Large-scale Graph Mining @ Google NY

Vahab Mirrokni

Google Research New York, NY

DIMACS Workshop

Large-scale graph mining

Rich structured information

New challenges

Process data efficiently Privacy limitations

Google NYC Large-scale graph mining

Develop a *general-purpose library* of graph mining tools for XXXB nodes and XT edges via MapReduce+DHT(Flume), Pregel, ASYMP

Goals:

- Develop scalable tools (Ranking, Pairwise Similarity, Clustering, Balanced Partitioning, Embedding, etc)
- Compare different algorithms/frameworks
- Help product groups use these tools across Google in a loaded cluster (clients in Search, Ads, Youtube, Maps, Social)
- Fundamental Research (Algorithmic Foundations and Hybrid Algorithms/System Research)

Outline

Three perspectives:

- Part 1: Application-inspired Problems
 - Algorithms for Public/Private Graphs
- Part 2: Distributed Optimization for NP-Hard Problems
 - Distributed algorithms via composable core-sets
- Part 3: Joint systems/algorithms research
 - MapReduce + Distributed HashTable Service

Problems Inspired by Applications

Part 1: Why do we need scalable graph mining?

Stories:

- Algorithms for Public/Private Graphs,
 - How to solve a problem for each node on a public graph+its own private network
 - with Chierchetti, Epasto, Kumar, Lattanzi, M: KDD'15
- Ego-net clustering
 - How to use graph structures and improve collaborative filtering
 - with EpastoLattanziSebeTaeiVerma, Ongoing
- Local random walks for conductance optimization,
 - Local algorithms for finding well connected clusters
 - with AllenZu, Lattanzi, ICML'13

Private-Public networks

Idealistic vision

Private-Public networks

Applications: friend suggestions

Network signals are very useful [CIKM03]

- Number of common neighbors
- Personalized PageRank

Katz

Applications: friend suggestions

Network signals are very useful [CIKM03]

- Number of common neighbors
- Personalized PageRank

Katz

Applications: advertising

Maximize the reachable sets

How many can be reached by re-sharing?

Applications: advertising

Maximize the reachable sets

How many can be reached by re-sharing?

Applications: advertising

Maximize the reachable sets

How many can be reached by re-sharing?

For each u, we like to execute some computation on $G \cup G_u$

For each u , we like to execute some computation on $G \cup G_u$

Doing it naively is too expensive

Can we precompute data structure for G so that we can solve problems in $G \cup G_u$ efficiently?

Ideally

Preprocessing time: $\tilde{O}(|E_G|)$

Preprocessing space: $\tilde{O}(|V_G|)$

Post-processing time: $\tilde{O}(|E_{G_u}|)$

Problems Studied

(Approximation) Algorithms with provable bounds

- Reachability
- Approximate All-pairs shortest paths
- Correlation clustering
- Social affinity

Heuristics

- Personalized PageRank
- Centrality measures

Problems Studied

Part 2: Distributed Optimization

Distributed Optimization for NP-Hard Problems on Large Data Sets:

Two stories:

- Distributed Optimization via composable core-sets
 - Sketch the problem in composable instances
 - Distributed computation in constant (1 or 2) number of rounds
- Balanced Partitioning
 - Partition into ~equal parts & minimize the cut

Distributed Optimization Framework

Composable Core-sets

- Technique for effective distributed algorithm
 - One or Two rounds of Computation
 - Minimal Communication Complexity
 - Can also be used in Streaming Models and Nearest Neighbor Search
- Problems
 - Diversity Maximization
 - \circ Composable Core-sets
 - Indyk, Mahabadi, Mahdian, Mirrokni, ACM PODS'14
 - Clustering Problems
 - Mapping Core-sets
 - Bateni, Bashkara, Lattanzi, Mirrokni, NIPS 2014
 - Submodular/Coverage Maximization:
 - Randomized Composable Core-sets
 - work by Mirrokni, ZadiMoghaddam, ACM STOC 2015

General: Find a set S of k items & maximize f(S).

- Diversity Maximization: Find a set S of k points and maximize the sum of pairwise distances i.e. diversity(S).
- Capacitated/Balanced Clustering: Find a set S of k centers and cluster nodes around them while minimizing the sum of distances to S.
- Coverage/submodular Maximization: Find a set
 S of k items. Maximize submodular function f(S).

Distributed Clustering

Clustering: Divide data into groups containing

Minimize:k-center : $\max_{i} \max_{u \in S_i} d(u, c_i)$ Metric space (d. X)k-means : $\sum_{i} \sum_{u \in S_i} d(u, c_i)^2$ α -approximation
algorithm: cost less
than α *OPT

Distributed Clustering

Many objectives: *k*-means, *k*-median, *k*-center,...

minimize max cluster radius

Framework:

- Divide into chunks V1, V2,..., Vm

- Come up with "representatives" Si on machine *i* << |V*i*|

- Solve on union of S_i, others by closest rep.

Balanced/Capacitated Clustering

Theorem(BhaskaraBateniLattanziM. NIPS'14): distributed balanced clustering with

- approx. ratio: (small constant) * (best "single machine" ratio)
- rounds of MapReduce: constant (2)
- memory: $\sim (n/m)^2$ with *m* machines

Works for all Lp objectives.. (includes k-means, k-median, k-center)

Improving Previous Work

- Bahmani, Kumar, Vassilivitskii, Vattani: Parallel K-means++
- Balcan, Enrich, Liang: Core-sets for k-median and k-center

Experiments

Aim: Test algorithm in terms of (a) scalability, and (b) quality of solution obtained

Accuracy: analysis pessimistic

Scaling: sub-linear

Coverage/Submodular Maximization

- Max-Coverage:
 - Given: A family of subsets $S_1 \dots S_m$
 - Goal: choose k subsets S'₁ ... S'_k with the maximum union cardinality.
- Submodular Maximization:
 - Given: A submodular function **f**
 - Goal: Find a set S of k elements & maximize f(S).
- Applications: Data summarization, Feature selection, Exemplar clustering, ...

Distributed Graph Algorithmics: Theory and Practice. WSDM 2015, Shanghai

Bad News!

- Theorem[IndykMahabadiMahdianM PODS'14] There exists no better thar $\frac{\log k}{\sqrt{k}}$ approximate composable core-set for submodular maximization.
- Question: What if we apply random partitioning?

YES! Concurrently answered in two papers:

- Barbosa, Ene, Nugeon, Ward: ICML'15.
- M.,ZadiMoghaddam: STOC'15.

Summary of Results [M. ZadiMoghaddam - STOC'15]

- A class of 0.33-approximate randomized composable core-sets of size k for nonmonotone submodular maximization.
- Hard to go beyond ½ approximation with size k. Impossible to get better than 1-1/e.
- 3. 0.58-approximate randomized composable core-set of size 4k for monotone f. Results in 0.54-approximate distributed algorithm.
- For small-size composable core-sets of k' less than k: sqrt{k'/k}-approximate randomized composable core-set.

$(2-\sqrt{2})$ -approximate Randomized Core-set

- Positive Result [M, ZadiMoghaddam]: If we increase the output sizes to be 4k, Greedy will be (2-√2)-o(1) ≥ 0.585-approximate randomized core-set for a monotone submodular function.
- Remark: In this result, we send each item to C random machines instead of one. As a result, the approximation factors are reduced by a O(ln(C)/C) term.

Summary: composable core-sets

- Diversity maximization (PODS'14)
 - Apply constant-factor composable core-sets
- Balanced clustering (k-center, k-median & k-means) (NIPS'14)
 - Apply Mapping Core-sets \rightarrow constant-factor
- Coverage and Submodular maximization (STOC'15)
 - Impossible for deterministic composable core-set
 - Apply randomized core-sets \rightarrow 0.54-approximation

- Future:
 - Apply core-sets to other ML/graph problems, feature selection.
 - For submodular:
 - 1-1/e-approximate core-set
 - 1-1/e-approximation in 2 rounds (even with multiplicity)?

Distributed Balanced Partitioning via Linear Embedding

• Based on work by Aydin, Bateni, Mirrokni

Balanced Partitioning Problem

- Balanced Partitioning:
 - Given graph **G**(**V**, **E**) with edge weights
 - Find k clusters of approximately the same size
 - Minimize Cut, i.e., #intercluster edges

• Applications:

- Minimize communication complexity in distributed computation
- Minimize number of multi-shard queries while serving an algorithm over a graph, e.g., in computing shortest paths or directions on Maps

Outline of Algorithm

Three-stage Algorithm:

- 1. Reasonable Initial Ordering
 - a. Space-filling curves
 - b. Hierarchical clustering
- 2. Semi-local moves
 - a. Min linear arrangement
 - b. Optimize by random swaps
- 3. Introduce imbalance
 - a. Dynamic programming
 - b. Linear boundary adjustment
 - c. Min-cut boundary optimization

Step 1 - Initial Embedding

• Space-filling curves (Geo Graphs)

• Hierarchical clustering (General Graphs)

Datasets

Social graphs

- Twitter: 41M nodes, 1.2B edges
- LiveJournal: 4.8M nodes, 42.9M edges
- Friendster: 65.6M nodes, 1.8B edges

• Geo graphs

- World graph > 1B edges
- **Country** graphs (filtered)

Related Work

• FENNEL, WSDM'14 [Tsourakakis et al.]

- Microsoft Research
- Streaming algorithm

• UB13, WSDM'13 [Ugander & Backstorm]

- Facebook
- Balanced label propagation

• Spinner, (very recent) arXiv [Martella et al.]

• METIS

• In-memory

Comparison to Previous Work

Number of paritions

k	Spinner (5%)	UB13 (5%)	Affinity (0%)	Our Alg (0%)
20	38%	37%	35.71%	27.5%
40	40%	43%	40.83%	33.71%
60	43%	46%	43.03%	36.65%
80	44%	47.5%	43.27%	38.65%
100	46%	49%	45.05%	41.53%

Comparison to Previous Work

Outline: Part 3

Practice: Algorithms+System Research

Two stories:

- Connected components in MapReduce & Beyond Going beyond MapReduce to build efficient tool in practice.
- ASYMP

A new asynchronous message passing system.

Graph Mining Frameworks

Applying various frameworks to graph algorithmic problems

- Iterative MapReduce (Flume):
 - More widely fault-tolerant available tool
 Can be optimized with algorithmic tricks
- Iter. MapReduce + DHT Service (Flume):
 - Better speed compared to MR
- Pregel:
 - Good for synch. computation w/ many rounds
 - Simpler implementation
- •ASYMP (ASYnchronous Message-Passing):
 - More scalable/More efficient use of CPU
 - Asych. self-stabilizing algorithms

Metrics for MapReduce algorithms

• Running Time

- Number of MapReduce rounds
- Quasi-linear time processing of inputs

Communication Complexity

- Linear communication per round
- Total communication across multiple rounds

Load Balancing

No mapper or reducer should be overloaded

Locality of the messages

- Sending messages locally when possible
- Use the same key for mapper/reducer when possible
- Effective while using MR with DHT (more later)

Connected Components: Example output

Web Subgraph: 8.5B nodes, 700B edges

Prior Work: Connected Components in MR

Connected components in MapReduce, Rastogi et al, ICDE'12

Algorithm	#MR Rounds	Communication / Round	Practice
Hash-Min	D (Diameter)	O(m+n)	Many rounds
Hash-to-All	Log D	O(n	Long rounds
Hash-to-Min	Open	O(nlog n+m)	BEST
Hash-Greater - to-Min	3 log D	2(n+m)	OK, but not the best

Connected Components: Summary

- Connected Components in MR & MR+DHT
 - Simple, local algorithms with O(log² n) round complexity
 - Communication efficient (#edges non-increasing)
- Use Distributed HashTable Service (DHT) to improve # rounds to O~(log n) [from ~20 to ~5]
- Data: Graphs with ~XT edges. Public data with 10B edges
- Results:
 - •MapReduce: 10-20 times faster than HashtoMin •MR+DHT: 20-40 times faster than HashtoMin
 - •ASYMP: A simple algorithm in ASYMP: 25-55 times faster than HashtoMin

KiverisLattnziM.RastogiVassilivitskii, SOCC'14.

ASYMP:ASYnchrouns Message Passing

- ASYMP: New graph mining framework
- Compare with MapReduce, Pregel
 - Computation does not happen in a synchronize number of rounds
 - Fault-tolerance implementation is also asynchronous
 - More efficient use of CPU cycles
- We study its fault-tolerance and scalability
- Impressive empirical performance (e.g., for connectivity and shortest path)

Fleury, Lattanzi, M.: ongoing.

Asymp model

- Nodes are distributed among many machines (workers)
- Each node keeps a state and send messages to its neighbors.
- Each machine has a priority queue for sending messages to other machines
- Initialization: Set nodes' states & activate some nodes
- Main **Propagation** Loop (Roughly):
 - Until all nodes converge to a stable state:
 - Asynchronously update states and send top messages in each priority queue
- Stop Condition: Stop when priority queues are empty...

Asymp worker design

Data Sets

- 5 Public and 5 Internal Google graphs e.g.
 - UK Web graph: 106M nodes, 6.6B edges [Public]
 - Google+ subgraph: 178M nodes, 2.9B edges
 - Keyword similarity : 371M nodes, 3.5B edges
 - Document similarity: 4,700M nodes, 452B edges
- Sequence of Web subgraphs:
 - ~1B, 3B, 9B, 27B core nodes [16B, 47B, 110B, 356B]
 - ~36B, 108B, 324B, 1010B edges respectively
- Sequence of RMAT graphs [Synthetic and Public]:
 ~2²⁶, 2²⁸, 2³⁰, 2³², 2³⁴ nodes
 ~2B, 8B, 34B, 137B, 547B edges respectively.

Comparison with best MR algorithms

Running time comparison

Asymp Fault-tolerance

- Asynchronous Checkpointing:
 Store the current states of nodes once in a while
- Upon failure of a machine:
 - $\circ\,$ Fetch the last recorded state of each node, &
 - Activate these nodes (send messages to neighbors), and ask them to resend the messages it may have lost.
- Therefore, a *self-stabilizing* algorithm works correctly in ASYMP.
- Example: Dijsktra Shortest Path Algorithm

Impact of failures on running time

Make a fraction/all of machines fail over time.
 Question: What is the impact of frequent failures?
 Let D be the running time without any failures. Then

% Machine Failures over the whole period (→ #per batch)	6% of machine failures at a time	12% of machine failures at a time
50%	Time ~= 2D	<i>Time ~= 1.4D</i>
100%	<i>Time ~= 3.6D</i>	<i>Time ~= 3.2D</i>
200%	<i>Time ~= 5.3D</i>	<i>Time ~= 4.1D</i>

- More frequent small-size failures is worse than less frequent large-size failures
 - More robust against group-machine failures

Questions?

Thank you!

Algorithmic approach: Operation 1

Large-star(v): Connect all strictly larger neighbors to the min neighbor including self

- Do this in parallel on each node & build a new graph
- Theorems (KLMRV'14):
 - Executing Large-star in parallel preserves connectivity
 - Every Large-star operation reduces height of tree by a constant factor

Algorithmic approach: Operation 2

Small-star(v): Connect all smaller neighbors and self to the min neighbor including self

- Connect all parents to the minimum parent
- Theorem(KLMRV'14):
 - Executing Small-star in parallel preserves connectivity

Final Algorithm: Combine Operations

• Input

• Set of edges with a unique ID per node

Algorithm: Repeat until convergence • Repeated until convergence • Large-Star • Small-star

Theorem(KLMRV'14):
 The above algorithm converges in O(log² n) rounds.

Improved Connected Components in MR

- Idea 1: Alternate between Large-Star and Small-Star
 - Less #rounds compared to Hash-to-Min, Less
 Communication compared to Hash-Greater-to-Min
 - Theory: Provable O(log² n) MR rounds
- Optimization: Avoid large-degree nodes by branching them into a tree of height two
- Practice:
 - Graphs with 1T edges. Public data w/ 10B edges
 - 2 to 20 times faster than Hash-to-Min (Best of ICDE'12)
 - Takes 5 to 22 rounds on these graphs

CC in MR + DHT Service

- Idea 2: Use Distributed HashTable (DHT) service to save in #rounds
 - After small #rounds (e.g., after 3rd round), consider all active cluster IDs, and resolve their mapping in an array in memory (e.g. using DHT)
 - Theory: O~(log n) MR rounds + O(n/log n) memory.
 - Practice:
 - Graphs with 1T edges. Public data w/ 10B edges.
 - 4.5 to 40 times faster than Hash-to-Min (Best of ICDE'12 paper), and 1.5 to 3 times faster than our best pure MR implementation. Takes 3 to 5 rounds on these graphs.

Data Sets

- 5 Public and 5 Internal Google graphs e.g.
 - UK Web graph: 106M nodes, 6.6B edges [Public]
 - Google+ subgraph: 178M nodes, 2.9B edges
 - Keyword similarity : 371M nodes, 3.5B edges
 - Document similarity: 4,700M nodes, 452B edges
- Sequence of **RMAT graphs** [Synthetic and Public]:
 - ~2²⁶, 2²⁸, 2³⁰, 2³², 2³⁴ nodes
 - ~2B, 8B, 34B, 137B, 547B edges respectively.
- Algorithms:
 - Min2Hash
 - Alternate Optimized (MR-based)
 - Our best MR + DHT Implementation
 - Pregel Implementation

Speedup: Comparison with HTM

#Rounds: Comparing different algorithms

Comparison with Pregel

GraphEx Symposium, Lincoln Laboratory

We can compute the components and assign to each component an id.

After adding private edges it is possible to recompute it by counting # newly connected components

After adding private edges it is possible to recompute it by counting # newly connected components

After adding private edges it is possible to recompute it by counting # newly connected components