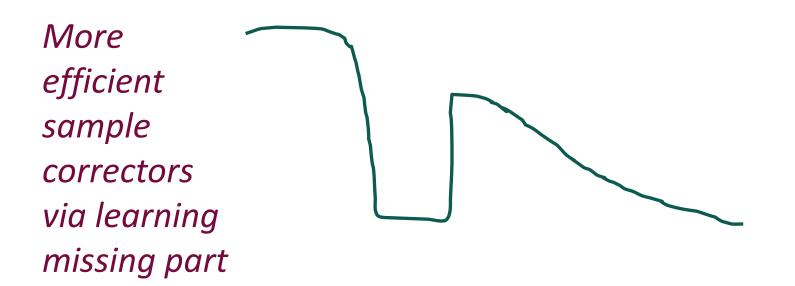
- Each *super bucket* is $\sqrt{\log n}$ consecutive Birge buckets
- Query conditional distribution of superbuckets and reweight if needed (decide how using LP)
- Within super buckets, use $O(\sqrt{\log n})$ queries to all buckets in current, previous and next super buckets some weight
 - Can always "move" weight to first bucket
 - Can always "take away" weight from last buckets

Fixing with CDF queries

- Each *super bucket* is $\sqrt{\log n}$ consecutive Birge buckets
- Query conditional distribution of superbuckets and reweight if needed
- Within super buckets, use $O(\sqrt{\log n})$ queries to all buckets in current, previous and next super buckets in order to "fix"
 - Can always "move" weight to first bucket, "take away" weight from last buckets
 - Rest of the fix must be done *quickly* and *on the fly*...
 - After reweighting above, average weights a_i of a superbucket are monotone
 - Ensure that new corrections don't violate monotonicity with the a_i 's

Special error classes

- Missing data errors p is a member of P with a segment of the domain removed
 - E.g. one sensor failure in traffic data



Sample correctors provide more powerful learners and testers:

Sample Corrector + learner → agnostic learner

- Sample Corrector + distance approximator + tester → tolerant tester
 - Gives weakly tolerant monotonicity tester

Randomness Scarcity

- Can we correct using little randomness of our own?
 - Generalization of Von Neumann corrector of biased coin
 - Compare to extractors (not the same)
 - For monotone distributions, YES!

What next for correction?

When is correction easier than learning?

Thank you