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Abstract: We use ideas from distributed computing to study dynamic environments in which com-
putational nodes, or decision makers, follow adaptive heuristics [16], i.e., simple and unsophisticated
rules of behavior, e.g., repeatedly “best replying” to others’ actions, and minimizing “regret”, that have
been extensively studied in game theory and economics. We explore when convergence of such simple
dynamics to an equilibrium is guaranteed in asynchronous computational environments, where nodes
can act at any time. Our research agenda, distributed computing with adaptive heuristics, lies on the bor-
derline of computer science (including distributed computing and learning) and game theory (including
game dynamics and adaptive heuristics). We exhibit a general non-termination result for a broad class
of heuristics with bounded recall—that is, simple rules of behavior that depend only on recent history
of interaction between nodes. We consider implications of our result across a wide variety of interesting
and timely applications: game theory, circuit design, social networks, routing and congestion control.
We also study the computational and communication complexity of asynchronous dynamics and present
some basic observations regarding the effects of asynchrony on no-regret dynamics. We believe that our
work opens a new avenue for research in both distributed computing and game theory.
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1 Introduction
Dynamic environments where computational

nodes, or decision makers, repeatedly interact arise
in a variety of settings, such as Internet proto-
cols, large-scale markets, social networks, multi-
processor computer architectures, and more. In
many such settings, the prescribed behavior of the
nodes is often simple, natural and myopic (that
is, a heuristic or “rule of thumb”), and is also
adaptive, in the sense that nodes constantly and
autonomously react to others. These “adaptive
heuristics”—a term coined in [16]—include sim-
ple behaviors, e.g., repeatedly “best replying” to
others’ actions, and minimizing “regret”, that have
been extensively studied in game theory and eco-
nomics.

∗Supported in part by NSF grants 0751674 and 0753492.
†Supported by NSF grant 0331548.
‡Supported in part by NSF grant 0753061.

Adaptive heuristics are simple and unsophisti-
cated, often reflecting either the desire or neces-
sity for computational nodes (whether humans or
computers) to provide quick responses and have a
limited computational burden. In many interesting
contexts, these adaptive heuristics can, in the long
run, move the global system in good directions and
yield highly rational and sophisticated behavior,
such as in game theory results demonstrating the
convergence of best-response or no-regret dynam-
ics to equilibrium points (see [16] and references
therein).

However, these positive results for adaptive
heuristics in game theory are, with but a few ex-
ceptions (see Section 2), based on the sometimes
implicit and often unrealistic premise that nodes’
actions are somehow synchronously coordinated.
In many settings, where nodes can act at any time,
this kind of synchrony is not available. It has
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long been known that asynchrony introduces sub-
stantial difficulties in distributed systems, as com-
pared to synchrony [12], due to the “limitation im-
posed by local knowledge” [24]. There has been
much work in distributed computing on identifying
conditions that guarantee protocol termination in
asynchronous computational environments. Over
the past three decades, we have seen many results
regarding the possibility/impossibility borderline
for failure-resilient computation [11, 24]. In the
classical results of that setting, the risk of non-
termination stems from the possibility of failures
of nodes or other components.

We seek to bring together these two areas to
form a new research agenda on distributed com-
puting with adaptive heuristics. Our aim is to draw
ideas from distributed computing theory to inves-
tigate provable properties and possible worst-case
system behavior of adaptive heuristics in asyn-
chronous computational environments. We take
the first steps of this research agenda. We show
that a large and natural class of adaptive heuristics
fail to provably converge to an equilibrium in an
asynchronous setting, even if the nodes and com-
munication channels are guaranteed to be failure-
free. This has implications across a wide domain
of applications: convergence of game dynam-
ics to pure Nash equilibria; stabilization of asyn-
chronous circuits; convergence to a stable routing
tree of the Border Gateway Protocol, that handles
Internet routing; and more. We also explore the
impact of scheduling on convergence guarantees.
We show that non-convergence is not inherent to
adaptive heuristics, as some forms of regret min-
imization provably converge in asynchronous set-
tings. In more detail, we make the following con-
tributions:

General non-convergence result (Section 4). It is
often desirable or necessary due to practical con-
straints that computational nodes’ (e.g., routers’)
behavior rely on limited memory and processing
power. In such contexts, nodes’ adaptive heuris-
tics are often based on bounded recall—i.e., de-
pend solely on recent history of interaction with
others—and can even be historyless—i.e., nodes
only react to other nodes’ current actions). We
exhibit a general impossibility result using a va-
lency argument—a now-standard technique in dis-
tributed computing theory [11, 24]—to show that

a broad class of bounded-recall adaptive heuristics
cannot always converge to a stable state. More
specifically, we show that, for a large family of
such heuristics, simply the existence of two “equi-
librium points” implies that there is some execu-
tion that does not converge to any outcome even
if nodes and communication channels are guaran-
teed not to fail. We also give evidence that our
non-convergence result is essentially tight.
Implications across a wide variety of interest-
ing and timely applications (Section 5). We ap-
ply our non-convergence result to a wide variety
of interesting environments, namely convergence
of game dynamics to pure Nash equilibria, stabi-
lization of asynchronous circuits, diffusion of tech-
nologies in social networks, routing on the Inter-
net, and congestion control protocols.
Implications for convergence of r-fairness and
randomness (Section 6). We study the effects
on convergence to a stable state of natural restric-
tions on the order of nodes’ activations (i.e., the
order in which nodes’ have the opportunity to take
steps), that have been extensively studied in dis-
tributed computing theory: (1) r-fairness, which is
the guarantee that each node selects a new action
at least once within every r consecutive time steps,
for some pre-specified r > 0; and (2) randomized
selection of the initial state of the system and the
order of nodes’ activations.
Communication and computational complex-
ity of asynchronous dynamics (Section 7). We
study the tractability of determining whether con-
vergence to a stable state is guaranteed. We present
two complementary hardness results that establish
that, even for extremely restricted kinds of interac-
tions, this feat is hard: (1) an exponential commu-
nication complexity lower bound; and (2) a com-
putational complexity PSPACE-completeness re-
sult that, alongside its computational implications,
implies that we cannot hope to have short wit-
nesses of guaranteed asynchronous convergence
(unless PSPACE ⊆ NP).
Asynchronous no-regret dynamics (Section 8).
We present some basic observations about the con-
vergence properties of no-regret dynamics in our
framework, that establish that, in contrast to other
adaptive heuristics, regret minimization is quite ro-
bust to asynchrony.
Further discussion of a research agenda in
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distributed computing with adaptive heuristics
(Section 9) We believe that this work has but
scratched the surface in the exploration of the be-
havior of adaptive heuristics in asynchronous com-
putational environments. Many important ques-
tions remain wide open. We present context-
specific problems in the relevant sections, and also
outline general interesting directions for future re-
search in Section 9.

Before presenting our main results, we overview
related work (Section 2) and provide a detailed de-
scription of our model (Section 3).

2 Related Work
Our work relates to many ideas in game theory

and in distributed computing. We discuss game
theoretic work on adaptive heuristics and on asyn-
chrony, and also distributed computing work on
fault tolerance and self stabilization. We also high-
light the application areas we consider.
Adaptive heuristics. Much work in game the-
ory and economics deals with adaptive heuristics
(see Hart [16] and references therein). Gener-
ally speaking, this long line of research explores
the “convergence” of simple and myopic rules
of behavior (e.g., best-response/fictitious-play/no-
regret dynamics) to an “equilibrium”. However,
with few exceptions (see below), such analysis has
so far primarily concentrated on synchronous envi-
ronments in which steps take place simultaneously
or in some other predetermined prescribed order.
In contrast, we explore adaptive heuristics in asyn-
chronous environments, which are more realistic
for many applications.
Game-theoretic work on asynchronous envi-
ronments. Some game-theoretic work on re-
peated games considers “asynchronous moves”.1

(see [23, 34], among others, and references
therein). Such work does not explore the behav-
ior of dynamics, but has other research goals (e.g.,
characterizing equilibria, establishing Folk theo-
rems). We are, to the best of our knowledge, the
first to study the effects of asynchrony (in the broad

1Often, the term asynchrony merely indicates that players
are not all activated at each time step, and thus is used to de-
scribe environments where only one player is activated at a time
(“alternating moves”), or where there is a probability distribu-
tion that determines who is activated when.

distributed computing sense) on the convergence
of game dynamics to equilibria.
Fault-tolerant computation. We use ideas and
techniques from work in distributed computing
on protocol termination in asynchronous compu-
tational environments where nodes and commu-
nication channels are possibly faulty. Protocol
termination in such environments, initially moti-
vated by multi-processor computer architectures,
has been extensively studied in the past three
decades [2, 4, 7, 12, 20, 29], as nicely surveyed
in [11, 24]. Fischer, Lynch and Paterson [12]
showed, in a landmark paper, that a broad class of
failure-resilient consensus protocols cannot prov-
ably terminate. Intuitively, the risk of protocol
nontermination in [12] stems from the possibil-
ity of failures; a computational node cannot tell
whether another node is silent due to a failure or
is simply taking a long time to react. Our focus
here is, in contrast, on failure-free environments.
Self stabilization. The concept of self stabiliza-
tion is fundamental to distributed computing and
dates back to Dijkstra, 1973 (see [8] and refer-
ences therein). Convergence of adaptive heuristics
to an “equilibrium” in our model can be viewed
as the self stabilization of such dynamics (where
the “equilibrium points” are the legitimate config-
urations). Our formulation draws ideas from work
in distributed computing (e.g., Burns’ distributed
daemon model) and in networking research [14]
on self stabilization.
Applications. We discuss the implications of our
non-convergence result across a wide variety of ap-
plications, that have previously been studied: con-
vergence of game dynamics (see, e.g., [18, 19]);
asynchronous circuits (see, e.g., [6]); diffusion of
innovations, behaviors, etc., in social networks
(see Morris [26] and also [21]); interdomain rout-
ing [14, 30]; and congestion control [13].

3 The Model
We now present our model for analyzing adap-

tive heuristics in asynchronous environments.
Computational nodes interacting. There is an
interaction system with n computational nodes,
1, . . . , n. Each computational node i has an ac-
tion space Ai. Let A = ×j∈[n]Aj , where [n] =
{1, . . . , n}. Let A−i = ×j∈[n]\{i}Aj . Let ∆(Ai)
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be the set of all probability distributions over the
actions in Ai.

Schedules. There is an infinite sequence of dis-
crete time steps t = 1, . . .. A schedule is a func-
tion σ that maps each t ∈ N+ = {1, 2, . . .} to a
nonempty set of computational nodes: σ(t) ⊆ [n].
Informally, σ determines (when we consider the
dynamics of the system) which nodes are activated
in each time-step. We say that a schedule σ is fair
if each node i is activated infinitely many times in
σ, i.e., ∀i ∈ [n], there are infinitely many t ∈ N+

such that i ∈ σ(t). For r ∈ N+, we say that a
schedule σ is r-fair if each node is activated at least
once in every sequence of r consecutive time steps,
i.e., if, for every i ∈ [n] and t0 ∈ N+, there is at
least one value t ∈ {t0, t0 + 1, . . . , t0 + r− 1} for
which i ∈ σ(t).

History and reaction functions. Let H0 = ∅,
and let Ht = At for every t ≥ 1. Intuitively,
an element in Ht represents a possible history
of interaction at time step t. For each node i,
there is an infinite sequence of functions fi =
(f(i,1), f(i,2), . . . , f(i,t), . . .) such that, for each t ∈
N+, f(i,t) : Ht → ∆(Ai); we call fi the reaction
function of node i. As discussed below, fi captures
i’s way of responding to the history of interaction
in each time step.

Restrictions on reaction functions. We now
present five possible restrictions on reaction func-
tions: determinism, self-independence, bounded
recall, stationarity and historylessness.

1. Determinism: a reaction function fi is de-
terministic if, for each input, fi outputs a sin-
gle action (that is, a probability distribution
where a single action inAi has probability 1).

2. Self-independence: a reaction function fi is
self-independent if node i’s own (past and
present) actions do not affect the outcome of
fi. That is, a reaction function fi is self-
independent if for every t ≥ 1 there exists
a function gt : At

−i → ∆(Ai) such that
f(i,t) ≡ gt.

3. k-recall and stationarity: a node i has k-
recall if its reaction function fi only depends
on the k most recent time steps, i.e., for ev-
ery t ≥ k, there exists a function g : Hk →
∆(Ai) such that f(i,t)(x) = g(x|k) for each
input x ∈ Ht (x|k here denotes the last k co-
ordinates, i.e., n-tuples of actions, of x). We

say that a k-recall reaction function is station-
ary if the time counter t is of no importance.
That is, a k-recall reaction function is station-
ary if there exists a function g : Hk → ∆(Ai)
such that for all t ≥ k, f(i,t)(x) = g(x|k) for
each input x ∈ Ht.

4. Historylessness: a reaction function fi is his-
toryless if fi is 1-recall and stationary, that is,
if fi only depends on i’s and on i’s neighbors’
most recent actions.

Dynamics. We now define dynamics in our model.
Intuitively, there is some initial state (history of
interaction) from which the interaction system
evolves, and, in each time step, some subset of
the nodes reacts to the past history of interaction.
This is captured as follows. Let s(0), that shall be
called the “initial state”, be an element in Hw, for
some w ∈ N+. Let σ be a schedule. We now
describe the “(s(0), σ)-dynamics”. The system’s
evolution starts at time t = w+ 1, when each node
i ∈ σ(w + 1) simultaneously chooses an action
according to f(i,w+1), i.e., node i randomizes over
the actions in Ai according to f(i,w+1)(s

(0)). We
now let s(1) be the element in Hw+1 for which
the first w coordinates (n-tuples of nodes’ actions)
are as in s(0) and the last coordinate is the n-tuple
of realized nodes’ actions at the end of time step
t = w+ 1. Similarly, in each time step t > w+ 1,
each node in σ(t) updates its action according
to f(i,t), based on the past history s(t−w−1), and
nodes’ realized actions at time t, combined with
s(t−w−1), define the history of interaction at the
end of time step t, s(t−w).
Convergence and convergent systems. We say
that nodes’ actions converge under the (s(0), σ)-
dynamics if there exist some t0 ∈ N+, and some
action profile a = (a1, . . . , an), such that, for all
t > t0, s(t) = a. The dynamics is then said
to converge to a, and a is called a “stable state”
(for the (s(0), σ)-dynamics), i.e., intuitively, a sta-
ble state is a global action state that, once reached,
remains unchanged. We say that the interaction
system is convergent if, for all initial states s(0)

and fair schedules σ, the (s(0), σ)-dynamics con-
verges. We say that the system is r-convergent if,
for all initial states s(0) and r-fair schedules σ, the
(s(0), σ)-dynamics converges.
Update messages. Observe that, in our model,
nodes’ actions are immediately observable to other
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nodes at the end of each time step (“perfect mon-
itoring”). While this is clearly unrealistic in some
important real-life contexts (e.g., some of the envi-
ronments considered below), this restriction only
strengthens our main results, that are impossibility
results.
Deterministic historyless dynamics. Of special
interest to us is the case that all reaction functions
are deterministic and historyless. We observe that,
in this case, stable states have a simple character-
ization. Each reaction function fi is deterministic
and historyless and so can be specified by a func-
tion gi : A → Ai. Let g = (g1, . . . , gn). Ob-
serve that the set of all stable states (for all pos-
sible dynamics) is precisely the set of all fixed
points of g. Below, when describing nodes’ reac-
tion functions that are deterministic and historyless
we sometimes abuse notation and identify each fi
with gi (treating fi as a function from A to Ai). In
addition, when all the reaction functions are also
self-independent we occasionally treat each fi as a
function from A−i to Ai.

4 Non-Convergence Result
We now present a general impossibility result

for convergence of nodes’ actions under bounded-
recall dynamics in asynchronous, distributed com-
putational environments.

Theorem 4.1. If each reaction function has
bounded recall and is self-independent then the ex-
istence of multiple stable states implies that the
system is not convergent.

We note that this result holds even if nodes’ re-
action functions are not stationary and are random-
ized (randomized initial states and activations are
discussed in Section 6). We present the proof of
Theorem 4.1 in Appendix F. We now discuss some
aspects of our impossibility result.
Neither bounded recall nor self-independence
alone implies non-convergence We show that the
statement of Theorem 4.1 does not hold if ei-
ther the bounded-recall restriction, or the self-
independence restriction, is removed.

Example 4.2. (the bounded-recall restriction
cannot be removed) There are two nodes, 1 and 2,
each with the action space {x, y}. The determin-
istic and self-independent reaction functions of the

nodes are as follows: node 2 always chooses node
1’s action; node 1 will choose y if node 2’s ac-
tion changed from x to y in the past, and x other-
wise. Observe that node 1’s reaction function is
not bounded-recall but can depend on the entire
history of interaction. We make the observations
that the system is safe and has two stable states.
Observe that if node 1 chooses y at some point in
time due to the fact that node 2’s action changed
from x to y, then it shall continue to do so there-
after; if, on the other hand, 1 never does so, then,
from some point in time onwards, node 1’s action
is constantly x. In both cases, node 2 shall have
the same action as node 1 eventually, and thus con-
vergence to one of the two stable states, (x, x) and
(y, y), is guaranteed. Hence, two stable states exist
and the system is convergent nonetheless

Example 4.3. (the self-independence restriction
cannot be removed) There are two nodes, 1 and
2, each with action set {x, y}. Each node i’s a
deterministic and historyless reaction function fi
is as follows: fi(x, x) = y; in all other cases
the node always (re)selects its current action (e.g.,
f1(x, y) = x, f2(x, y) = y). Observe that the sys-
tem has three stable states, namely all action pro-
files but (x, x), yet can easily be seen to be conver-
gent.

Connections to consensus protocols. We now
briefly discuss the interesting connections between
Theorem 4.1 and the non-termination result for
failure-resilient consensus protocols in [12]. We
elaborate on this topic in Appendix A. Fischer et
al. [12] explore when a group of processors can
reach a consensus even in the presence of fail-
ures, and exhibit a breakthrough non-termination
result. Our proof of Theorem 4.1 uses a valency
argument—an idea introduced in the proof of the
non-termination result in [12].

Intuitively, the risk of protocol non-termination
in [12] stems from the possibility of failures; a
computational node cannot tell whether another
node is silent due to a failure or is simply taking
a long time to react. We consider environments in
which nodes/communication channels cannot fail,
and so each node is guaranteed that all other nodes
react after “sufficiently long” time. This guaran-
tee makes reaching a consensus in the environment
of [12] easily achievable (see Appendix A). Un-
like the results in [12], the possibility of noncon-
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vergence in our framework stems from limitations
on nodes’ behaviors. Hence, there is no immediate
translation from the result in [12] to ours (and vice
versa). To illustrate this point, we observe that in
both Example 4.2 and Example 4.3, there exist two
stable states and an initial state from which both
stable states are reachable (a “bivalent state” [12]),
yet the system is convergent (see Appendix A).
This should be contrasted with the result in [12]
that establishes that the existence of an initial state
from which two distinct outcomes are reachable
implies the existence of a non-terminating execu-
tion.

We investigate the link between consensus pro-
tocols and our framework further in Appendix F,
where we take an axiomatic approach. We
introduce a condition—“Independence of Deci-
sions” (IoD)—that holds for both fault-resilient
consensus protocols and for bounded-recall self-
independent dynamics. We then factor the ar-
guments in [12] through IoD to establish a non-
termination result that holds for both contexts, thus
unifying the treatment of these dynamic computa-
tional environments.

5 Games, Circuits, Networks, and Be-
yond

We present implications of our impossibility re-
sult in Section 4 for several well-studied environ-
ments: game theory, circuit design, social net-
works and Internet protocols. We now briefly
summarize these implications, that, we believe,
are themselves of independent interest. See Ap-
pendix B for a detailed exposition of the results in
this section.
Game theory. Our result, when cast into
game-theoretic terminology, shows that if players’
choices of strategies are not synchronized, then
the existence of two (or more) pure Nash equilib-
ria implies that a broad class of game dynamics
(e.g., best-response dynamics with consistent tie-
breaking) are not guaranteed to reach a pure Nash
equilibrium. This result should be contrasted with
positive results for such dynamics in the traditional
synchronous game-theoretic environments.

Theorem 5.1. If there are two (or more) pure Nash
equilibria in a game, then all bounded-recall self-
independent dynamics can oscillate indefinitely for

asynchronous player activations.

Corollary 5.2. If there are two (or more) pure
Nash equilibria in a game, then best-response dy-
namics, and bounded-recall best-response dynam-
ics (studied in [35]), with consistent tie-breaking,
can fail to converge to an equilibrium in asyn-
chronous environments.

Circuits. Work on asynchronous circuits in com-
puter architectures research explores the implica-
tions of asynchrony for circuit design [6]. We ob-
serve that a logic gate can be regarded as executing
an inherently historyless reaction function that is
independent of the gate’s past and present “state”.
Thus, we show that our result has implications for
the stabilization of asynchronous circuits.

Theorem 5.3. If two (or more) stable Boolean as-
signments exist for an asynchronous Boolean cir-
cuit, then that asynchronous circuit is not inher-
ently stable.

Social networks. Understanding the ways in
which innovations, ideas, technologies, and prac-
tices, disseminate through social networks is fun-
damental to the social sciences. We consider
the classic economic setting [26] (that has lately
also been approached by computer scientists [21])
where each decision maker has two technologies
{A,B} to choose from, and each node in the social
network wishes to have the same technology as the
majority of his “friends” (neighboring nodes in the
social network). We exhibit a general impossibil-
ity result for this environment.

Theorem 5.4. In every social network, the diffu-
sion of technologies can potentially never converge
to a stable global state.

Networking. We consider two basic networking
environments: (1) routing with the Border Gate-
way Protocol (BGP), that is the “glue” that holds
together the smaller networks that make up the In-
ternet; and (2) the fundamental task of conges-
tion control in communication networks, that is
achieved through a combination of mechanisms
on end-hosts (e.g., TCP), and on switches/routers
(e.g., RED and WFQ). We exhibit non-termination
results for both these environments.

We abstract a recent result in [30] and prove that
this result extends to several BGP-based multipath
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routing protocols that have been proposed in the
past few years.

Theorem 5.5. [30] If there are multiple stable
routing trees in a network, then BGP is not safe on
that network.

We consider the model for analyzing dynamics
of congestion presented in [13]. We present the
following result.

Theorem 5.6. If there are multiple capacity-
allocation equilibria in the network then dynamics
of congestion can oscillate indefinitely.

6 r-Convergence and Randomness

We now consider the implications for conver-
gence of two natural restrictions on schedules: r-
fairness and randomization. See Appendix C for a
detailed exposition of the results in this section.
Snakes in boxes and r-convergence. The-
orem 4.1 deals with convergence and not r-
convergence, and thus does not impose restrictions
on the number of consecutive time steps in which a
node can be nonactive. What happens if there is an
upper bound on this number, r? We now show that
if r < n− 1 then sometimes convergence of histo-
ryless and self-independent dynamics is achievable
even in the presence of multiple stable states (and
so our impossibility result does not extend to this
setting).

Example 6.1. (a system that is convergent for
r < n − 1 but nonconvergent for r = n − 1)
There are n ≥ 2 nodes, 1, . . . , n, each with the
action space {x, y}. Nodes’ deterministic, history-
less and self-independent reaction functions are as
follows. ∀i ∈ [n], fi(xn−1) = x and fi always
outputs y otherwise. Observe that there exist two
stable states: xn and yn. Observe that if r = n− 1
then the following oscillation is possible. Initially,
only node 1’s action is y and all other nodes’ ac-
tions are x. Then, nodes 1 and 2 are activated and,
consequently, node 1’s action becomes x and node
2’s action becomes y. Next, nodes 2 and 3 are ac-
tivated, and thus 2’s action becomes x and 3’s ac-
tion becomes y. Then 3, 4 are activated, then 4, 5,
and so on (traversing all nodes over and over again
in cyclic order). This goes on indefinitely, never
reaching one of the two stable states. Observe that,

indeed, each node is activated at least once within
every sequence of n − 1 consecutive time steps.
We observe however, that if r < n − 1 then con-
vergence is guaranteed. To see this, observe that if
at some point in time there are at least two nodes
whose action is y, then convergence to yn is guar-
anteed. Clearly, if all nodes’ action is x then con-
vergence to xn is guaranteed. Thus, an oscillation
is possible only if, in each time step, exactly one
node’s action is y. Observe that, given our defi-
nition of nodes’ reaction functions, this can only
be if the activation sequence is (essentially) as de-
scribed above, i.e., exactly two nodes are activated
at a time. Observe also that this kind of activation
sequence is impossible for r < n− 1.

What about r > n? We use classical results
in combinatorics regarding the size of a “snake-in-
the-box” in a hypercube [1] to construct systems
are r-convergent for exponentially-large r’s, but
are not convergent in general.

Theorem 6.2. Let n ∈ N+ be sufficiently large.
There exists a system G with n nodes, in which
each node i has two possible actions and each fi
is deterministic, historyless and self-independent,
such that G is r-convergent for r ∈ Ω(2n), but G
is not (r + 1)-convergent.

We note that the construction in the proof of
Theorem 6.2 is such that there is a unique stable
state. We believe that the same ideas can be used
to prove the same result for systems with multiple
stable states but the exact way of doing this eludes
us at the moment, and is left as an open question.

Problem 6.3. Prove that for every sufficiently
large n ∈ N+, there exists a system G with n
nodes, in which each node i has two possible
actions, each fi is deterministic, historyless and
self-independent, and G has multiple stable states,
such that G is r-convergent for r ∈ Ω(2n) but G
is not (r + 1)-convergent.

Does random choice (of initial state and sched-
ule) help? Theorem 4.1 tells us that, for a broad
class of dynamics, a system with multiple stable
states is nonconvergent if the initial state and the
node-activation schedule are chosen adversarially.
Can we guarantee convergence if the initial state
and schedule are chosen at random?
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Example 6.4. (random choice of initial state
and schedule might not help) There are n
nodes, 1, . . . , n, and each node has action space
{x, y, z}. The (deterministic, historyless and self-
independent) reaction function of each node i ∈
{3, . . . , n} is such that fi(xn−1) = x; fi(zn−1) =
z; and fi = y for all other inputs. The (de-
terministic, historyless and self-independent) reac-
tion function of each node i ∈ {1, 2} is such that
fi(x

n−1) = x; fi(zn−1) = z; fi(xyn−2) = y;
fi(y

n−1) = x; and fi = y for all other inputs. Ob-
serve that there are exactly two stable states: xn

and zn. Observe also that if nodes’ actions in the
initial state do not contain at least n − 1 x’s, or at
least n− 1 z’s, then, from that moment forth, each
activated node in the set {3, . . . , n}will choose the
action y. Thus, eventually the actions of all nodes
in {3, . . . , n} shall be y, and so none of the two
stable states will be reached. Hence, there are 3n

possible initial states, such that only from 4n + 2
can a stable state be reached. When choosing the
initial state uniformly at random the probability of
landing on a “good” initial state (in terms of con-
vergence) is thus exponentially small.

7 Complexity of Asynchronous Dy-
namics

We now explore the communication complex-
ity and computational complexity of determining
whether a system is convergent. We present hard-
ness results in both models of computation even
for the case of deterministic and historyless adap-
tive heuristics. See Appendix D for a detailed ex-
position of the results in this section.

We first present the following communication
complexity result whose proof relies on combina-
torial “snake-in-the-box” constructions [1].

Theorem 7.1. Determining if a system with n
nodes, each with 2 actions, is convergent requires
Ω(2n) bits. This holds even if all nodes have deter-
ministic, historyless and self-independent reaction
functions.

The above communication complexity hardness
result required the representation of the reaction
functions to (potentially) be exponentially long.
What if the reaction functions can be succinctly de-
scribed? We now present a strong computational
complexity hardness result for the case that each

reaction function fi is deterministic and history-
less, and is given explicitly in the form of a boolean
circuit (for each a ∈ A the circuit outputs fi(a)).
We prove the following result.

Theorem 7.2. Determining if a system with n
nodes, each with a deterministic and history-
less reaction function, is convergent is PSPACE-
complete.

Our computational complexity result shows that
even if nodes’ reaction functions can be suc-
cinctly represented, determining whether the sys-
tem is convergent is PSPACE-complete. This re-
sult, alongside its computational implications, im-
plies that we cannot hope to have short “witnesses”
of guaranteed asynchronous convergence (unless
PSPACE ⊆ NP). Proving the above PSPACE-
completeness result for the case self-independent
reaction functions seems challenging.

Problem 7.3. Prove that determining if a sys-
tem with n nodes, each with a deterministic self-
independent and historyless reaction function, is
convergent is PSPACE-complete.

8 Some Basic Observations Regard-
ing No-Regret Dynamics

Regret minimization is fundamental to learn-
ing theory, and has strong connections to game-
theoretic solution concepts; if each player in a re-
peated game executes a no-regret algorithm when
selecting strategies, then convergence to an equi-
librium is guaranteed in a variety of interesting
contexts. The meaning of convergence, and the
type of equilibrium reached, vary, and are depen-
dent on the restrictions imposed on the game and
on the notion of regret. Work on no-regret dynam-
ics traditionally considers environments where all
nodes are “activated” at each time step. We make
the simple observation that, switching our atten-
tion to r-fair schedules (for every r ∈ N+), if an
algorithm has no regret in the classic setting, then
it has no regret in this new setting as well (for all
notions of regret). Hence, positive results from the
regret-minimization literature extend to this asyn-
chronous environment. See [3] for a thorough ex-
planation about no-regret dynamics and see Ap-
pendix E for a detailed explanation about our ob-
servations. We now mention two implications of
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our observation and highlight two open problems
regarding regret minimization.

Observation 8.1. When all players in a zero-sum
game use no-external-regret algorithms then ap-
proaching or exceeding the minimax value of the
game is guaranteed.

Observation 8.2. When all players in a (general)
game use no-swap-regret algorithms the empirical
distribution of joint players’ actions converges to
a correlated equilibrium of the game.

Problem 8.3. Give examples of repeated games
for which there exists a schedule of player acti-
vations that is not r-fair for any r ∈ N+ for
which regret-minimizing dynamics do not con-
verge to an equilibrium (for different notions of re-
gret/convergence/equilibria).

Problem 8.4. When is convergence of no-regret
dynamics to an equilibrium guaranteed (for dif-
ferent notions of regret/convergence/equilibria) for
all r-fair schedules for non-fixed r’s, that is, if
when r is a function of t?

9 Future Research
In this paper, we have taken the first steps

towards a complete understanding of distributed
computing with adaptive heuristics. We proved a
general non-convergence result and several hard-
ness results within this model, and also discussed
some important aspects such as the implications of
fairness and randomness, as well as applications to
a variety of settings. We believe that we have but
scratched the surface in the exploration of the con-
vergence properties of simple dynamics in asyn-
chronous computational environments, and many
important questions remain wide open. We now
outline several interesting directions for future re-
search.
Other heuristics, convergence notions, equilib-
ria. We have considered specific adaptive heuris-
tics, notions of convergence, and kinds of equilib-
ria. Understanding the effects of asynchrony on
other adaptive heuristics (e.g., better-response dy-
namics, fictitious play), for other notions of con-
vergence (e.g., of the empirical distributions of
play), and for other kinds of equilibria (e.g., mixed
Nash equilibria, correlated equilibria) is a broad
and challenging direction for future research.

Outdated and private information. We have not
explicitly considered the effects of making deci-
sions based on outdated information. We have also
not dealt with the case that nodes’ behaviors are
dependent on private information, that is, the case
that the dynamics are “uncoupled” [18, 19].
Other notions of asynchrony. We believe that
better understanding the role of degrees of fairness,
randomness, and other restrictions on schedules
from distributed computing literature, in achieving
convergence to equilibrium points is an interesting
and important research direction.
Characterizing asynchronous convergence. We
still lack characterizations of asynchronous con-
vergence even for simple dynamics (e.g., determin-
istic and historyless).2

Topological and knowledge-based approaches.
Topological [4, 20, 29] and knowledge-based [15]
approaches have been very successful in address-
ing fundamental questions in distributed comput-
ing. Can these approaches shed new light on the
implications of asynchrony for adaptive heuristics?
Further exploring the environments in Sec-
tion 5. We have applied our non-convergence re-
sult to the environments described in Section 5.
These environments are of independent interest
and are indeed the subject of extensive research.
Hence, the further exploration of dynamics in these
settings is important.
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A Connections to Consensus Proto-
cols

There are interesting connections between our
result and that of Fischer et al. [12] for fault-
resilient consensus protocols. [12] studies the fol-
lowing environment: There is a group of pro-

2Our PSPACE-completeness result in Section 7 eliminates
the possibility of short witnesses of guaranteed asynchronous
convergence unless PSPACE ⊆ NP, but elegant characteriza-
tions are still possible.
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cesses, each with an initial value in {0, 1}, that
communicate with each other via messages. The
objective is for all non-faulty processes to even-
tually agree on some value x ∈ {0, 1}, where the
“consensus” xmust match the initial value of some
process. [12] establishes that no consensus proto-
col is resilient to even a single failure. One cru-
cial ingredient for the proof of the result in [12]
is showing that there exists some initial configu-
ration of processes’ initial values such that, from
that configuration, the resulting consensus can be
both 0 and 1 (the outcome depends on the specific
“schedule” realized). Our proof of Theorem 4.1
uses a valency argument—an idea introduced in
the proof of the breakthrough non-termination re-
sult in [12] for consensus protocols.

Intuitively, the risk of protocol nontermination
in [12] stems from the possibility of failures; a
computational node cannot tell whether another
node is silent due to a failure or is simply tak-
ing a long time to react. We consider environ-
ments in which nodes/communication channels do
not fail. Thus, each node is guaranteed that af-
ter “sufficiently many” time steps all other nodes
will react. Observe that in such an environment
reaching a consensus is easy; one pre-specified
node i (the “dictator”) waits until it learns all other
nodes’ inputs (this is guaranteed to happen as fail-
ures are impossible) and then selects a value vi and
informs all other nodes; then, all other nodes se-
lect vi. Unlike the results in [12], the possibility of
nonconvergence in our framework stems from lim-
itations on nodes’ behaviors. We investigate the
link between consensus protocols and our frame-
work further in Appendix. F, where we take an
axiomatic approach. We introduce a condition—
“Independence of Decisions” (IoD)—that holds
for both fault-resilient consensus protocols and for
bounded-recall self-independent dynamics. We
then factor the arguments in [12] through IoD to
establish a non-termination result that holds for
both contexts, thus unifying the treatment of these
dynamic computational environments.

Hence, there is no immediate translation from
the result in [12] to ours (and vice versa). To illus-
trate this point, let us revisit Example 4.2, in which
the system is convergent, yet two stable states ex-
ist. We observe that in the example there is in-
deed an initial state from which both stable states

are reachable (a “bivalent state” [12]). Consider
the initial state (y, x). Observe that if node 1 is
activated first (and alone), then it shall choose ac-
tion x. Once node 2 is activated it shall then also
choose x, and the resulting stable state shall be
(x, x). However, if node 2 is activated first (alone),
then it shall choose action y. Once 1 is activated it
shall also choose action y, and the resulting stable
state shall be (y, y). Observe that in Example 4.3
too there exists an action profile (x, x) from which
multiple stable states are reachable yet the system
is convergent.

B Games, Circuits, Networks, and
Beyond

We present implications of our impossibility re-
sult in Section 4 for several well-studied environ-
ments: game theory, circuit design, social net-
works and Internet protocols.

B.1 Game Dynamics
The setting. There are n players, 1, . . . , n. Each
player i has a strategy set Si. Let S = ×j∈[n]Sj ,
and let S−i = ×j∈[n]\{i}Sj . Each player i has a
utility function ui : S → Si. For each si ∈ Si and
s−i ∈ S−i let (si, s−i) denote the strategy pro-
file in which player i’s strategy is si and all other
players’ strategies are as in s−i. Informally, a pure
Nash equilibrium is a strategy profile from which
no player wishes to unilaterally deviate.

Definition B.1. (pure Nash equilibria) We say
that a strategy profile s = (s1, . . . , sn) ∈ S
is a pure Nash equilibrium if, for each player i,
si ∈ argmaxsi∈Si

ui(si, s−i).

One natural procedure for reaching a pure Nash
equilibrium of a game is best-response dynamics:
the process starts at some arbitrary strategy pro-
file, and players take turns “best replying” to other
players’ strategies until no player wishes to change
his strategy. Convergence of best-response dynam-
ics to pure Nash equilibria is the subject of exten-
sive research in game theory and economics, and
both positive [25, 28] and negative [18, 19] results
are known.

Traditionally, work in game theory on game dy-
namics (e.g., best-response dynamics) relies on the
explicit or implicit premise that players’ actions
are somehow synchronized (in some contexts play
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is sequential, while in others it is simultaneous).
We consider the realistic scenario that there is no
computational center than can synchronize play-
ers’ selection of strategies. We cast the above set-
ting into the terminology of Section 3 and exhibit
an impossibility result for best-response, and more
general, dynamics.

Computational nodes, action spaces. The com-
putational nodes are the n players. The action
space of each player i is his strategy set Si.

Reaction functions, dynamics. Under best-
response dynamics, each player constantly
chooses a “best response” to the other players’
most recent actions. Consider the case that players
have consistent tie-breaking rules, i.e., the best
response is always unique, and depends only
on the others’ strategies. Observe that, in this
case, players’ behaviors can be formulated as
deterministic, historyless, and self-independent
reaction functions. The dynamic interaction
between players is as in Section 3.

Existence of multiple pure Nash equilibria im-
plies non-convergence of best-response dynam-
ics in asynchronous environments. Theorem 4.1
implies the following result:

Theorem B.2. If there are two (or more) pure
Nash equilibria in a game, then asynchronous
best-response dynamics can potentially oscillate
indefinitely.

In fact, Theorem 4.1 implies that the above
non-convergence result holds even for the broader
class of randomized, bounded-recall and self-
independent game dynamics, and thus also
to game dynamics such as best-response with
bounded recall and consistent tie-breaking rules
(studied in [35]).

B.2 Asynchronous Circuits
The setting. There is a Boolean circuit, repre-
sented as a directed graphG, in which vertices rep-
resent the circuit’s inputs and the logic gates, and
edges represent connections between the circuit’s
inputs and the logic gates and between logic gates.
The activation of the logic gates is asynchronous.
That is, the gates’ outputs are initialized in some
arbitrary way, and then the update of each gate’s
output, given its inputs, is uncoordinated and un-
synchronized. We prove an impossibility result

for this setting, which has been extensively stud-
ied (see [6]).

Computational nodes, action spaces. The com-
putational nodes are the inputs and the logic gates.
The action space of each node is {0, 1}.
Reaction functions, dynamics. Observe that each
logic gate can be regarded as a function that only
depends on its inputs’ values. Hence, each logic
gate can be modeled via a reaction function. Inter-
action between the different circuit components is
as in Section 3.

Too much stability in circuits can lead to in-
stability. Stable states in this framework are as-
signments of Boolean values to the circuit inputs
and the logic gates that are consistent with each
gate’s truth table (reaction function). We say that a
Boolean circuit is inherently stable if it is guaran-
teed to converge to a stable state regardless of the
initial boolean assignment. The following theorem
is derived from Theorem 4.1:

Theorem B.3. If two (or more) stable Boolean as-
signments exist for an asynchronous Boolean cir-
cuit, then that asynchronous circuit is not inher-
ently stable.

B.3 Diffusion of Technologies in Social Net-
works

The setting. There is a social network of users,
represented by a directed graph in which users are
the vertices and edges correspond to friendship re-
lationships. There are two competing technolo-
gies, X and Y . A user’s utility from each technol-
ogy depends on the number of that user’s friends
that use that technology; the more friends use that
technology the more desirable that technology is
to the user. That is, a user would always select
the technology used by the majority of his friends.
We are interested in the dynamics of the diffusion
of technologies. Observe that if, initially, all users
are using X , or all users are using Y , no user has
an incentive to switch to a different technology.
Hence, there are always (at least) two distinct “sta-
ble states” (regardless of the topology of the social
network). Therefore, the terminology of Section 3
can be applied to this setting.

Computational nodes, actions spaces. The users
are the computational nodes. Each user i’s action
space consists of the two technologies {X,Y }.
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Reaction functions, dynamics. The reaction
function of each user i is defined as follows: If
at least half of i’s friends use technology X , i se-
lects technology X; otherwise, i selects technol-
ogy Y . In our model of diffusion of technologies,
users’ choices of technology can be made simulta-
neously, as described in Section 3.

Instability of social networks. Theorem 4.1 im-
plies the following:

Theorem B.4. In every social network, the diffu-
sion of technologies can potentially never converge
to a stable global state.

B.4 Interdomain Routing
The setting. The Internet is made up of smaller
networks called Autonomous Systems (ASes). In-
terdomain routing is the task of establishing routes
between ASes, and is handled by the Border Gate-
way Protocol (BGP). In the standard model for an-
alyzing BGP dynamics [14], there is a network of
source ASes that wish to send traffic to a unique
destination AS d. Each AS i has a ranking func-
tion <i that specifies i’s strict preferences over
all simple (loop-free) routes leading from i to d.3

Under BGP, each AS constantly selects the “best”
route that is available to it. See [14] for more de-
tails. Guaranteeing BGP safety, i.e., BGP conver-
gence to a “stable” routing outcome is a fundamen-
tal desideratum that has been the subject of exten-
sive work in both the networking and the standards
communities. We now cast interdomain routing
into the terminology of Section 3. We then obtain
non-termination results for BGP and for proposals
for new interdomain routing protocols (as corollar-
ies of Theorem 4.1).

Computational nodes, action spaces. The ASes
are the computational nodes. The action space of
each node i, Ai, is the set of all simple (loop-free)
routes between i and the destination d that are ex-
portable to i, and the empty route ∅.
Reaction functions, dynamics. The reaction
function fi of node i outputs, for every vector α
containing routes to d of all of i’s neighbors, a
route (i, j)Rj such that (1) j is i’s neighbor; (2)
Rj is j’s route in α; and (3) Rj >i R for all other

3ASes rankings of routes also reflect each AS’s export pol-
icy that specifies which routes that AS is willing to make avail-
able to each neighboring AS.

routesR in α. If there is no such routeRj in α then
fi outputs ∅. Observe that the reaction function fi
is deterministic, self-independent and historyless.
The interaction between nodes is as described in
Section 3.

The multitude of stable routing trees implies
global network instability. Theorem 4.1 implies
a recent result of Sami et al. [30], which shows
that the existence of two (or more) stable routing
trees to which BGP can (potentially) converge im-
plies that BGP is not safe. Importantly, the asyn-
chronous model of Section 3 is significantly more
restrictive than that of [30], so the result implied
by Thm. 4.1 is even stronger than that of Sami et
al.

Theorem B.5. [30] If there are multiple stable
routing trees in a network, then BGP is not safe on
that network.

Over the past few years, there have been several
proposals for BGP-based multipath routing proto-
cols, i.e., protocols that enable each node (AS) to
send traffic along multiple routes, e.g., R-BGP [22]
and Neighbor-Specific BGP [33] (NS-BGP). Un-
der both R-BGP and NS-BGP each computational
node’s actions are independent of its own past ac-
tions and are based on bounded recall of past inter-
action. Thus, Theorem 4.1 implies the following:

Theorem B.6. If there are multiple stable rout-
ing configurations in a network, then R-BGP is not
safe on that network.

Theorem B.7. If there are multiple stable routing
configurations in a network, then NS-BGP is not
safe on that network.

B.5 Congestion Control
The setting. We now present the model of con-
gestion control, studied in [13]. There is a net-
work of routers, represented by a directed graph
G = (V,E), where |E| ≥ 2, in which vertices
represent routers, and edges represent communi-
cation links. Each edge has capacity ce. There are
n source-target pairs of vertices (si, ti), termed
“connections”, that represent communicating pairs
of end-hosts. Each source-target pair (si, ti) is
connected via some fixed route,Ri. Each source si
transmits at a constant rate γi > 0.4 Routers have

4This is modeled via the addition of an edge e = (u, si) to
G, such that ce = γi, and u has no incoming edges.

12



queue management, or queueing, policies, that dic-
tate how traffic traversing a router’s outgoing edge
should be divided between the connections whose
routes traverse that edge. The network is asyn-
chronous and so routers’ queueing decisions can
be made simultaneously. See [13] for more details.

Computational nodes, action spaces The compu-
tational nodes are the edges. The action space
of each edge e intuitively consists of all possible
way to divide traffic going through e between the
connections whose routes traverse e. More for-
mally, for every edge e, let N(e) be the number
connections whose paths go through e. e’s action
space is then Ai = {x = (x1, . . . , xN(e))|xi ∈
RN(e)
≥0 and Σixi ≤ ce}.

Reaction functions, dynamics. Each edge e’s
reaction function, fe, models the queueing pol-
icy according to which e’s capacity is shared:
for every N(e)-tuple of nonnegative incoming
flows (w1, w2, . . . , wN(e)), fe outputs an action
(x1, . . . , xN(e)) ∈ Ai such that ∀i ∈ [N(e)] wi ≥
xi (a connection’s flow leaving the edge cannot
be bigger than that connection’s flow entering the
edge). The interaction between the edges is as de-
scribed in Section 3.

Multiple equilibria imply potential fluctuations
of connections’ throughputs. Godfrey et al. [13]
show that, while one might expect that if sources
transmit flow at a constant rate, flow will also be
received at a constant rate, this is not necessar-
ily the case. Indeed, Godfrey et al. present ex-
amples in which connections’ throughputs can po-
tentially fluctuate ad infinitum. Equilibria (which
correspond to stable states in Section 3), are global
configurations of connections’ flows on edges such
that connections’ incoming and outgoing flows on
each edge are consistent with the queue manage-
ment policy of the router controlling that edge. Us-
ing Theorem 4.1, we can obtain the following im-
possibility result:

Theorem B.8. If there are multiple capacity-
allocation equilibria in the network then dynamics
of congestion can potentially oscillate indefinitely.

C r-Convergence and Randomness

We now consider the implications for conver-
gence of two natural restrictions on schedules: r-
fairness and randomization.

C.1 Snakes in Boxes and r-Convergence.
Theorem 4.1 deals with convergence and not r-

convergence, and thus does not impose restrictions
on the number of consecutive time steps in which a
node can be nonactive. What happens if there is an
upper bound on this number, r? We now show that
if r < n− 1 then sometimes convergence of histo-
ryless and self-independent dynamics is achievable
even in the presence of multiple stable states (and
so our impossibility result breaks).

Example C.1. (a system that is convergent for
r < n − 1 but nonconvergent for r = n − 1)
There are n ≥ 2 nodes, 1, . . . , n, each with the
action space {x, y}. Nodes’ deterministic, history-
less and self-independent reaction functions are as
follows. ∀i ∈ [n], fi(xn−1) = x and fi always
outputs y otherwise. Observe that there exist two
stable states: xn and yn. Observe that if r = n− 1
then the following oscillation is possible. Initially,
only node 1’s action is y and all other nodes’ ac-
tions are x. Then, nodes 1 and 2 are activated and,
consequently, node 1’s action becomes x and node
2’s action becomes y. Next, nodes 2 and 3 are ac-
tivated, and thus 2’s action becomes x and 3’s ac-
tion becomes y. Then 3, 4 are activated, then 4, 5,
and so on (traversing all nodes over and over again
in cyclic order). This goes on indefinitely, never
reaching one of the two stable states. Observe that,
indeed, each node is activated at least once within
every sequence of n − 1 consecutive time steps.
We observe however, that if r < n − 1 then con-
vergence is guaranteed. To see this, observe that if
at some point in time there are at least two nodes
whose action is y, then convergence to yn is guar-
anteed. Clearly, if all nodes’ action is x then con-
vergence to xn is guaranteed. Thus, an oscillation
is possible only if, in each time step, exactly one
node’s action is y. Observe that, given our defi-
nition of nodes’ reaction functions, this can only
be if the activation sequence is (essentially) as de-
scribed above, i.e., exactly two nodes are activated
at a time. Observe also that this kind of activation
sequence is impossible for r < n− 1.

What about r > n? We use classical results
in combinatorics regarding the size of a “snake-in-
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the-box” in a hypercube [1] to show that some sys-
tems are r-convergent for exponentially-large r’s,
but are not convergent in general.

Theorem 6.2. Let n ∈ N+ be sufficiently large.
There exists a system G with n nodes, in which
each node i has two possible actions and each fi
is deterministic, historyless and self-independent,
such that

1. G is r-convergent for r ∈ Ω(2n);
2. G is not (r + 1)-convergent.

Proof. Let the action space of each of the n nodes
be {x, y}. Consider the possible action profiles
of nodes 3, . . . , n, i.e., the set {x, y}n−2. Ob-
serve that this set of actions can be regarded as the
(n − 2)-hypercube Qn−2, and thus can be visual-
ized as the graph whose vertices are indexed by the
binary (n−2)-tuples and such that two vertices are
adjacent iff the corresponding (n−2)-tuples differ
in exactly one coordinate.

Definition C.2. (chordless paths, snakes) A
chordless path in a hypercube Qn is a path
P = (v0, . . . , vw) such that for each vi, vj on
P , if vi and vj are neighbors in Qn then vj ∈
{vi−1, vi+1}. A snake in a hypercube is a simple
chordless cycle.

The following result is due to Abbot and
Katchalski [1].

Theorem C.3. [1] Let t ∈ N+ be sufficiently
large. Then, the size |S| of a maximal snake in
the z-hypercube Qz is at least λ × 2z for some
λ ≥ 0.3.

Hence, the size of a maximal snake in the Qn−2
hypercube is Ω(2n). Let S be a maximal snake in
{x, y}n−2. W.l.o.g., we can assume that xn−2 is
on S (otherwise we can rename nodes’ actions so
as to achieve this). Nodes deterministic, history-
less and self-independent are as follows:
• Node i ∈ {1, 2}: fi(x

n−1) = x; fi = y
otherwise.
• Node i ∈ {3, . . . , n}: if the actions of nodes

1 and 2 are both y then the action y is chosen,
i.e., fi(yy ∗ . . . ∗) = y; otherwise, fi only de-
pends on the actions of nodes in {3, . . . , n}
and therefore to describe fi it suffices to ori-
ent the edges of the hypercubeQn−2 (an edge
from one vertex to another vertex that differs

from it in the ith coordinate determines the
outcome of fi for both). This is done as fol-
lows: orient the edges in S so as to create
a cycle (in one of two possible ways); orient
edges between vertices not in S to vertices in
S towards the vertices in S; orient all other
edges arbitrarily.

Observation C.4. xn is the unique stable state of
the system.

Observation C.5. If, at some point in time, both
nodes 1 and 2’s actions are y then convergence to
the yn stable state is guaranteed.

Claim C.6. If there is an oscillation then there
must be infinitely many time steps in which the ac-
tions of nodes 2, . . . , n are xn−1.

Proof. Consider the case that the statement does
not hold. In that case, from some moment forth,
node 1 never sees the actions xn−1 and so will
constantly select the action y. Once that happens,
node 2 shall also not see the actions xn−1 and will
thereafter also select y. Convergence to yn is then
guaranteed.

We now show that the system is convergent for
r < |S|, but is nonconvergent if r = |S|. The
theorem follows.

Claim C.7. If r < |S| then convergence to the
stable state yn is guaranteed.

Proof. Observation C.6 establishes that in an os-
cillation there must be infinitely many time steps
in which the actions of nodes 2, . . . , n are xn−1.
Consider one such moment in time. Observe that
in the subsequent time steps nodes’ action profiles
will inevitably change as in S (given our definition
of nodes’ 3, . . . , n reaction functions). Thus, once
the action profile is no longer xn−1 there are at
least |S| − 1 time steps until it goes back to being
xn−1. Observe that if 1 and 2 are activated at some
point in the intermediate time steps (which is guar-
anteed as r < |S|) then the actions of both shall be
y and so convergence to yn is guaranteed.

Claim C.8. If r = |S| then an oscillation is possi-
ble.
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Proof. The oscillation is as follows. Start at xn

and activate both 1 and 2 (this will not change the
action profile). In the |S|−1 subsequent time steps
activate all nodes but 1 and 2 until xn is reached
again. Repeat ad infinitum.

This completes the proof of Thm. 6.2

We note that the construction in the proof of
Theorem 6.2 is such that there is a unique stable
state. We believe that the same ideas can be used
to prove the same result for systems with multiple
stable states but the exact way of doing this eludes
us at the moment, and is left as an open question.

Problem C.9. Prove that for every sufficiently
large n ∈ N+, there exists a system G with n
nodes, in which each node i has two possible ac-
tions and each fi is deterministic, historyless and
self-independent, such that

1. G is r-convergent for r ∈ Ω(2n);
2. G is not (r + 1)-convergent;
3. There are multiple stable states in G.

C.2 Does Random Choice (of Initial State
and Schedule) Help?

Theorem 4.1 tells us that a system with multiple
stable states is nonconvergent if the initial state and
the node-activation schedule are chosen adversar-
ially. Can we guarantee convergence if the initial
state and schedule are chosen at random?

Example C.10. (random choice of initial state
and schedule might not help) There are n
nodes, 1, . . . , n, and each node has action space
{x, y, z}. The (deterministic, historyless and self-
independent) reaction function of each node i ∈
{3, . . . , n} is such that fi(xn−1) = x; fi(zn−1) =
z; and fi = y for all other inputs. The (de-
terministic, historyless and self-independent) reac-
tion function of each node i ∈ {1, 2} is such that
fi(x

n−1) = x; fi(zn−1) = z; fi(xyn−2) = y;
fi(y

n−1) = x; and fi = y for all other inputs. Ob-
serve that there are exactly two stable states: xn

and zn. Observe also that if nodes’ actions in the
initial state do not contain at least n − 1 x’s, or at
least n− 1 z’s, then, from that moment forth, each
activated node in the set {3, . . . , n}will choose the
action y. Thus, eventually the actions of all nodes
in {3, . . . , n} shall be y, and so none of the two
stable states will be reached. Hence, there are 3n

possible initial states, such that only from 4n + 2
can a stable state be reached.

Example C.10 presents a system with multiple
stable states such that from most initial states all
possible choices of schedules do not result in a sta-
ble state. Hence, when choosing the initial state
uniformly at random the probability of landing on
a “good” initial state (in terms of convergence) is
exponentially small.

D Complexity of Asynchronous Dy-
namics

We now explore the communication complex-
ity and computational complexity of determin-
ing whether a system is convergent. We present
hardness results in both models of computation
even for the case of deterministic and history-
less adaptive heuristics. Our computational com-
plexity result shows that even if nodes’ reaction
functions can be succinctly represented, determin-
ing whether the system is convergent is PSPACE-
complete. This intractability result, alongside its
computational implications, implies that we can-
not hope to have short “witnesses” of guaran-
teed asynchronous convergence (unless PSPACE
⊆ NP).

D.1 Communication Complexity
We prove the following communication com-

plexity result, that shows that, in general, deter-
mining whether a system is convergent cannot be
done efficiently.

Theorem D.1. Determining if a system with n
nodes, each with 2 actions, is convergent requires
Ω(2n) bits. This holds even if all nodes have deter-
ministic, historyless and self-independent reaction
functions.

Proof. To prove our result we present a reduction
from the following well-known problem in com-
munication complexity theory.

2-party SET DISJOINTNESS: There are two par-
ties, Alice and Bob. Each party holds a subset of
{1, . . . , q}; Alice holds the subset EA and Bob
holds the subset EB . The objective is to determine
whether EA ∩ EB = ∅. The following is well
known.
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Theorem D.2. Determining whether EA ∩EB =
∅ requires (in the worst case) the communication of
Ω(q) bits. This lower bound applies to randomized
protocols with bounded 2-sided error and also to
nondeterministic protocols.

We now present a reduction from 2-party SET
DISJOINTNESS to the question of determining
whether a system with deterministic, historyless
and self-independent reaction functions is conver-
gent. Given an instance of SET-DISJOINTNESS
we construct a system with n nodes, each with two
actions, as follows (the relation between the pa-
rameter q in SET DISJOINTNESS and the num-
ber of nodes n is to be specified later). Let the
action space of each node be {x, y}. We now de-
fine the reaction functions of the nodes. Consider
the possible action profiles of nodes 3, . . . , n, i.e.,
the set {x, y}n−2. Observe that this set of actions
can be regarded as the (n − 2)-hypercube Qn−2,
and thus can be visualized as the graph whose ver-
tices are indexed by the binary (n − 2)-tuples and
such that two vertices are adjacent if and only if
the corresponding (n − 2)-tuples differ in exactly
one coordinate.

Definition D.3. (chordless paths, snakes) A
chordless path in a hypercube Qn is a path
P = (v0, . . . , vw) such that for each vi, vj on
P , if vi and vj are neighbors in Qn then vj ∈
{vi−1, vi+1}. A snake in a hypercube is a simple
chordless cycle.

The following result is due to Abbot and
Katchalski [1].

Theorem D.4. [1] Let t ∈ N+ be sufficiently
large. Then, the size |S| of a maximal snake in
the z-hypercube Qz is at least λ × 2z for some
λ ≥ 0.3.

Hence, the size of a maximal snake in the Qn−2
hypercube is Ω(2n). Let S be a maximal snake
in {x, y}n−2. We now show our reduction from
SET DISJOINTNESS with q = |S|. We identify
each element j ∈ {1 . . . , q} with a unique ver-
tex vj ∈ S. W.l.o.g we can assume that xn−2 is
on S (otherwise we can rename nodes’ actions to
achieve this). For ease of exposition we also as-
sume that yn−2 is not on S (getting rid of this as-
sumption is easy). Nodes’ reaction functions are
as follows.

• Node 1: If vj = (vj,1, . . . , vj,n−2) ∈ S
is a vertex that corresponds to an element
j ∈ EA, then f1(y, vj,1, . . . , vj,n−2) = x;
otherwise, f1 outputs y.
• Node 2: If vj = (vj,1, . . . , vj,n−2) ∈ S

is a vertex that corresponds to an element
j ∈ EB , then f2(y, vj,1, . . . , vj,n−2) = x;
otherwise, f2 outputs y.
• Node i ∈ {3, . . . , n}: if the actions of nodes

1 and 2 are not both x then the action y is cho-
sen; otherwise, fi only depends on actions of
nodes in {3, . . . , n} and therefore to describe
fi it suffices to orient the edges of the hyper-
cube Qn−2 (an edge from one vertex to an-
other vertex that differs from it in the ith coor-
dinate determines the outcome of fi for both).
This is done as follows: orient the edges in S
so as to create a cycle (in one of two possi-
ble ways); orient edges between vertices not
in S to vertices in S towards the vertices in S;
orient all other edges arbitrarily.

Observation D.5. yn is the unique stable state of
the system.

In our reduction Alice simulates node 1 (whose
reaction function is based on EA), Bob simulates
node 1 (whose reaction function is based on EB),
and one of the two parties simulates all other nodes
(whose reaction functions are not based on neither
EA nor EB). The theorem now follows from the
combination of the following claims:

Claim D.6. In an oscillation it must be that there
are infinitely many time steps in which both node 1
and 2’s actions are x.

Proof. By contradiction. Consider the case that
from some moment forth it is never the case that
both node 1 and 2’s actions are x. Observe that
from that time onwards the nodes 3, . . . , n will al-
ways choose the action y. Hence, after some time
has passed the actions of all nodes in {3, . . . , n}
will be y. Observe that whenever nodes 1 and 2
are activated thereafter they shall choose the ac-
tion y and so we have convergence to the stable
state yn.

Claim D.7. The system is not convergent iff EA ∩
EB 6= ∅.
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Proof. We know (Claim D.6) that if there is an os-
cillation then there are infinitely many time steps
in which both node 1 and 2’s actions are x. We
argue that this implies that there must be infinitely
many time steps in which both nodes select action
x simultaneously. Indeed, recall that node 1 only
chooses action x if node 2’s action is y, and vice
versa, and so if both nodes never choose x simul-
taneously, then it is never the case that both nodes’
actions are x at the same time step (a contradic-
tion). Now, when is it possible for both 1 and 2 to
choose x at the same time? Observe that this can
only be if the actions of the nodes in {3, . . . , n}
constitute an element that is in both EA and EB .
Hence, EA ∩ EB 6= ∅.

This completes the proof of Thm. D.1.

D.2 Computational Complexity
The above communication complexity hardness

result required the representation of the reaction
functions to (potentially) be exponentially long.
What if the reaction functions can be succinctly de-
scribed? We now present a strong computational
complexity hardness result for the case that each
reaction function fi is deterministic and history-
less, and is given explicitly in the form of a boolean
circuit (for each a ∈ A the circuit outputs fi(a)).

Theorem 7.2. Determining if a system with n
nodes, each with a deterministic and history-
less reaction function, is convergent is PSPACE-
complete.

Proof. Our proof is based on the proof of Fab-
rikant and Papadimitriou [9] that BGP safety is
PSPACE-complete. Importantly, the result in [9]
does not imply Theorem 7.2 since [9] only consid-
ers dynamics in which nodes are activated one at
a time. We present a reduction from the following
problem.

STRING NONTERMINATION: The input is a
function g : Γt → Γ ∪ {halt}, for some alpha-
bet Γ, given in the form of a boolean circuit. The
objective is to determine whether there exists an
initial string T = (T0, . . . , Tt−1) ∈ Γt such that
the following procedure does not halt.

1. i:=0
2. While g(T ) 6= halt do

• Ti := g(T )
• i := (i+ 1) modulu t

STRING NONTERMINATION is closely related
to STRING HALTING from [9] and is also
PSPACE-complete. We now present a reduction
from STRING NONTERMINATION to the ques-
tion of determining whether a system with deter-
ministic and historyless reaction functions is con-
vergent.

We construct a system with n = t+1 nodes. The
node set is divided into t “index nodes” 0, . . . , t−1
and a single “counter node” x. The action space of
each index node is Γ∪{halt} and the action space
of the counter node is {0, . . . , t−1}×(Γ∪{halt}).
Let a = (a0, . . . , at−1, ax) be an action profile of
the nodes, where ax = (j, γ) is the action of the
counter node. We now define the deterministic and
historyless reaction functions of the nodes:
• The reaction function of index node i ∈
{0, . . . , t − 1}, fi: if γ = halt, then fi(a) =
halt; otherwise, if j = i, and aj 6= γ, then
fi(a) = γ; otherwise, fi(a) = ai.
• The reaction function of the counter node, fx:

if γ = halt, then fx(a) = ax; if aj = γ, then
fi(a) = ((j + 1) modulu t, g(a0, . . . , at−1);
otherwise fi(a) = ax.

The theorem now follows from the following
claims that, in turn, follow from our construction:

Claim D.8. (halt, . . . , halt) is the unique stable
state of the system.

Proof. Observe that (halt, . . . , halt) is indeed a
stable state of the system. The uniqueness of this
stable state is proven via a simple case-by-case
analysis.

Claim D.9. If there exists an initial string T =
(T0, . . . , Tt−1) for which the procedure does not
terminate then there exists an initial state from
which the system does not converge to the stable
state (halt, . . . , halt) regardless of the schedule
chosen.

Proof. Consider the evolution of the system from
the initial state in which the action of index node
i is Ti and the action of the counter node is
(0, g(T )).

Claim D.10. If there does not exist an initial string
T for which the procedure does not terminate then
the system is convergent.
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Proof. Observe that if there is an initial state a =
(a0, . . . , at−1, ax) and a fair schedule for which
the system does not converge to the unique stable
state then the procedure does not halt for the initial
string T = (a0, . . . , at−1).

This completes the proof of Thm. 7.2.

Proving the above PSPACE-completeness result
for the case self-independent reaction functions
seems challenging.

Problem D.11. Prove that determining if a sys-
tem with n nodes, each with a deterministic self-
independent and historyless reaction function, is
convergent is PSPACE-complete.

E Some Basic Observations Regard-
ing No-Regret Dynamics

Regret minimization is fundamental to learning
theory. The basic setting is as follows. There is a
space of m actions (e.g., possible routes to work),
which we identify with the set [m] = {1, . . . ,m}.
In each time step t ∈ {1, . . .}, an adversary se-
lects a profit function pt : [m] → [0, 1] (e.g.,
how fast traffic is flowing along each route), and
the (randomized) algorithm chooses a distribution
Dt over the elements in [m]. When choosing
Dt the algorithm can only base its decision on
the profit functions p1, . . . , pt−1, and not on pt
(that is revealed only after the algorithm makes
its decision). The algorithm’s gain at time t is
gt = Σj∈[m] Dt(j)pt(j), and its accumulated gain
at time t is Σt

i=1 gt . Regret analysis is useful
for designing adaptive algorithms that fair well in
such uncertain environments. The motivation be-
hind regret analysis is ensuring that, over time, the
algorithm performs at least as well in retrospect as
some alternative “simple” algorithm.

We now informally present the three main no-
tions of regret (see [3] for a thorough explana-
tion): (1) External regret compares the algorithm’s
performance to that of simple algorithms that se-
lect the exact same action in each time step (e.g.,
“you should have always taken Broadway, and
never chosen other routes”). (2) Internal regret
and swap regret analysis compares the gain from
the sequence of actions actually chosen to that de-
rived from replacing every occurrence of an action
iwith another action j (e.g., “every time you chose

Broadway you should have taken 7th Avenue in-
stead). While internal regret analysis allows only
one action to be replaced by another, swap regret
analysis considers all mappings from [m] to [m].
The algorithm has no (external/internal/swap) re-
gret if the gap between the algorithm’s gain and
the gain from the best alternative policy allowed
vanishes with time.

Regret minimization has strong connections to
game-theoretic solution concepts. If each player
in a repeated game executes a no-regret algorithm
when selecting strategies, then convergence to an
equilibrium is guaranteed in a variety of interesting
contexts. The notion of convergence, and the kind
of equilibrium reached, vary, and are dependent on
the restrictions imposed on the game and on the
type of regret being minimized (e.g., in zero-sum
games, no-external-regret algorithms are guaran-
teed to approach or exceed the minimax value of
the game; in general games, if all players mini-
mize swap regret, then the empirical distribution
of joint players’ actions converges to a correlated
equilibrium, etc.). (See [3] and references therein).
Importantly, these results are all proven within a
model of interaction in which each player selects a
strategy in each and every time step.

We make the following simple observation.
Consider a model in which the adversary not only
chooses the profit functions but also has the power
not to allow the algorithm to select a new distri-
bution over actions in some time steps. That is,
the adversary also selects a schedule σ such that
∀t ∈ N+, σ(t) ∈ {0, 1}, where 0 and 1 indicate
whether the algorithm is not activated, or activated,
respectively. We restrict the schedule to be r-fair,
in the sense that the schedule chosen must be such
that the algorithm is activated at least once in every
r consecutive time steps. If the algorithm is acti-
vated at time t and not activated again until time
t+β then it holds that ∀s ∈ {t+1, . . . , t+β−1},
Ds = Dt (the algorithm cannot change its proba-
bility distribution over actions while not activated).
We observe that if an algorithm has no regret in
the above setting (for all three notions of regret),
then it has no regret in this setting as well. To see
this, simply observe that if we regard each batch
of time steps in which the algorithms is not acti-
vated as one “meta time step”, then this new set-
ting is equivalent to the traditional setting (with
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pt : [m]→ [0, r] for all t ∈ N+).
This observation, while simple, is not uninter-

esting, as it implies that all regret-based results for
repeated games continue to hold even if players’
order of activation is asynchronous (see Section 3
for a formal exposition of asynchronous interac-
tion), so long as the schedule of player activations
is r-fair for some r ∈ N+. We mention two impli-
cations of this observation.

Observation E.1. When all players in a zero-sum
game use no-external-regret algorithms then ap-
proaching or exceeding the minimax value of the
game is guaranteed.

Observation E.2. When all players in a (general)
game use no-swap-regret algorithms the empirical
distribution of joint players’ actions converges to
a correlated equilibrium of the game.

Problem E.3. Give examples of repeated games
for which there exists a schedule of player acti-
vations that is not r-fair for any r ∈ N+ for
which regret-minimizing dynamics do not con-
verge to an equilibrium (for different notions of re-
gret/convergence/equilibria).

Problem E.4. When is convergence of no-regret
dynamics to an equilibrium guaranteed (for dif-
ferent notions of regret/convergence/equilibria) for
all r-fair schedules for non-fixed r’s, that is, if
when r is a function of t?

F An Axiomatic Approach
We now use (a slight variation of) the framework

of Taubenfeld, which he used to study resilient
consensus protocols [31], to prove Thm. 4.1. We
first (Sec. F.2) define runs as sequences of events;
unlike Taubenfeld, we allow infinite runs. A proto-
col is then a collection of runs (which must satisfy
some natural conditions like closure under taking
prefixes). We then define colorings of runs (which
correspond to outcomes that can be reached by ex-
tending a run in various ways) and define the IoD
property.

The proof of Thm. 4.1 proceeds in two steps.
First, we show that any protocol that satis-
fies IoD has some (fair, as formalized below),
non-terminating activation sequence. We then
show that protocols that satisfy the hypotheses of
Thm. 4.1 also satisfy IoD.

F.1 Proof Sketch
Proof Sketch. The proof follows the axiomatic
approach of Taubenfeld [31] in defining asyn-
chronous protocols in which states are colored by
sets of colors; the set of colors assigned to a state
must be a superset of the set of colors assigned to
any state that is reachable (in the protocol) from
it. We then show that any such protocol that sat-
isfies a certain pair of properties (which we call
Independence of Decisions or IoD) and that has a
polychromatic state must have a non-terminating
fair run in which all states are polychromatic.

For protocols with 1-recall, self-independence,
and stationarity, we consider (in order to reach
a contradiction) protocols that are guaranteed to
converge. Each starting state is thus guaranteed to
reach only stable states; we then color each state
according to the outcomes that are reachable from
that state. We show that, under this coloring, such
protocols satisfy IoD and that, as in consensus pro-
tocols, the existence of multiple stable states im-
plies the existence of a polychromatic state. The
non-terminating, polychromatic, fair run that is
guaranteed to exist is, in the context, exactly the
non-convergent protocol run claimed by the the-
orem statement. We then show that this may be
extended to non-stationary protocols with k-recall
(for k > 1).

F.2 Events, Runs, and Protocols
Events are the atomic actions that are used to

build runs of a protocol. Each event is associ-
ated with one or more principals; these should be
thought of as the principals who might be affected
by the event (e.g., as sender or receiver of a mes-
sage), with the other principals unable to see the
event. We start with the following definition.

Definition F.1 (Events and runs). There is a set
E whose elements are called events; we assume a
finite set of possible events (although there will be
no restrictions on how often any event may occur).
There is a set P of principals; each event has an
associated set S ⊆ P , and if S is the set associated
to e ∈ E, we will write eS .

There is a setR whose elements are called runs;
each run is a (possibly infinite) sequence of events.
We say that event e is enabled at run x if the con-
catenation 〈x; e〉 (i.e., the sequence of events that
is x followed by the single event e) is also a run.

19



(We will require thatR be prefix-closed in the pro-
tocols we consider below.)

The definition of a protocol will also make use
of a couple types of relationship between runs; our
intuition for these relationships continues to view
eP as meaning that event e affects the setP of prin-
cipals. From this intuitive perspective, two runs
are equivalent with respect to a set S of principals
exactly when their respective subsequences that af-
fect the principals in S are identical. We also say
that one run includes another whenever, from the
perspective of every principal (i.e., restricting to
the events that affect that principal), the included
run is a prefix of the including run. Note that this
does not mean that the sequence of events in the in-
cluded run is a prefix of the sequence of events in
the including run—events that affect disjoint sets
of principals can be reordered without affecting the
inclusion relationship.

Definition F.2 (Run equivalence and inclusion).
For a run x and S ⊆ P , we let xS denote the
subsequence (preserving order and multiplicity) of
events eP in x for which P ∩ S 6= ∅. We say that
x and y are equivalent with respect to S, and we
write x[S]y, if xS = yS . We say that y includes
x if for every node i, the restriction of x to those
events eP with i ∈ P is a prefix of the restriction
of y to such events.

Our definitions of xS and x[S]y generalize def-
initions given by Taubenfeld [31] for |S| = 1—
allowing us to consider events that are seen by
multiple principals—but other than this and the
allowance of infinite runs, the definitions we use
in this section are the ones he used. Importantly,
however, we do not use the resilience property that
Taubenfeld used.

Finally, we have the formal definition of an
asynchronous protocol. This is a collection of runs
that is closed under taking prefixes and only al-
lows for finitely many (possibly 0) choices of a
next event to extend the run. It also satisfies the
property (P2 below) that, if a run can be extended
by an event that affects exactly the set S of prin-
cipals, then any run that includes this run and that
is equivalent to the first run with respect to S (so
that only principals not in S see events that they
don’t see in the first run) can also be extended by
the same event.

Definition F.3 (Asynchronous protocol). An asyn-
chronous protocol (or just a protocol) is a collec-
tion of runs that satisfies the following three con-
ditions.
P1 Every prefix of a run is a run.
P2 Let 〈x; eS〉 and y be runs. If y includes x, and

if x[S]y, then 〈y; eS〉 is also a run.
P3 Only finitely many events are enabled at a run.

F.3 Fairness, Coloring, and Decisions
We start by recalling the definition of a fair se-

quence [31]; as usual, we are concerned with the
behavior of fair runs. We also introduce the notion
of a fair extension, which we will use to construct
fair infinite runs.

Definition F.4 (Fair sequence, fair extension). We
define a fair sequence to be a sequence of events
such that: every finite prefix of the sequence is a
run; and, if the sequence is finite, then no event
is enabled at the sequence, while if the sequence
is infinite, then every event that is enabled at all
but finitely many prefixes of the sequence appears
infinitely often in the sequence. We define a fair
extension of a (not necessarily fair) sequence x to
be a finite sequence e1, e2, . . . , ek of events such
that e1 is enabled at x, e2 is enabled at 〈x; e1〉, etc.

We also assign a set of “colors” to each sequence
of events subject to the conditions below. As usual,
the colors assigned to a sequence will correspond
to the possible protocol outcomes that might be
reached by extending the sequence.

Definition F.5 (Asynchronous, C-chromatic pro-
tocol). Given a set C (called the set of colors), we
will assign sets of colors to sequences; this assign-
ment may be a partial function. For a set C, we
will say that a protocol is C-chromatic if it satis-
fies the following properties.
C1 For each c ∈ C, there is a protocol run of color

{c}.
C2 For each protocol run x of color C ′ ⊆ C, and

for each c ∈ C ′, there is an extension of x
that has color {c}.

C3 If y includes x and x has color C ′, then the
color of y is a subset of C ′.

We say that a fair sequence is polychromatic if the
set of colors assigned to it has more than one ele-
ment.
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Finally, a C-chromatic protocol is called a deci-
sion protocol if it also satisfies the following prop-
erty:
D Every fair sequence has a finite monochromatic

prefix, i.e., a prefix whose color is {c} for
some c ∈ C.

F.4 Independence of Decisions (IoD)
We turn now to the key (two-part) condition that

we use to prove our impossibility results.

Definition F.6 (Independence of Decisions (IoD)).
A protocol satisfies Independence of Decisions
(IoD) if, whenever
• a run x is polychromatic and
• there is some event e is enabled at x and 〈x; e〉

is monochromatic of color {c},
then

1. for every e′ 6= e that is enabled at x, the color
of 〈x; e′〉 contains c, and

2. for every e′ 6= e that is enabled at x, if
〈〈x; e′〉 ; e〉 is monochromatic, then its color
is also {c}.

Figure 1 illustrates the two conditions that form
IoD. Both parts of the figure include the polychro-
matic run x that can be extended to 〈x; e〉 with
monochromatic color {c}; the color of x necessar-
ily includes c. The left part of the figure illustrates
condition 1, and the right part of the figure illus-
trates condition 2. The dashed arrow indicates a se-
quence of possibly many events, while the solid ar-
rows indicate single events. The labels on a node in
the figure indicate what is assumed/required about
the set that colors the node.

Condition 1 essentially says that, if an event e
decides the outcome of the protocol, then no other
event can rule out the outcome that e produced.
The name “Independence of Decisions” derives
from condition 2, which essentially says that, if
event e decides the outcome of the protocol both
before and after event e′, then the decision that is
made is independent of whether e′ happens imme-
diately before or after e.

In working with IoD-satisfying protocols, the
following lemma will be useful.

Lemma F.7. If IoD holds, then for any two events
e and e′ that are enabled at a run x, if both 〈x; e〉
and 〈x; e′〉 are monochromatic, then those colors
are the same.

Proof. By IoD, the color of 〈x; e′〉 must contain
the color of 〈x; e〉, and both of these sets are sin-
gletons.

F.5 IoD-Satisfying Protocols Don’t Always
Converge

To show that IoD-satisfying protocols don’t al-
ways converge, we proceed in two steps: first, we
show (Lemma F.8) that a polychromatic sequence
can be fairly extended (in the sense of . . . ) to an-
other polychromatic sequence; second, we use that
lemma to show (Thm. F.9) . . . .

Lemma F.8 (The Fair-Extension Lemma). In a
polychromatic decision protocol that satisfies IoD,
if a run x is polychromatic, then x can be extended
by a fair extension to another polychromatic run.

Proof. Assume that, for some C ′, there is a run x
of color C ′ that cannot be fairly extended to an-
other polychromatic run. Because |C ′| > 1, there
must be some event that is enabled at x; if not, we
would contradict D. Figure 2 illustrates this (and
the arguments in the rest of the proof below).

Consider the extensions of x that use as many
distinct events as possible and that are polychro-
matic, and pick one of these y that minimizes the
number of events that are enabled at every prefix
of y (after x has already been executed) but that
do not appear in y. If y contains no events (illus-
trated in the top left of Fig. 2), then every event e
that is enabled at x is such that 〈x; e〉 is monochro-
matic. By Lemma F.7, these singletons must all be
the same color {c}; however, this means that for
c′ ∈ C ′ \ {c} 6= ∅, x does not have any extensions
whose color is c′, contradicting C2.

If y contains one or more events (illustrated in
the top right and bottom of Fig. 2), then (because
it is not a fair extension of x) there is at least one
event e that is enabled everywhere in the exten-
sion, including at 〈x;y〉, but that does not appear
anywhere in y. Because y was chosen instead of
〈y; e〉 (or another extension with the same number
of distinct events), the color of 〈〈x;y〉 ; e〉 must
be a singleton {c}. Because 〈x;y〉 is polychro-
matic, it has some extension z that is (eventually)
monochromatic with color {d} 6= {c}; let e′ be the
first event in this extension. Because IoD is satis-
fied, the color of 〈〈x;y〉 ; e′〉 also contains c and is
thus polychromatic. The event e is again enabled

21



e e’

x

{c} {c,...}

{...}

 

e’

d=c {d}

{c}

{...}

{...}

e

e

x

Figure 1: Illustration of the two conditions of IoD.

e’

x

{c}

e

{c}
C’={c,d,...}

C’
z

{c,...}
{c,d,...}

{d}

C’={c,d,...}

C’

<x;y>

e

e{c}

e’

e’

{c} e

e

<x;y>

C’

C’={c,d,...}

{c,d,...}
{c}

{d}{c}

e
e

e

z

Figure 2: Illustration of proof of Lem. F.8.

22



here (else 〈〈x;y〉 ; e′〉 would have been chosen in-
stead of y). If 〈〈〈x;y〉 ; e′〉 ; e〉 is not monochro-
matic (top right of Fig. 2), then it is a polychro-
matic extension of x that uses more distinct events
than does y, a contradiction. If 〈〈〈x;y〉 ; e′〉 ; e〉
is monochromatic (bottom of Fig. 2), then by IoD
it has color {c}. We may then inductively move
along the extension z; after each additional event
from z is appended to the run, the resulting run is
polychromatic (its color set must include d, but if
it is monochromatic it must have color {c}) and
again enables e (by our choice of y). Again by
our choice of y, appending e to this run must pro-
duce a monochromatic run, which (by IoD) must
have color {c}. Proceeding along z, we must then
eventually reach a polychromatic run at which e
is enabled (and produces a monochromatic run of
color {c}) and which also enables a different event
that yields a monochromatic run of color {d}. This
contradicts Lem. F.7.

Theorem F.9. Any IoD-satisfying asynchronous
protocol with a polychromatic initial state has a
fair sequence that starts at this initial state and
never reaches a decision, i.e., it has a fair sequence
that does not have a monochromatic prefix.

Proof. Start with the empty (polychromatic) run
and iteratively apply the fair-extension lemma to
obtain an infinite polychromatic sequence. If an
event e is enabled at all but finitely many prefixes
in this sequence, then in all but finitely many of
the fair extensions, e is enabled at every step of
the extension. Because these extensions are fair
(in the sense of Def. F.4), e is activated in each of
these (infinitely many) extensions and so appears
infinitely often in the sequence, which is thus fair.

F.6 1-Recall, Stationary, Self-Independent
Protocols Need Not Converge

We first recall the statement of Thm. 4.1. We
then show that 1-recall, historyless protocols sat-
isfy IoD when colored as in Def. F.10. Theo-
rem F.9 then implies that such protocols do not
always converge; it immediately follows that this
also applies to bounded-recall (and not just 1-
recall) protocols.

Theorem 4.1. If each node i has bounded recall,
and each reaction function fi is self-independent

and stationary, then the existence of two stable
states implies that the computational network is
not safe.

Definition F.10 (Stable coloring). In a protocol
defined as in Sec. 3, the stable coloring of proto-
col states is the coloring that has a distinct color for
each stable state and that colors each state in a run
with the set of colors corresponding to the stable
states that are reachable from that state.

We model the dynamics of a 1-recall, history-
less protocol as follows. There are two types of
actions: the application of nodes’ reaction func-
tions, where ei is the action of node i acting as
dictated by fi, and a “reveal” actionW . The nodes
scheduled to react in the first timestep do so se-
quentially, but these actions are not yet visible to
the other nodes (so that nodes after the first one
in the sequence are still reacting to the initial state
and not to the actions performed earlier in the se-
quence). Once all the scheduled nodes have re-
acted, the W action is performed; this reveals the
newly performed actions to all the other nodes in
the network. The nodes that are scheduled to re-
act at the next timestep then act in sequence, fol-
lowed by another W action, and so on. This con-
verts the simultaneous-action model of Sec. 3 to
one in which actions are performed sequentially;
we will use this “act-and-tell” model in the rest of
the proof. We note that all actions are enabled at
every step (so that, e.g., ei can be taken multiple
times betweenW actions; however, this is indistin-
guishable from a single ei action because the extra
occurrences are not seen by other nodes, and they
do not affect i’s actions, which are governed by a
historyless reaction function).

Once we cast the dynamics of 1-recall, history-
less protocols in the act-and-tell model, the follow-
ing lemma will be useful.

Lemma F.11 (Color equalities). In a 1-recall, his-
toryless protocol (in the act-and-tell model):

1. For every run pair of runs x,y and every
i ∈ [n], the color of 〈〈x; eiWeiW 〉 ;y〉 is the
same as the color of 〈〈x;WeiW 〉 ;y〉.

2. For every run pair of runs x,y and every
i, j ∈ [n], the color of 〈〈x; eiej〉 ;y〉 is the
same as the color of 〈〈x; ejei〉 ;y〉.

Informally, the first color equality says that, if all
updates are announced and then i activates and
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then all updates are revealed again (i’s new out-
put being the only new one), it makes no difference
whether or not i was activated immediately before
the first reveal action. The second color equality
says that, as long as there are no intervening re-
veal event, the order in which nodes compute their
outputs does not matter (because they do not have
access to their neighbors’ new outputs until the re-
veal event).

Proof. For the first color equality, because the pro-
tocol is self-independent, the first occurrence of ei
(after x) in 〈〈x; eiWeiW 〉 ;y〉 does not affect the
second occurrence of ei. Because the protocol has
1-recall, the later events (in y) are also unaffected.

The second color equality is immediate from the
definition of the act-and-tell model.

Lemma F.12. If a protocol is 1-recall and histo-
ryless, then the protocol (with the stable coloring)
satisfies IoD.

Proof. Color each state in the protocol’s runs ac-
cording to the stable states that can be reached
from it. Assume x is a polychromatic run (with
color C ′) and that some event e is such that 〈x; e〉
is monochromatic (with color {c}). Let e′ be an-
other event (recall that all events are always en-
abled). If e and e′ are two distinct node events
ei and ej (i 6= j), respectively, then the color of
〈〈x; ej〉 ; ei〉 is the color of 〈〈x; ei〉 ; ej〉 and thus
the (monochromatic) color of 〈x; ei〉, i.e., {c}. If
e and e′ are both W or are the same node event ei,
then the claim is trivial.

If e = ei and e′ = W (as illustrated in the left of
Fig. 3), then we may extend 〈x; ei〉 by WeiW to
obtain a run whose color is again {c}. By the sec-
ond color equality, this is also the color of the ex-
tension of 〈x;W 〉 by eiW , so the color of 〈x;W 〉
contains c and if the extension of 〈x;W 〉 by ei is
monochromatic, its color must be {c} as well. If,
on the other hand, e = W and e′ = ei (as illus-
trated in the right of Fig. 3), we may extend 〈x;W 〉
by eiW and 〈x; ei〉 by WeiW to obtain runs of
color {c}; so the color of 〈x; ei〉 must contain c
and, arguing as before, if the intermediate exten-
sion 〈〈x; ei〉 ;W 〉 is monochromatic, its color must
also be {c}.

Lemma F.13. If a 1-recall, historyless computa-
tion that always converges can, for different start-
ing states, converge to different stable states then

there is some input from which the computation
can reach multiple stable states. In particular, un-
der the stable coloring, there is a polychromatic
state.

Proof. Assume there are (under the stable color-
ing) two different monochromatic input states for
the computation, that the inputs differ only at one
node v, and that the computation always converges
(i.e., for every fair schedule) on both input states.
Consider a fair schedule that activates v first and
then proceeds arbitrarily. Because the inputs to
v’s reaction function are the same in each case, af-
ter the first step in each computation, the result-
ing two networks have the same node states. This
means that the computations will subsequently un-
fold in the same way, in particular producing iden-
tical outputs.

If a historyless computation that always con-
verges can produce two different outputs, then it-
erated application of the above argument leads to
a contradiction unless there is a polychromatic ini-
tial state.

Proof of 1-recall, stationary part of Thm. 4.1.
Consider a protocol with 1-recall, self indepen-
dence, and stationarity, and that has two different
stable states. If there is some non-convergent run
of the protocol, then the network is not safe (as
claimed). Now assume that all runs converge; we
will show that this leads to a contradiction. Color
all states in the protocol’s runs according to the
stable coloring (Def. F.10). Lemma F.13 implies
that there is a polychromatic state. Because, by
Lem. F.12, the IoD is satisfied, we may apply
Thm. F.9. In this context (with the stable coloring),
this implies that there is an infinite run in which
every state can reach at least two stable states; in
particular, the run does not converge.

F.7 Extension to Non-stationary Protocols
We may extend our results to non-stationary

protocols as well.

Theorem F.14. If each node i has 1-recall, the ac-
tion spaces are all finite, and each reaction func-
tion fi is self-independent but not necessarily sta-
tionary, then the existence of two stable states im-
plies that the computational network is not safe.

Proof. In this context, a stable state is a vector of
actions and a time t such that, after t, the action
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Figure 3: Illustrations of the arguments in the proof of Lem. F.12.

vector is a fixed point of the reaction functions. Let
T be the largest such t over all the (finitely many)
stable states (and ensure that T is at least k for gen-
eralizing to k-recall). Assume that the protocol is
in fact safe; this means that, under the stable col-
oring, every state gets at least one color. If there
are only monochromatic states, consider the states
at time T ; we view two of these states as adjacent
if they differ only in the action (or action history
for the generalization to k-recall) of one node. Be-
cause the protocol is self-independent, that node
may be activated (k times if necessary) to produce
the same state. In particular, this means that ad-
jacent states must have the same monochromatic
color. Because (among he states at time T ) there is
a path (following state adjacencies) from any one
state to any other, only one stable state is possible,
contradicting the hypotheses of the theorem.

Considering the proof of Lem. F.12, we see that
the number of timesteps required to traverse each
of the subfigures in Fig. 3 does not depend on
which path (left or right) through the subfigure we
take. In particular, this means that the reaction
functions are not affected by the choice of path.
Furthermore, the non-W actions in each subfigure
only involve a single node i; the final action per-
formed by i along each path occurs after one W
action has been performed (after x), so these fi-

nal actions are the same (because the timesteps at
which they occur are the same, as are the actions
of all the other nodes in the network).

F.8 Extension to Bounded-Recall Protocols
If we allow k-recall for k > 1, we must make

a few straightforward adjustments to the proofs
above. Generalizing the argument used in the
proof of the color equalities (Lem. F.11), we may
prove an analogue of these for k-recall; in particu-
lar, we replace the first color equality by an equal-
ity between the colors of

〈〈
x; eiW (eiW )k

〉
;y

〉
and

〈〈
x;W (eiW )k

〉
;y

〉
. This leads to the ana-

logue of Lem. F.12 for bounded-recall protocols;
as in Lem. F.12, the two possible paths through
each subfigure (in the k-recall analogue of Fig. 3)
require the same number of timesteps, so non-
stationarity is not a problem.

Considering adjacent states as those that differ
only in the actions of one node (at some point in its
depth-k history), we may construct a path from any
monochromatic initial state to any other such state.
Because the one node that differs between two ad-
jacent states may be (fairly) activated k times to
start the computation, two monochromatic adja-
cent states must have the same color; as in the 1-
recall case, the existence of two stable states thus
implies the existence of a polychromatic state.

25



G Implications for Resilient Decision
Protocols

The consensus problem is fundamental to dis-
tributed computing research. We give a brief de-
scription of it here, and we refer the reader to [31]
for a detailed explanation of the model. We then
show how to apply our general result to this set-
ting. This allows us to show that the impossibil-
ity result in [12], which shows that no there is no
protocol that solves the consensus problem, can be
obtained as a corollary of Thm. F.9.

G.1 The Consensus Problem

Processes and consensus. There are N ≥ 2
processes 1, . . . , N , each process i with an initial
value xi ∈ {0, 1}. The processes communicate
with each other via messages. The objective is
for all non-faulty processes to eventually agree on
some value x ∈ {0, 1}, such that x = xi for some
i ∈ [N ] (that is, the value that has been decided
must match the initial value of some process). No
computational limitations whatsoever are imposed
on the processes. The difficulty in reaching an
agreement (consensus) lies elsewhere: the network
is asynchronous, and so there is no upper bound on
the length of time processes may take to receive,
process and respond to an incoming message. In-
tuitively, it is therefore impossible to tell whether a
process has failed, or is simply taking a long time.

Messages and the message buffer. Messages are
pairs of the form (p,m), where p is the process the
message is intended for, and m is the contents of
the message. Messages are stored in an abstract
data structure called the message buffer. The mes-
sage buffer is a multiset of messages, i.e., more
than one of any pair (p,m) is allowed, and sup-
ports two operations: (1) send(p,m): places a mes-
sage in the message buffer. (2) receive(p): returns
a message for processor p (and removes it from
the message buffer) or the special value, that has
no effects. If there are several messages for p in
the message buffer then receive(p) returns one of
them at random.

Configurations and system evolution. A config-
uration is defined by the following two factors: (1)
the internal state of all of the processors (the cur-
rent step in the protocol that they are executing, the
contents of their memory), and (2) the contents of

the message buffer. The system moves from one
configuration to the next by a step which consists
of a process p performing receive(p) and moving
to another internal state. Therefore, the only way
that the system state may evolve is by some proces-
sor receiving a message (or null) from the message
buffer. Each step is therefore uniquely defined by
the message that is received (possibly) and the pro-
cess that received it.

Executions and failures. From any initial starting
state of the system, defined by the initial values
of the processes, there are many different possible
ways for the system to evolve (as the receive(p) op-
eration is non-deterministic). We say that a proto-
col solves consensus if the objective is achieved for
every possible execution. Processes are allowed
to fail according to the fail-stop model, that is,
processes that fail do so by ceasing to work cor-
rectly. Hence, in each execution, non-faulty pro-
cesses participate in infinitely many steps (presum-
ably eventually just receiving once the algorithm
has finished its work), while processes that stop
participating in an execution at some point are con-
sidered faulty. We are concerned with the handling
of (at most) a single faulty process. Hence, an exe-
cution is admissible if at most one process is faulty.

G.2 Impossibility of Resilient Consensus
We now show how this fits into the formal

framework of Ap. F. The events are (as in [12])
messages annotated with the intended recipient
(e.g., mi). In addition to the axioms of Ap. F,
we also assume that the protocol satisfies the fol-
lowing resiliency property, which we adapt from
Taubenfeld [31]; we call such a protocol a resilient
consensus protocol. (Intuitively, this property en-
sures that if node i fails, the other nodes will still
reach a decision.)
Res For each run x and node i, there is a

monochromatic run y that extends x such that
x [i]y.

We show that resilient consensus protocols sat-
isfy IoD. Unsurprisingly, the proof draws on ideas
of Fischer, Lynch, and Paterson.

Lemma G.1. Resilient consensus protocols satisfy
IoD.

Proof. Assume x is a polychromatic run of a
resilient consensus protocol and that 〈x;mi〉 is
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monochromatic (of color {c}). If e′ = m′j for
j 6= i, then e = mi and e′ commute (because
the messages are processed by different nodes)
and the IoD conditions are satisfied. (In particu-
lar, 〈〈x; e〉 ; e′〉 and 〈〈x; e′〉 ; e〉 both have the same
monochromatic color.)

If e′ = m′i, then consider a sequence σ from
x that reaches a monochromatic run and that does
not involve i (the existence of σ is guaranteed by
Res); this is illustrated in Fig. 4. Because σ doesn’t
involve i, it must commute with e and e′; in partic-
ular, the color of the monochromatic run reachable
by applying σ to 〈x; e〉 is the same as the color
of the run 〈〈x;σ〉 ; e〉. Thus σ must produce the
same color {c} that e does in extending x. On
the other hand, we may apply this same argument
to e′ to see that 〈〈x; e′〉 ;σ〉 must also have the
same color as 〈x;σ〉, so the color of 〈x; e′〉 con-
tains the color of 〈x; e〉. The remaining question
is whether 〈〈x; e′〉 ; e〉 can be monochromatic of
a different color than 〈x; e〉. However, the color
(if it is monochromatic) of 〈〈〈x; e′〉 ; e〉 ;σ〉 must
be the same (because σ does not involve i) as the
color of 〈〈〈x; e′〉 ;σ〉 ; e〉, which we have already
established is the color of 〈x; e〉; thus, 〈〈x; e′〉 ; e〉
cannot be monochromatic of a different color.

Using Thm. F.9 and the fact that there must be
a polychromatic initial configuration for the pro-
tocol (because it can reach multiple outcomes, as
shown in [12]), we obtain from this lemma the fol-
lowing celebrated result of Fischer, Lynch, and Pa-
terson [12].

Theorem G.2 (Fischer–Lynch–Paterson[12]).
There is no always-terminating protocol that
solves the consensus problem.
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