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Many applications 
     Friend suggestions 
     Recommendation systems 
     Security 

     Advertising 

Benefits 
     Big data available 
     Rich structured information 

New challenges 
     Process data efficiently 
     Privacy limitations

Large-scale graph mining



Google NYC Large-scale graph mining

Develop a general-purpose library of graph mining tools 
for XXXB nodes and XT edges 

via MapReduce+DHT(Flume), Pregel, ASYMP 
Goals:  

• Develop scalable tools (Ranking, Pairwise Similarity, 
Clustering,  Balanced Partitioning, Embedding, etc) 

• Compare different algorithms/frameworks 
• Help product groups use these tools across Google in 

a loaded cluster (clients in Search, Ads, Youtube, 
Maps, Social) 

• Fundamental Research (Algorithmic Foundations and 
Hybrid Algorithms/System Research)



Outline

Three perspectives: 

• Part 1: Application-inspired Problems  
• Algorithms for Public/Private Graphs 

• Part 2: Distributed Optimization for NP-Hard Problems 
• Distributed algorithms via composable core-sets 

• Part 3: Joint systems/algorithms research 
• MapReduce + Distributed HashTable Service



Problems Inspired by Applications

Part 1: Why do we need scalable graph mining? 

Stories: 
• Algorithms for Public/Private Graphs, 

• How to solve a problem for each node on a public graph+its own 
private network 

• with Chierchetti,Epasto,Kumar,Lattanzi,M: KDD’15 

• Ego-net clustering 
• How to use graph structures and improve collaborative filtering 
• with EpastoLattanziSebeTaeiVerma, Ongoing 

• Local random walks for conductance optimization, 
• Local algorithms for finding well connected clusters 
• with AllenZu,Lattanzi, ICML’13 



Idealistic vision

Private-Public networks



Reality

Private-Public networks

My friends
are

private

Only my 
friends can 

see my 
friends

~52% of NYC Facebook 
users hide their friends



Network signals are very useful [CIKM03] 
     Number of common neighbors 
     Personalized PageRank 
     Katz 

Applications: friend suggestions



Network signals are very useful [CIKM03] 
     Number of common neighbors 
     Personalized PageRank 
     Katz 

Applications: friend suggestions

From a user’ 
perspective, 

there are 
interesting 

signals



Maximize the reachable sets 
     How many can be reached by re-sharing? 

Applications: advertising
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There is a public graph     in addition each node     has 
access to a local graph
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For each    , we like to execute some computation on 

u

u
G [Gu

Doing it naively is too expensive

Private-Public problem



Private-Public problem

Can we precompute data structure for      so that we can 
solve problems in              efficiently?

G
G [Gu

preprocessing

+
u

fast computation



Private-Public problem

Ideally 

Preprocessing time: 

Preprocessing space: 

Post-processing time:

Õ (|VG|)

Õ (|EG|)

Õ (|EGu |)



(Approximation) Algorithms with provable bounds 
     Reachability 
     Approximate All-pairs shortest paths 
     Correlation clustering 

     Social affinity 

Heuristics 
     Personalized PageRank 
     Centrality measures 

Problems Studied
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Part 2: Distributed Optimization
Distributed Optimization for NP-Hard Problems on Large 
Data Sets:  

Two stories: 
• Distributed Optimization via composable core-sets 

• Sketch the problem in composable instances 
• Distributed computation in constant (1 or 2) number of rounds 

• Balanced Partitioning 
• Partition into ~equal parts & minimize the cut 



Distributed Optimization Framework

  Input Set N

Machine 1

Machine m

Machine 2

T1

T2

Tm

Run ALG in each machine

Selected 
elements

S1

S2

Sm

output 
set

Run ALG’ to find the  
final size k output set



Composable Core-sets

• Technique for effective distributed algorithm 
• One or Two rounds of Computation 
• Minimal Communication Complexity 
• Can also be used in Streaming Models and Nearest Neighbor 
Search 

• Problems 
o Diversity Maximization  

o Composable Core-sets 
o Indyk, Mahabadi, Mahdian, Mirrokni, ACM PODS’14 

o Clustering Problems 
o Mapping Core-sets 
o Bateni, Bashkara, Lattanzi, Mirrokni, NIPS 2014 

o Submodular/Coverage Maximization: 
o Randomized Composable Core-sets 
o work by Mirrokni, ZadiMoghaddam, ACM  STOC 2015



Problems considered:

Distributed Graph Algorithmics: Theory and Practice. WSDM 2015, Shanghai

General: Find a set S of k items & maximize f(S). 

• Diversity Maximization: Find a set S of k points 
and maximize the sum of pairwise distances i.e. 
diversity(S). 

• Capacitated/Balanced Clustering:  Find a set S 
of k centers and cluster nodes around them while 
minimizing the sum of distances to S. 

• Coverage/submodular Maximization: Find a set 
S of k items. Maximize submodular function f(S). 



Distributed Clustering
Clustering:  Divide data into groups containing 

Minimize:  
k-center : 

k-means : 

k-median :

Metric space (d, X)

α-approximation 
algorithm: cost less 

than α*OPT



Distributed Clustering

Framework: 

- Divide into chunks  
V1, V2,…, Vm 

- Come up with 
“representatives” Si on 
machine i << |Vi| 

- Solve on union of Si, others 
by closest rep.

Many objectives: k-means, k-
median, k-center,...

minimize max cluster radius



Balanced/Capacitated Clustering

Theorem(BhaskaraBateniLattanziM. NIPS’14): distributed balanced 
clustering with 

-  approx. ratio: (small constant) * (best “single machine” ratio) 
-  rounds of MapReduce: constant (2) 
-  memory: ~(n/m)^2 with m machines 

Works for all Lp objectives.. (includes k-means, k-median, k-center) 

Improving Previous Work 

• Bahmani, Kumar, Vassilivitskii, Vattani: Parallel K-means++  
• Balcan, Enrich, Liang: Core-sets for k-median and k-center 



Experiments
Aim:  Test algorithm in terms of (a) scalability, and (b) quality of solution obtained

Setup: Two “base” instances and subsamples (used k=1000, #machines = 
200)

US graph: N = x0 
Million 

distances: geodesic

World graph: N = x00 Million 
distances: geodesic

size of seq. 
inst.

increase in 
OPT

US 1/300 1.52

World 1/1000 1.58

Accuracy: analysis pessimistic Scaling: sub-linear



Coverage/Submodular Maximization

Distributed Graph Algorithmics: Theory and Practice. WSDM 2015, Shanghai

• Max-Coverage: 
• Given: A family of subsets S1 … Sm 
• Goal: choose k subsets S’1 … S’k with the 

maximum union cardinality. 
• Submodular Maximization: 

• Given: A submodular function f 
• Goal: Find a set S of k elements & 

maximize f(S).  
• Applications: Data summarization, Feature 

selection, Exemplar clustering, …



Bad News!

• Theorem[IndykMahabadiMahdianM PODS’14] 
There exists no better than      approximate 
composable core-set for submodular 
maximization. 

• Question: What if we apply random 
partitioning?  

YES! Concurrently answered in two papers: 
• Barbosa, Ene, Nugeon, Ward: ICML’15. 
• M.,ZadiMoghaddam: STOC’15.



Summary of Results  
[M. ZadiMoghaddam – STOC’15]

1. A class of 0.33-approximate randomized 
composable core-sets of size k for non- 
monotone submodular maximization. 

2. Hard to go beyond ½ approximation with 
size k. Impossible to get better than 1-1/e.  

3. 0.58-approximate randomized composable 
core-set of size 4k for monotone f. Results 
in 0.54-approximate distributed algorithm. 

4.  For small-size composable core-sets of k’ 
less than k: sqrt{k’/k}-approximate 
randomized composable core-set.



       -approximate Randomized Core-set(2− 2)

• Positive Result [M, ZadiMoghaddam]: If we 
increase the output sizes to be 4k, Greedy 
will be (2-√2)-o(1) ≥ 0.585-approximate 
randomized core-set for a monotone 
submodular function. 

• Remark: In this result, we send each item 
to C random machines instead of one. As a 
result, the approximation factors are 
reduced by a O(ln(C)/C) term.   



Summary: composable core-sets

• Diversity maximization (PODS’14) 
• Apply constant-factor composable core-sets 

• Balanced clustering (k-center, k-median & k-means) (NIPS’14) 
• Apply Mapping Core-sets ! constant-factor  

• Coverage and Submodular maximization (STOC’15) 
• Impossible for deterministic composable core-set  
• Apply randomized core-sets ! 0.54-approximation  

• Future: 
• Apply core-sets to other ML/graph problems, feature selection. 
• For submodular:  

• 1-1/e-approximate core-set  
• 1-1/e-approximation in 2 rounds (even with multiplicity)?



Distributed Balanced Partitioning 
via Linear Embedding 

o Based on work by Aydin, Bateni, Mirrokni



Balanced Partitioning Problem

● Balanced Partitioning: 
o Given graph G(V, E) with edge weights 
o Find k clusters of approximately the same size 
o Minimize Cut, i.e., #intercluster edges 

● Applications: 
o Minimize communication complexity in distributed computation 
o Minimize number of multi-shard queries while serving an 

algorithm over a graph, e.g., in computing shortest paths or 
directions on Maps



Outline of Algorithm

Three-stage Algorithm: 
1. Reasonable Initial Ordering 

a. Space-filling curves 
b. Hierarchical clustering  

2. Semi-local moves 
a. Min linear arrangement 
b. Optimize by random swaps 

3. Introduce imbalance 
a. Dynamic programming 
b. Linear boundary adjustment 
c. Min-cut boundary optimization

G=(V,E) 

0 1 2 4 5 6 7 8 9 10 113

Initial ordering

0 1 2 456 78 9 10113

Semi-local moves

0 1 2 456 78 9 10113

Imbalance



Step 1 - Initial Embedding

● Space-filling curves (Geo Graphs) 

● Hierarchical clustering (General Graphs)

0 1 2 3 4 5 6 7 8 9
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Datasets

● Social graphs 
o Twitter: 41M nodes, 1.2B edges  
o LiveJournal: 4.8M nodes, 42.9M edges 
o Friendster: 65.6M nodes, 1.8B edges 

● Geo graphs 
o World graph > 1B edges 
o Country graphs (filtered)



Related Work

● FENNEL, WSDM’14 [Tsourakakis et al.] 
o Microsoft Research 
o Streaming algorithm 

● UB13, WSDM’13 [Ugander & Backstorm] 
o Facebook 
o Balanced label propagation 

● Spinner, (very recent) arXiv [Martella et al.] 
● METIS 

o In-memory



Comparison to Previous Work

k Spinner 
(5%)

UB13 
(5%)

Affinity 
(0%)

Our Alg 
(0%)

20 38% 37% 35.71% 27.5%

40 40% 43% 40.83% 33.71%

60 43% 46% 43.03% 36.65%

80 44% 47.5% 43.27% 38.65%

100 46% 49% 45.05% 41.53%



Comparison to Previous Work

k Spinner 
(5%)

Fennel 
(10%)

Metis 
(2-3%)

Our Alg 
(0%)

2 15% 6.8% 11.98% 7.43%

4 31% 29% 24.39% 18.16%

8 49% 48% 35.96% 33.55%



Outline: Part 3

Practice: Algorithms+System Research  

Two stories: 
• Connected components in MapReduce & Beyond  

  Going beyond MapReduce to build efficient tool in practice. 
• ASYMP 

  A new asynchronous message passing system. 

Large-scale Graph Mining. BIG 2015, Florence



Graph Mining Frameworks
Applying various frameworks to graph algorithmic 
problems 
• Iterative MapReduce (Flume): 

o More widely fault-tolerant available tool 
o Can be optimized with algorithmic tricks 

• Iter. MapReduce + DHT Service (Flume): 
o  Better speed compared to MR 

• Pregel: 
o Good for synch. computation w/ many rounds 
o  Simpler implementation 

•ASYMP (ASYnchronous Message-Passing): 
o  More scalable/More efficient use of CPU 
o  Asych. self-stabilizing algorithms



Metrics for MapReduce algorithms

• Running Time 
o Number of MapReduce rounds 
o Quasi-linear time processing of inputs 

• Communication Complexity 
o Linear communication per round 
o Total communication across multiple rounds 

• Load Balancing 
o No mapper or reducer should be overloaded 

• Locality of the messages 
o Sending messages locally when possible 
o Use the same key for mapper/reducer when possible 
o Effective while using MR with DHT (more later)



Connected Components: Example output

Web Subgraph: 8.5B nodes, 700B edges



Prior Work: Connected Components in MR

Algorithm #MR Rounds Communication / 
Round 

Practice

Hash-Min D (Diameter) O(m+n) Many rounds

Hash-to-All Log D O(n Long rounds

Hash-to-Min Open O(nlog n+m) BEST

Hash-Greater -
to-Min

3 log D 2(n+m) OK, but not the 
best 

Connected components in MapReduce,  
Rastogi et al, ICDE’12 



Connected Components: Summary
• Connected Components in MR & MR+DHT 

• Simple, local algorithms with O(log2 n) round complexity 
• Communication efficient (#edges non-increasing) 

• Use Distributed HashTable Service (DHT) to 
improve # rounds to O~(log n) [from ~20 to ~5] 
• Data: Graphs with ~XT edges. Public data with 10B 
edges 

• Results: 
•MapReduce: 10-20 times faster than HashtoMin 
•MR+DHT: 20-40 times faster than HashtoMin 
•ASYMP: A simple algorithm in ASYMP: 25-55 times faster 
than HashtoMin 

KiverisLattnziM.RastogiVassilivitskii, SOCC’14.



ASYMP:ASYnchrouns Message Passing
• ASYMP: New graph mining framework 
• Compare with MapReduce, Pregel 

• Computation does not happen in a 
synchronize number of rounds 

• Fault-tolerance implementation is also 
asynchronous  

• More efficient use of CPU cycles 
• We study its fault-tolerance and scalability 
• Impressive empirical performance (e.g., for 

connectivity and shortest path) 

                               Fleury, Lattanzi, M.: ongoing.



• Nodes are distributed among many machines (workers) 
• Each node keeps a state and send messages to its 

neighbors. 
• Each machine has a priority queue for sending messages to 

other machines 

• Initialization:  Set nodes’ states & activate some nodes 
• Main Propagation Loop (Roughly):  
o Until all nodes converge to a stable state: 
▪ Asynchronously update states and send top messages 

in each priority queue 
• Stop Condition: Stop when priority queues are empty… 

Asymp model



Asymp worker design



• 5 Public and 5 Internal Google graphs  e.g. 
o UK Web graph: 106M nodes, 6.6B edges [Public] 
o Google+ subgraph: 178M nodes, 2.9B edges 
o Keyword similarity : 371M nodes, 3.5B edges 
o Document similarity: 4,700M nodes, 452B edges 

• Sequence of Web subgraphs: 
o ~1B, 3B, 9B, 27B core nodes [16B, 47B, 110B, 356B ] 
o ~36B, 108B, 324B, 1010B edges respectively 

• Sequence of RMAT graphs [Synthetic and Public]: 
o ~226, 228, 230, 232, 234 nodes 
o ~2B, 8B, 34B, 137B,  547B edges respectively. 

Data Sets



Comparison with best MR algorithms
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• Asynchronous Checkpointing:  
o Store the current states of nodes once in a while 

• Upon failure of a machine:  
o Fetch the last recorded state of each node, & 
o Activate these nodes (send messages to neighbors), and 

ask them to resend the messages it may have lost. 

• Therefore, a self-stabilizing algorithm works correctly in 
ASYMP. 

• Example: Dijsktra Shortest Path Algorithm

Asymp Fault-tolerance



Impact of failures on running time
• Make a fraction/all of machines fail over time. 

o Question: What is the impact of frequent failures? 
•Let D be the running time without any failures. Then  
 

• More frequent small-size failures is worse than less 
frequent large-size failures 
o More robust against group-machine failures

% Machine Failures over the 
whole period  (! #per batch)

6% of machine 
failures at a time

12% of machine 
failures at a time 

50% Time ~= 2D Time ~= 1.4D

100% Time ~= 3.6D Time ~= 3.2D

200% Time ~= 5.3D Time ~= 4.1D



Questions? 

Thank you!



Algorithmic approach: Operation 1

Large-star(v): Connect all strictly larger neighbors to 
the min neighbor including self 

• Do this in parallel on each node & build a new 
graph 

• Theorems (KLMRV’14): 
• Executing Large-star in parallel preserves connectivity 
• Every Large-star operation reduces height of tree by a 

constant factor



Algorithmic approach: Operation 2

Small-star(v): Connect all smaller neighbors and self 
to the min neighbor including self 

• Connect all parents to the minimum parent 

• Theorem(KLMRV’14): 
• Executing Small-star in parallel preserves connectivity



Final Algorithm: Combine Operations

• Input 
o Set of edges with a unique ID per node 

Algorithm: 
Repeat until convergence 
o Repeated until convergence 
o Large-Star 

o Small-star 

• Theorem(KLMRV’14): 
o The above algorithm converges in O(log2 n) rounds.



Improved Connected Components in MR

• Idea 1: Alternate between Large-Star and Small-
Star 
– Less #rounds compared to Hash-to-Min, Less 

Communication compared to Hash-Greater-to-Min 
– Theory: Provable O(log2 n) MR rounds 

• Optimization: Avoid large-degree nodes by 
branching them into a tree of height two 

• Practice:  
– Graphs with 1T edges. Public data w/ 10B edges  
– 2 to 20 times faster than Hash-to-Min (Best of ICDE’12) 
– Takes 5 to 22 rounds on these graphs



CC in MR + DHT Service

• Idea 2: Use Distributed HashTable (DHT) 
service to save in #rounds 
– After small #rounds (e.g., after 3rd round), 

consider all active cluster IDs, and resolve their 
mapping in an array in memory (e.g. using DHT)  

– Theory: O~(log n) MR rounds + O(n/log n) memory.  
– Practice:  

• Graphs with 1T edges. Public data w/ 10B edges.  
• 4.5 to 40 times faster than Hash-to-Min (Best of 

ICDE’12 paper), and 1.5 to 3 times faster than our 
best pure MR implementation. Takes 3 to 5 rounds on 
these graphs.



• 5 Public and 5 Internal Google graphs  e.g. 
o UK Web graph: 106M nodes, 6.6B edges [Public] 
o Google+ subgraph: 178M nodes, 2.9B edges 
o Keyword similarity : 371M nodes, 3.5B edges 
o Document similarity: 4,700M nodes, 452B edges 

• Sequence of RMAT graphs [Synthetic and Public]: 
o ~226, 228, 230, 232, 234 nodes 
o ~2B, 8B, 34B, 137B,  547B edges respectively. 

• Algorithms: 
o Min2Hash 
o Alternate Optimized (MR-based) 
o Our best MR + DHT Implementation 
o Pregel Implementation 

Data Sets



Speedup: Comparison with HTM



#Rounds: Comparing different algorithms



Comparison with Pregel



Warm-up: # connected components

GraphEx Symposium, Lincoln Laboratory



Warm-up: # connected components

GraphEx Symposium, Lincoln Laboratory

We can compute the components and assign to each 
component an id.

A
A

A
A

A
A

A

B

B

B

B

B

C

C

C

C



Warm-up: # connected components

GraphEx Symposium, Lincoln Laboratory

After adding private edges it is possible to recompute it 
by counting # newly connected components
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Warm-up: # connected components
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