
Large-scale Graph Mining @ Google NY

Vahab Mirrokni

Google Research
New York, NY

DIMACS Workshop

Many applications 
 Friend suggestions
 Recommendation systems
 Security

 Advertising

Benefits
 Big data available
 Rich structured information

New challenges
 Process data efficiently
 Privacy limitations

Large-scale graph mining

Google NYC Large-scale graph mining

Develop a general-purpose library of graph mining tools
for XXXB nodes and XT edges

via MapReduce+DHT(Flume), Pregel, ASYMP
Goals:

• Develop scalable tools (Ranking, Pairwise Similarity,
Clustering, Balanced Partitioning, Embedding, etc)

• Compare different algorithms/frameworks
• Help product groups use these tools across Google in

a loaded cluster (clients in Search, Ads, Youtube,
Maps, Social)

• Fundamental Research (Algorithmic Foundations and
Hybrid Algorithms/System Research)

Outline

Three perspectives:

• Part 1: Application-inspired Problems
• Algorithms for Public/Private Graphs

• Part 2: Distributed Optimization for NP-Hard Problems
• Distributed algorithms via composable core-sets

• Part 3: Joint systems/algorithms research
• MapReduce + Distributed HashTable Service

Problems Inspired by Applications

Part 1: Why do we need scalable graph mining?

Stories:
• Algorithms for Public/Private Graphs,

• How to solve a problem for each node on a public graph+its own
private network

• with Chierchetti,Epasto,Kumar,Lattanzi,M: KDD’15

• Ego-net clustering
• How to use graph structures and improve collaborative filtering
• with EpastoLattanziSebeTaeiVerma, Ongoing

• Local random walks for conductance optimization,
• Local algorithms for finding well connected clusters
• with AllenZu,Lattanzi, ICML’13

Idealistic vision

Private-Public networks

Reality

Private-Public networks

My friends
are

private

Only my
friends can

see my
friends

~52% of NYC Facebook
users hide their friends

Network signals are very useful [CIKM03] 
 Number of common neighbors
 Personalized PageRank
 Katz

Applications: friend suggestions

Network signals are very useful [CIKM03] 
 Number of common neighbors
 Personalized PageRank
 Katz

Applications: friend suggestions

From a user’
perspective,

there are
interesting

signals

Maximize the reachable sets 
 How many can be reached by re-sharing?

Applications: advertising

Maximize the reachable sets 
 How many can be reached by re-sharing?

Applications: advertising

More influential
from global
prospective

Maximize the reachable sets 
 How many can be reached by re-sharing?

Applications: advertising

More influential
from Starbucks’

prospective

There is a public graph in addition each node has
access to a local graph

G u
Gu

u

Private-Public problem

G

u

u
Gu

Private-Public problem

There is a public graph in addition each node has
access to a local graph

G

u

u
Gu

Private-Public problem

There is a public graph in addition each node has
access to a local graph

G

u

u
Gu

u

Gu

Private-Public problem

There is a public graph in addition each node has
access to a local graph

For each , we like to execute some computation on

u

u
G [Gu

Private-Public problem

For each , we like to execute some computation on

u

u
G [Gu

Doing it naively is too expensive

Private-Public problem

Private-Public problem

Can we precompute data structure for so that we can
solve problems in efficiently?

G
G [Gu

preprocessing

+
u

fast computation

Private-Public problem

Ideally

Preprocessing time:

Preprocessing space:

Post-processing time:

Õ (|VG|)

Õ (|EG|)

Õ (|EGu |)

(Approximation) Algorithms with provable bounds 
 Reachability
 Approximate All-pairs shortest paths
 Correlation clustering

 Social affinity

Heuristics
 Personalized PageRank
 Centrality measures

Problems Studied

Algorithms 
 Reachability
 Approximate All-pairs shortest paths
 Correlation clustering

 Social affinity

Heuristics
 Personalized PageRank
 Centrality measures

Problems Studied

Part 2: Distributed Optimization
Distributed Optimization for NP-Hard Problems on Large
Data Sets:

Two stories:
• Distributed Optimization via composable core-sets

• Sketch the problem in composable instances
• Distributed computation in constant (1 or 2) number of rounds

• Balanced Partitioning
• Partition into ~equal parts & minimize the cut

Distributed Optimization Framework

 Input Set N

Machine 1

Machine m

Machine 2

T1

T2

Tm

Run ALG in each machine

Selected
elements

S1

S2

Sm

output
set

Run ALG’ to find the
final size k output set

Composable Core-sets

• Technique for effective distributed algorithm
• One or Two rounds of Computation
• Minimal Communication Complexity
• Can also be used in Streaming Models and Nearest Neighbor
Search

• Problems
o Diversity Maximization

o Composable Core-sets
o Indyk, Mahabadi, Mahdian, Mirrokni, ACM PODS’14

o Clustering Problems
o Mapping Core-sets
o Bateni, Bashkara, Lattanzi, Mirrokni, NIPS 2014

o Submodular/Coverage Maximization:
o Randomized Composable Core-sets
o work by Mirrokni, ZadiMoghaddam, ACM STOC 2015

Problems considered:

Distributed Graph Algorithmics: Theory and Practice. WSDM 2015, Shanghai

General: Find a set S of k items & maximize f(S).

• Diversity Maximization: Find a set S of k points
and maximize the sum of pairwise distances i.e.
diversity(S).

• Capacitated/Balanced Clustering: Find a set S
of k centers and cluster nodes around them while
minimizing the sum of distances to S.

• Coverage/submodular Maximization: Find a set
S of k items. Maximize submodular function f(S).

Distributed Clustering
Clustering: Divide data into groups containing

Minimize:
k-center :

k-means :

k-median :

Metric space (d, X)

α-approximation
algorithm: cost less

than α*OPT

Distributed Clustering

Framework:

- Divide into chunks
V1, V2,…, Vm

- Come up with
“representatives” Si on
machine i << |Vi|

- Solve on union of Si, others
by closest rep.

Many objectives: k-means, k-
median, k-center,...

minimize max cluster radius

Balanced/Capacitated Clustering

Theorem(BhaskaraBateniLattanziM. NIPS’14): distributed balanced
clustering with

- approx. ratio: (small constant) * (best “single machine” ratio)
- rounds of MapReduce: constant (2)
- memory: ~(n/m)^2 with m machines

Works for all Lp objectives.. (includes k-means, k-median, k-center)

Improving Previous Work

• Bahmani, Kumar, Vassilivitskii, Vattani: Parallel K-means++
• Balcan, Enrich, Liang: Core-sets for k-median and k-center

Experiments
Aim: Test algorithm in terms of (a) scalability, and (b) quality of solution obtained

Setup: Two “base” instances and subsamples (used k=1000, #machines =
200)

US graph: N = x0
Million

distances: geodesic

World graph: N = x00 Million
distances: geodesic

size of seq.
inst.

increase in
OPT

US 1/300 1.52

World 1/1000 1.58

Accuracy: analysis pessimistic Scaling: sub-linear

Coverage/Submodular Maximization

Distributed Graph Algorithmics: Theory and Practice. WSDM 2015, Shanghai

• Max-Coverage:
• Given: A family of subsets S1 … Sm
• Goal: choose k subsets S’1 … S’k with the

maximum union cardinality.
• Submodular Maximization:

• Given: A submodular function f
• Goal: Find a set S of k elements &

maximize f(S).
• Applications: Data summarization, Feature

selection, Exemplar clustering, …

Bad News!

• Theorem[IndykMahabadiMahdianM PODS’14]
There exists no better than approximate
composable core-set for submodular
maximization.

• Question: What if we apply random
partitioning?

YES! Concurrently answered in two papers:
• Barbosa, Ene, Nugeon, Ward: ICML’15.
• M.,ZadiMoghaddam: STOC’15.

Summary of Results  
[M. ZadiMoghaddam – STOC’15]

1. A class of 0.33-approximate randomized
composable core-sets of size k for non-
monotone submodular maximization.

2. Hard to go beyond ½ approximation with
size k. Impossible to get better than 1-1/e.

3. 0.58-approximate randomized composable
core-set of size 4k for monotone f. Results
in 0.54-approximate distributed algorithm.

4. For small-size composable core-sets of k’
less than k: sqrt{k’/k}-approximate
randomized composable core-set.

 -approximate Randomized Core-set(2− 2)

• Positive Result [M, ZadiMoghaddam]: If we
increase the output sizes to be 4k, Greedy
will be (2-√2)-o(1) ≥ 0.585-approximate
randomized core-set for a monotone
submodular function.

• Remark: In this result, we send each item
to C random machines instead of one. As a
result, the approximation factors are
reduced by a O(ln(C)/C) term.

Summary: composable core-sets

• Diversity maximization (PODS’14)
• Apply constant-factor composable core-sets

• Balanced clustering (k-center, k-median & k-means) (NIPS’14)
• Apply Mapping Core-sets ! constant-factor

• Coverage and Submodular maximization (STOC’15)
• Impossible for deterministic composable core-set
• Apply randomized core-sets ! 0.54-approximation

• Future:
• Apply core-sets to other ML/graph problems, feature selection.
• For submodular:

• 1-1/e-approximate core-set
• 1-1/e-approximation in 2 rounds (even with multiplicity)?

Distributed Balanced Partitioning
via Linear Embedding

o Based on work by Aydin, Bateni, Mirrokni

Balanced Partitioning Problem

● Balanced Partitioning:
o Given graph G(V, E) with edge weights
o Find k clusters of approximately the same size
o Minimize Cut, i.e., #intercluster edges

● Applications:
o Minimize communication complexity in distributed computation
o Minimize number of multi-shard queries while serving an

algorithm over a graph, e.g., in computing shortest paths or
directions on Maps

Outline of Algorithm

Three-stage Algorithm:
1. Reasonable Initial Ordering

a. Space-filling curves
b. Hierarchical clustering

2. Semi-local moves
a. Min linear arrangement
b. Optimize by random swaps

3. Introduce imbalance
a. Dynamic programming
b. Linear boundary adjustment
c. Min-cut boundary optimization

G=(V,E)

0 1 2 4 5 6 7 8 9 10 113

Initial ordering

0 1 2 456 78 9 10113

Semi-local moves

0 1 2 456 78 9 10113

Imbalance

Step 1 - Initial Embedding

● Space-filling curves (Geo Graphs)

● Hierarchical clustering (General Graphs)

0 1 2 3 4 5 6 7 8 9

v
0

10 11

v
1

v
5

A
0

A
2

B
0

B1

C0

Datasets

● Social graphs
o Twitter: 41M nodes, 1.2B edges
o LiveJournal: 4.8M nodes, 42.9M edges
o Friendster: 65.6M nodes, 1.8B edges

● Geo graphs
o World graph > 1B edges
o Country graphs (filtered)

Related Work

● FENNEL, WSDM’14 [Tsourakakis et al.]
o Microsoft Research
o Streaming algorithm

● UB13, WSDM’13 [Ugander & Backstorm]
o Facebook
o Balanced label propagation

● Spinner, (very recent) arXiv [Martella et al.]
● METIS

o In-memory

Comparison to Previous Work

k Spinner
(5%)

UB13
(5%)

Affinity
(0%)

Our Alg
(0%)

20 38% 37% 35.71% 27.5%

40 40% 43% 40.83% 33.71%

60 43% 46% 43.03% 36.65%

80 44% 47.5% 43.27% 38.65%

100 46% 49% 45.05% 41.53%

Comparison to Previous Work

k Spinner
(5%)

Fennel
(10%)

Metis
(2-3%)

Our Alg
(0%)

2 15% 6.8% 11.98% 7.43%

4 31% 29% 24.39% 18.16%

8 49% 48% 35.96% 33.55%

Outline: Part 3

Practice: Algorithms+System Research

Two stories:
• Connected components in MapReduce & Beyond  

 Going beyond MapReduce to build efficient tool in practice.
• ASYMP 

 A new asynchronous message passing system.

Large-scale Graph Mining. BIG 2015, Florence

Graph Mining Frameworks
Applying various frameworks to graph algorithmic
problems
• Iterative MapReduce (Flume):

o More widely fault-tolerant available tool
o Can be optimized with algorithmic tricks

• Iter. MapReduce + DHT Service (Flume):
o Better speed compared to MR

• Pregel:
o Good for synch. computation w/ many rounds
o Simpler implementation

•ASYMP (ASYnchronous Message-Passing):
o More scalable/More efficient use of CPU
o Asych. self-stabilizing algorithms

Metrics for MapReduce algorithms

• Running Time
o Number of MapReduce rounds
o Quasi-linear time processing of inputs

• Communication Complexity
o Linear communication per round
o Total communication across multiple rounds

• Load Balancing
o No mapper or reducer should be overloaded

• Locality of the messages
o Sending messages locally when possible
o Use the same key for mapper/reducer when possible
o Effective while using MR with DHT (more later)

Connected Components: Example output

Web Subgraph: 8.5B nodes, 700B edges

Prior Work: Connected Components in MR

Algorithm #MR Rounds Communication /
Round

Practice

Hash-Min D (Diameter) O(m+n) Many rounds

Hash-to-All Log D O(n Long rounds

Hash-to-Min Open O(nlog n+m) BEST

Hash-Greater -
to-Min

3 log D 2(n+m) OK, but not the
best

Connected components in MapReduce,
Rastogi et al, ICDE’12

Connected Components: Summary
• Connected Components in MR & MR+DHT

• Simple, local algorithms with O(log2 n) round complexity
• Communication efficient (#edges non-increasing)

• Use Distributed HashTable Service (DHT) to
improve # rounds to O~(log n) [from ~20 to ~5]
• Data: Graphs with ~XT edges. Public data with 10B
edges

• Results:
•MapReduce: 10-20 times faster than HashtoMin
•MR+DHT: 20-40 times faster than HashtoMin
•ASYMP: A simple algorithm in ASYMP: 25-55 times faster
than HashtoMin

KiverisLattnziM.RastogiVassilivitskii, SOCC’14.

ASYMP:ASYnchrouns Message Passing
• ASYMP: New graph mining framework
• Compare with MapReduce, Pregel

• Computation does not happen in a
synchronize number of rounds

• Fault-tolerance implementation is also
asynchronous

• More efficient use of CPU cycles
• We study its fault-tolerance and scalability
• Impressive empirical performance (e.g., for

connectivity and shortest path)

 Fleury, Lattanzi, M.: ongoing.

• Nodes are distributed among many machines (workers)
• Each node keeps a state and send messages to its

neighbors.
• Each machine has a priority queue for sending messages to

other machines

• Initialization: Set nodes’ states & activate some nodes
• Main Propagation Loop (Roughly):
o Until all nodes converge to a stable state:
▪ Asynchronously update states and send top messages

in each priority queue
• Stop Condition: Stop when priority queues are empty…

Asymp model

Asymp worker design

• 5 Public and 5 Internal Google graphs e.g.
o UK Web graph: 106M nodes, 6.6B edges [Public]
o Google+ subgraph: 178M nodes, 2.9B edges
o Keyword similarity : 371M nodes, 3.5B edges
o Document similarity: 4,700M nodes, 452B edges

• Sequence of Web subgraphs:
o ~1B, 3B, 9B, 27B core nodes [16B, 47B, 110B, 356B]
o ~36B, 108B, 324B, 1010B edges respectively

• Sequence of RMAT graphs [Synthetic and Public]:
o ~226, 228, 230, 232, 234 nodes
o ~2B, 8B, 34B, 137B, 547B edges respectively.

Data Sets

Comparison with best MR algorithms

GP O RE F P LJ

Running time comparison

Sp
ee

d−
up

1
2

5
10

20
50 MR ext

MR int
MR+HT
Asymp

• Asynchronous Checkpointing:
o Store the current states of nodes once in a while

• Upon failure of a machine:
o Fetch the last recorded state of each node, &
o Activate these nodes (send messages to neighbors), and

ask them to resend the messages it may have lost.

• Therefore, a self-stabilizing algorithm works correctly in
ASYMP.

• Example: Dijsktra Shortest Path Algorithm

Asymp Fault-tolerance

Impact of failures on running time
• Make a fraction/all of machines fail over time.

o Question: What is the impact of frequent failures?
•Let D be the running time without any failures. Then  
 

• More frequent small-size failures is worse than less
frequent large-size failures
o More robust against group-machine failures

% Machine Failures over the
whole period (! #per batch)

6% of machine
failures at a time

12% of machine
failures at a time

50% Time ~= 2D Time ~= 1.4D

100% Time ~= 3.6D Time ~= 3.2D

200% Time ~= 5.3D Time ~= 4.1D

Questions?

Thank you!

Algorithmic approach: Operation 1

Large-star(v): Connect all strictly larger neighbors to
the min neighbor including self

• Do this in parallel on each node & build a new
graph

• Theorems (KLMRV’14):
• Executing Large-star in parallel preserves connectivity
• Every Large-star operation reduces height of tree by a

constant factor

Algorithmic approach: Operation 2

Small-star(v): Connect all smaller neighbors and self
to the min neighbor including self

• Connect all parents to the minimum parent

• Theorem(KLMRV’14):
• Executing Small-star in parallel preserves connectivity

Final Algorithm: Combine Operations

• Input
o Set of edges with a unique ID per node

Algorithm:
Repeat until convergence
o Repeated until convergence
o Large-Star

o Small-star

• Theorem(KLMRV’14):
o The above algorithm converges in O(log2 n) rounds.

Improved Connected Components in MR

• Idea 1: Alternate between Large-Star and Small-
Star
– Less #rounds compared to Hash-to-Min, Less

Communication compared to Hash-Greater-to-Min
– Theory: Provable O(log2 n) MR rounds

• Optimization: Avoid large-degree nodes by
branching them into a tree of height two

• Practice:
– Graphs with 1T edges. Public data w/ 10B edges
– 2 to 20 times faster than Hash-to-Min (Best of ICDE’12)
– Takes 5 to 22 rounds on these graphs

CC in MR + DHT Service

• Idea 2: Use Distributed HashTable (DHT)
service to save in #rounds
– After small #rounds (e.g., after 3rd round),

consider all active cluster IDs, and resolve their
mapping in an array in memory (e.g. using DHT)

– Theory: O~(log n) MR rounds + O(n/log n) memory.
– Practice:

• Graphs with 1T edges. Public data w/ 10B edges.
• 4.5 to 40 times faster than Hash-to-Min (Best of

ICDE’12 paper), and 1.5 to 3 times faster than our
best pure MR implementation. Takes 3 to 5 rounds on
these graphs.

• 5 Public and 5 Internal Google graphs e.g.
o UK Web graph: 106M nodes, 6.6B edges [Public]
o Google+ subgraph: 178M nodes, 2.9B edges
o Keyword similarity : 371M nodes, 3.5B edges
o Document similarity: 4,700M nodes, 452B edges

• Sequence of RMAT graphs [Synthetic and Public]:
o ~226, 228, 230, 232, 234 nodes
o ~2B, 8B, 34B, 137B, 547B edges respectively.

• Algorithms:
o Min2Hash
o Alternate Optimized (MR-based)
o Our best MR + DHT Implementation
o Pregel Implementation

Data Sets

Speedup: Comparison with HTM

#Rounds: Comparing different algorithms

Comparison with Pregel

Warm-up: # connected components

GraphEx Symposium, Lincoln Laboratory

Warm-up: # connected components

GraphEx Symposium, Lincoln Laboratory

We can compute the components and assign to each
component an id.

A
A

A
A

A
A

A

B

B

B

B

B

C

C

C

C

Warm-up: # connected components

GraphEx Symposium, Lincoln Laboratory

After adding private edges it is possible to recompute it
by counting # newly connected components

A
A

A
A

A
A

A

B

B

B

B

B

C

C

C

C

Warm-up: # connected components

GraphEx Symposium, Lincoln Laboratory

After adding private edges it is possible to recompute it
by counting # newly connected components

A
A

A
A

A
A

A

B

B

B

B

B

C

C

C

C

Warm-up: # connected components

GraphEx Symposium, Lincoln Laboratory

After adding private edges it is possible to recompute it
by counting # newly connected components

A

B

C

