
1

Adaptively Secure Succinct Garbled RAM
with Persistent Memory

Ran Canetti, Yilei Chen, Justin Holmgren, Mariana Raykova

DIMACS workshop
MIT Media Lab
June 8~10, 2016

2

: June 11, 2016, Boston, heavy snow.

3

: June 11, 2016, Boston, heavy snow. Alice finds a
quasi-polynomial time algorithm for factoring.

4

: June 11, 2016, Boston, heavy snow. Alice finds a
quasi-polynomial time algorithm for factoring.

Alice

5

: June 11, 2016, Boston, heavy snow. Alice finds a
quasi-polynomial time algorithm for factoring.

: Instead of submitting to STOC, she thinks it’s cool
to write a program and show off to her friends.

6

> Factoring.hs RSA2048

7

> Factoring.hs RSA2048
Running time 7 hrs 34 mins
25195908475…20720357
= 83990...4079279 x 3091701...723883

Next question

8

: It is slow on her laptop (quasi-polynomial time, you
know) … cannot fit into a party.

9

: It is slow on her laptop (quasi-polynomial time, you
know) … cannot fit into a party.

: So she turns to cloud, but clouds are big brothers

10

: It is slow on her laptop (quasi-polynomial time, you
know) … cannot fit into a party.

: So she turns to cloud, but clouds are big brothers

: She heard that one can delegate the computation
in a way that the server learns only the output of
the computation but nothing else

11

“My friends and NSA
will be shocked by the
runtime without
learning anything other
than the output”

12

“The algorithm has
huge preprocessing,
stores lots of non-
zero points on the
Zeta function ...”

“My friends and NSA
will be shocked by the
runtime without
learning anything other
than the output”

13

“The algorithm has
huge preprocessing,
stores lots of non-
zero points on the
Zeta function ...”

“My friends and NSA
will be shocked by the
runtime without
learning anything other
than the output”

“Wait ... the
audiences already
know too much.”

14

> sudo apt-get install FHE

15

> sudo apt-get install FHE
> FHE Factoring.hs

16

> sudo apt-get install FHE
> FHE Factoring.hs
Turning the program into circuits ...

17

> sudo apt-get install FHE
> FHE Factoring.hs
Turning the program into circuits ...
^C

18

> sudo apt-get install FHE
> FHE Factoring.hs
Turning the program into circuits ...
^C
>
> sudo apt-get install Yao
> Yao Factoring.hs

19

> sudo apt-get install FHE
> FHE Factoring.hs
Turning the program into circuits ...
^C
>
> sudo apt-get install Yao
> Yao Factoring.hs
Still turning the program into circuits ...

#Yao

20

> sudo apt-get install FHE
> FHE Factoring.hs
Turning the program into circuits ...
^C
>
> sudo apt-get install Yao
> Yao Factoring.hs
Still turning the program into circuits ...
^C^C^C^C^C^C^C
>

21

> sudo apt-get install GRAM_Lu_Ostrovsky
> GRAM_Lu_Ostrovsky Factoring.hs

22

> sudo apt-get install GRAM_Lu_Ostrovsky
> GRAM_Lu_Ostrovsky Factoring.hs
Warning: Program size as big as the running time,
continue (y) or not (n)

23

> sudo apt-get install GRAM_Lu_Ostrovsky
> GRAM_Lu_Ostrovsky Factoring.hs
Warning: Program size as big as the running time,
continue (y) or not (n)
n
>

24

> sudo apt-get install PRAM

25

> sudo apt-get install PRAM
> PRAM Factoring.hs

26

> sudo apt-get install PRAM
> PRAM Factoring.hs
Done -> PRAM_Factoring

27

> sudo apt-get install PRAM
> PRAM Factoring.hs
Done -> PRAM_Factoring
> PRAM_Factoring RSA2048

28

> sudo apt-get install PRAM
> PRAM Factoring.hs
Done -> PRAM_Factoring
> PRAM_Factoring RSA2048
Warning: cannot adaptively choose functions or
inputs, security at user’s own risk, continue (y) or
not (n)

29

> sudo apt-get install PRAM
> PRAM Factoring.hs
Done -> PRAM_Factoring
> PRAM_Factoring RSA2048
Warning: cannot adaptively choose functions or
inputs, security at user’s own risk, continue (y) or
not (n)
n

30

“Don’t turn into
circuits, don’t blow
up too much”

“Adaptively pick
integers”

“Huge amount of
preprocessed data
reusable”

31

Garbling/randomized encoding for RAM with persistent memory

32

Garbling/randomized encoding for RAM with persistent memory

mskGen =>

33

Garbling/randomized encoding for RAM with persistent memory

D0

mskGen =>

msk + => G(D0)

34

Garbling/randomized encoding for RAM with persistent memory

D0

mskGen =>

msk + => G(D0)

P1msk + => G(P1)

35

Garbling/randomized encoding for RAM with persistent memory

D0

mskGen =>

msk + => G(D0)

P1msk + => G(P1)

G(P1)Eval G(D0) => P1(D0)

36

Garbling/randomized encoding for RAM with persistent memory

D0

mskGen =>

msk + => G(D0)

P1msk + => G(P1)

G(P1)Eval G(D0) => G(D1)P1(D0)

Persistency

37

Garbling/randomized encoding for RAM with persistent memory

D0

mskGen =>

msk + => G(D0)

P1msk + => G(P1)

G(P1)Eval G(D0) => G(D1)P1(D0)

P2msk + => G(P2)

Persistency

38

Garbling/randomized encoding for RAM with persistent memory

D0

mskGen =>

msk + => G(D0)

P1msk + => G(P1)

G(P1)Eval G(D0) => G(D1)P1(D0)

P2msk + => G(P2)

G(P2)Eval G(D1) => G(D2)P2(D1)

...

Persistency

39

Garbling/randomized encoding for RAM with persistent memory

D0

G(D0)

P1

G(P1)

Succinct

40

Garbling/randomized encoding for RAM with persistent memory

?

?

P1(D0)

Adaptively
simulation

secure

41

Garbling/randomized encoding for RAM with persistent memory

? => G(D0)

? => G(P1)

G(P1)G(D0) <= G(D1)P1(D0)

Adaptively
simulation

secure

42

Garbling/randomized encoding for RAM with persistent memory

? => G(D0)

? => G(P1)

G(P1)G(D0) <= G(D1)P1(D0)

?

G(D1) P2(D1)

Adaptively
simulation

secure

43

Garbling/randomized encoding for RAM with persistent memory

? => G(D0)

? => G(P1)

G(P1)G(D0) <= G(D1)P1(D0)

? => G(P2)

G(P2)G(D1) <= G(D2)P2(D1)

Adaptively
simulation

secure

44

Theorem

45

[Main Theorem]

Adaptively secure succinct garbled RAM with persistent memory
from indistinguishability obfuscation for circuits,
and poly-to-1 collision-resistant hash function.

46

Starring

47

Indistinguishability Obfuscator

48

iO[F0] ≈ iO[F1]

if F0 and F1 have identical functionality

Indistinguishability Obfuscator for circuits

Candidate constructions:
[Garg-Gentry-Halevi-Raykova-Sahai-Waters ‘13], [Barak-Garg-Kalai-Paneth-Sahai ‘14],
[Brakerski-Rothblum ‘14], [Pass-Seth-Telang ‘14], [Zimmerman ‘15], [Applebaum-Brakerski ‘15],
[Ananth-Jain ‘15], [Bitansky-Vaikuntanathan ‘15], [Gentry-Gorbunov-Halevi ‘15], [Lin ‘16], …

Cryptanalyses:
[Cheon-Han-Lee-Ryu-Stehle ‘15], [Coron et al ‘15], [Miles-Sahai-Zhandry ‘16], ...

Defined by [Barak-Goldreich-Impagliazzo-Rudich-Sahai-Vadhan-Yang ‘01]

Security:

49

Poly-to-one
Collision Resistant Hash function

50

Poly-to-one collision resistant hash functions

H is collision resistant + each image has at most poly preimages.

[Thm] Exists for constant c, assuming Factoring or Discrete-log is hard.

51

The rest of the talk:

1. The main idea of the construction.
2. The technical heart: adaptively-enforceable accumulator.
3. Wrap up, and the easiest ways to think of our scheme.

52

Starting point: Canetti-Holmgren’s selective secure scheme.

53

Starting point: Canetti-Holmgren’s selective secure scheme.

High-level idea of the Canetti-Holmgren construction:
Garble the CPU-step circuit, encrypt and authenticate the
intermediate states, memories.

54

You never know how hard
it is to use iO before
actually play with it.

[said Justin Holmgren, June 22, 2015, sunny]

55

Starting point: Canetti-Holmgren’s selective secure scheme.

High-level idea of the Canetti-Holmgren construction:
Garble the CPU-step circuit, encrypt and authenticate the
intermediate states, memories.

Canetti-Holmgren scheme details:
Fixed-transcript => Fixed-access => Fixed-address => Fully secure

56

Starting point: Canetti-Holmgren’s selective secure scheme.

High-level idea of the Canetti-Holmgren construction:
Garble the CPU-step circuit, encrypt and authenticate the
intermediate states, memories.

Canetti-Holmgren scheme details:
Fixed-transcript => Fixed-access => Fixed-address => Fully secure

Indistinguishable as long as
transc = (q, op) are the same.
[KLW-technique]

57

Starting point: Canetti-Holmgren’s selective secure scheme.

High-level idea of the Canetti-Holmgren construction:
Garble the CPU-step circuit, encrypt and authenticate the
intermediate states, memories.

Canetti-Holmgren scheme details:
Fixed-transcript => Fixed-access => Fixed-address => Fully secure

Indistinguishable as long as
transc = (q, op) are the same.
[KLW-technique]

q can be different
[encrypt the state]

58

Starting point: Canetti-Holmgren’s selective secure scheme.

High-level idea of the Canetti-Holmgren construction:
Garble the CPU-step circuit, encrypt and authenticate the
intermediate states, memories.

Canetti-Holmgren scheme details:
Fixed-transcript => Fixed-access => Fixed-address => Fully secure

Indistinguishable as long as
transc = (q, op) are the same.
[KLW-technique]

q can be different
[encrypt the state]

Memory content
can be different
[encrypt the data]

59

Starting point: Canetti-Holmgren’s selective secure scheme.

High-level idea of the Canetti-Holmgren construction:
Garble the CPU-step circuit, encrypt and authenticate the
intermediate states, memories.

Canetti-Holmgren scheme details:
Fixed-transcript => Fixed-access => Fixed-address => Fully secure

Indistinguishable as long as
transc = (q, op) are the same.
[KLW-technique]

q can be different
[encrypt the state]

Memory content
can be different
[encrypt the data]

Hide access
pattern.
[oram]

60

Starting point: Canetti-Holmgren’s selective secure scheme.

High-level idea of the Canetti-Holmgren construction:
Garble the CPU-step circuit, encrypt and authenticate the
intermediate states, memories.

Canetti-Holmgren scheme details:
Fixed-transcript => Fixed-access => Fixed-address => Fully secure

Indistinguishable as long as
transc = (q, op) are the same.
[KLW-technique]

q can be different
[encrypt the state]

Memory content
can be different
[encrypt the data]

Hide access
pattern.
[oram]

61

Canetti-Holmgren (ITCS16)

62

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:

63

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:

Koppula-Lewko-Waters (STOC15)
(iO-friendly) Iterator
(iO-friendly) Accumulator
(iO-friendly) Splittable signature

64

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:

Koppula-Lewko-Waters (STOC15)
(iO-friendly) Iterator
(iO-friendly) Accumulator
(iO-friendly) Splittable signature

What is written in eprint 2015/1074

Accumulator
iO-friendly Merkle-tree

65

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:

Koppula-Lewko-Waters (STOC15)
(iO-friendly) Iterator
(iO-friendly) Accumulator
(iO-friendly) Splittable signature

What is written in eprint 2015/1074

Accumulator
iO-friendly Merkle-tree

in
iti

al
ize

G(D0)

66

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:

Koppula-Lewko-Waters (STOC15)
(iO-friendly) Iterator
(iO-friendly) Accumulator
(iO-friendly) Splittable signature

What is written in eprint 2015/1074

Accumulator
iO-friendly Merkle-tree

in
iti

al
ize

Authenticate

G(D0)

G(Pi+1)

key

67

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:

Koppula-Lewko-Waters (STOC15)
(iO-friendly) Iterator
(iO-friendly) Accumulator
(iO-friendly) Splittable signature

What is written in eprint 2015/1074

Accumulator
iO-friendly Merkle-tree

in
iti

al
ize

Authenticate

update

G(D0)

G(Pi+1)

G(Di+1)

key

68

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:
++ Zoom-in the accumulator

69

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:
++ Zoom-in the accumulator

Properties needed for the Accumulator
- Normal property like a Merkle-tree.

#Merkletree

70

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:
++ Zoom-in the accumulator

Properties needed for the Accumulator
- Normal property like a Merkle-tree.

#Merkletree

71

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:
++ Zoom-in the accumulator

Properties needed for the Accumulator
- Normal property like a Merkle-tree.

#Merkletree

72

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:
++ Zoom-in the accumulator

Properties needed for the Accumulator
- Normal property like a Merkle-tree.

#Merkletree

73

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:
++ Zoom-in the accumulator

Properties needed for the Accumulator
- Normal property like a Merkle-tree.
- Enforcement (iO-friendly property):

there’s only one preimage x* of the
current root value y*.

#Merkletree

y*

x*

74

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:
++ Zoom-in the accumulator

Properties needed for the Accumulator
- Normal property like a Merkle-tree.
- Enforcement (iO-friendly property):

there’s only one preimage x* of the
current root value y*.

Impossible information theoretically.

#Merkletree

y*

x*

75

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:
++ Zoom-in the accumulator

Properties needed for the Accumulator
- Normal property like a Merkle-tree.
- Enforcement (iO-friendly property):

there’s only one preimage x* of the
current root value y*.

Impossible information theoretically.

KLW’s computational enforcement:
Normal.Gen()->H
Enforce.Gen(x*, y*)->H*, H ≈ H*

#Merkletree

y*

x*

76

Canetti-Holmgren (ITCS16)
+ Zoom-in the core step:
++ Zoom-in the accumulator

Properties needed for the Accumulator
- Normal property like a Merkle-tree.
- Enforcement (iO-friendly property):

there’s only one preimage x* of the
current root value y*.

Impossible information theoretically.

KLW’s computational enforcement:
Normal.Gen()->H
Enforce.Gen(x*, y*)->H*, H ≈ H*

Alternatively: SSB hashing => [Ananth-Chen-Chung-Lin-Lin]

#Merkletree

y*

x*

77

Selective Enforcing Adaptive Enforcing

78

Selective Enforcing Adaptive Enforcing

x* <= Adversary

79

Gen() => H

Selective Enforcing Adaptive Enforcing

Enforcing(x*, y*) => H*

x* <= Adversary

80

Gen() => H

Selective Enforcing Adaptive Enforcing

Enforcing(x*, y*) => H*

Gen() => Hx* <= Adversary

81

Gen() => H

Selective Enforcing Adaptive Enforcing

Enforcing(x*, y*) => H*

Gen() => H

x* <= Adversary(H)

x* <= Adversary

82

Gen() => H

Selective Enforcing Adaptive Enforcing

Enforcing(x*, y*) => H*

Gen() => H

Enforcing(x*, y*) => H*

x* <= Adversary(H)

x* <= Adversary

83

 (… wait, what?)

Gen() => H

Selective Enforcing Adaptive Enforcing

Enforcing(x*, y*) => H*

Gen() => H

Enforcing(x*, y*) => H*

x* <= Adversary(H)

x* <= Adversary

84

#Mindblowing

85

Fact I
Can separate the key

86

What is written in eprint 2015/1074

Accumulator
iO-friendly Merkle-tree

in
iti

al
ize

Authenticate

update

G(D0)

G(Pi+1)

G(Di+1)

key

key hk vk= +

87

What is written in eprint 2015/1074

Accumulator
iO-friendly Merkle-tree

in
iti

al
ize

Authenticate

update

G(D0)

G(Pi+1)

G(Di+1)

key

key hk vk= +

hk

vk

hk

88

Adaptive Enforcing

hk

89

Adaptive Enforcing

x* <= Adversary(hk)

hk

90

Adaptive Enforcing

x* <= Adversary(hk)

hk

vk vk*(x*) ≈

91

Fact II
If you believe diO ...

92

Adaptive Enforcingkey hk vk= +

93

Adaptive Enforcingkey hk vk= +

hk

always_hk_Gen() -> hk := CRHF key h

94

Adaptive Enforcing

x* <= Adversary(H)

key hk vk= +

hk

always_hk_Gen() -> hk := CRHF key h

95

Adaptive Enforcing

x* <= Adversary(H)

key hk vk= +

hk

vk

always_hk_Gen() -> hk := CRHF key h

normal_vk_Gen() -> vk
 vk(x,y) = diO(if h(x)=y, output 1; else: output 0)

96

Adaptive Enforcing

x* <= Adversary(H)

key hk vk= +

hk

vk vk*(x*)

always_hk_Gen() -> hk := CRHF key h

normal_vk_Gen() -> vk
 vk(x,y) = diO(if h(x)=y, output 1; else: output 0)

enforce_vk_Gen(x*, y*) -> vk*
 vk*(x,y) = diO(if y!=y* and h(x)=y, output 1;
 Elseif y=y* and x=x*, output 1;
 Else: output 0)

 ≈

97

Fact III:
If you don’t believe diO,
can still do this with iO.

98

From iO + preimage-bounded CRHF:

c-to-1 CRHF can be constructed from discrete-log or factoring

99

From iO + preimage-bounded CRHF:

c-to-1 CRHF can be constructed from discrete-log or factoring

enforce_vk(x*, y*) -> vk*
 vk*(x,y) = diO(if y!=y* and h(x)=y, output 1;
 Elseif y=y* and x=x*, output 1;
 Else: output 0)

100

From iO + preimage-bounded CRHF:

c-to-1 CRHF can be constructed from discrete-log or factoring

enforce_vk(x*, y*) -> vk*
 vk*(x,y) = diO(if y!=y* and h(x)=y, output 1;
 Elseif y=y* and x=x*, output 1;
 Else: output 0)

By diO-iO equivalence lemma [Boyle-Chung-Pass ‘14]:
“ If f1 and f2 differ only on polynomially many input-output
values, and they are hard to find, then
 iO(f1) ≈ iO(f2) ”

101

From iO + preimage-bounded CRHF:

c-to-1 CRHF can be constructed from discrete-log or factoring

enforce_vk(x*, y*) -> vk*
 vk*(x,y) = diO(if y!=y* and h(x)=y, output 1;
 Elseif y=y* and x=x*, output 1;
 Else: output 0)

From shrinking 1 bit to length-halving: Merkle-Damgaard.

102

Fact IV:
Adaptive Enforceable

Accumulator done

103

Rest of the upgrades:

Canetti-Holmgren scheme details:
Fixed-transcript => Fixed-access => Fixed-address => Fully secure

Indistinguishable as long as
transc = (q, op) are the same.
[KLW-technique. Assume iO]

q can be different
[encrypt the state]

Memory content
can be different
[encrypt the data]

Hide access
pattern.
[oram]

104

Rest of the upgrades:

Canetti-Holmgren scheme details:
Fixed-transcript => Fixed-access => Fixed-address => Fully secure

Indistinguishable as long as
transc = (q, op) are the same.
[KLW-technique. Assume iO]

q can be different
[encrypt the state]

Memory content
can be different
[encrypt the data]

Hide access
pattern.
[oram]

+ adaptively enforceable accumulator
[from iO+dlog or factoring]

105

Rest of the upgrades:

Canetti-Holmgren scheme details:
Fixed-transcript => Fixed-access => Fixed-address => Fully secure

Indistinguishable as long as
transc = (q, op) are the same.
[KLW-technique. Assume iO]

q can be different
[encrypt the state]

Memory content
can be different
[encrypt the data]

Hide access
pattern.
[oram]

Need a special property of the ORAM
“Strong local randomness”, satisfied by Chung-Pass ORAM.
With this property, can “guess” polynomially many addresses.

+ adaptively enforceable accumulator
[from iO+dlog or factoring]

106

Rest of the upgrades:

Canetti-Holmgren scheme details:
Fixed-transcript => Fixed-access => Fixed-address => Fully secure

Indistinguishable as long as
transc = (q, op) are the same.
[KLW-technique. Assume iO]

q can be different
[encrypt the state]

Memory content
can be different
[encrypt the data]

Hide access
pattern.
[oram]

Need a special property of the ORAM
“Strong local randomness”, satisfied by Chung-Pass ORAM.
With this property, can “guess” polynomially many addresses.

[Ananth-Chen-Chung-Lin-Lin, eprint 2015/1082] can be viewed as
accomplishing this for all the steps.

+ adaptively enforceable accumulator
[from iO+dlog or factoring]

SSB hash
[Hubacek-W

ichs]

[OPW
W

]

107

Summary

1. Adaptively secure garbled RAM with persistent memory.
2. Everything is succinct.
3. Upgrading to delegation with verifiability is almost for free.
4. “Reusability” is natural.
5. New iO-friendly tool: adaptively-enforceable accumulator (from

iO+Preimage-bounded-CRHF)

108

Scenes

109

110

> sudo apt-get install GRAM_Canetti_Holmgren

111

> sudo apt-get install GRAM_Canetti_Holmgren
package indistinguishability_obfuscation not an
accepted assumption, security at user’s own risk,
continue (y) or not (n)

112

> sudo apt-get install GRAM_Canetti_Holmgren
package indistinguishability_obfuscation not an
accepted assumption, security at user’s own risk,
continue (y) or not (n)
y

113

> sudo apt-get install GRAM_Canetti_Holmgren
package indistinguishability_obfuscation not an
accepted assumption, security at user’s own risk,
continue (y) or not (n)
y
> upgrade GRAM_CCHR
Done

114

> sudo apt-get install GRAM_Canetti_Holmgren
package indistinguishability_obfuscation not an
accepted assumption, security at user’s own risk,
continue (y) or not (n)
y
> upgrade GRAM_CCHR
Done
> NSAcloud: GRAM_CCHR_Factoring RSA2048

115

> sudo apt-get install GRAM_Canetti_Holmgren
package indistinguishability_obfuscation not an
accepted assumption, security at user’s own risk,
continue (y) or not (n)
y
> upgrade GRAM_CCHR
Done
> NSAcloud: GRAM_CCHR_Factoring RSA2048
Running time 1.0s
25195908475…20720357
= 83990...4079279 x 3091701...723883

Next question

