
Combinatorial Problems on Strings with Applications to
Protein Folding

Alantha Newman
MIT Laboratory for Computer Science

Cambridge, MA 02139, USA
alantha@theory.lcs.mit.edu

Matthias Ruhl
IBM Almaden

San Jose, CA 95120, USA
ruhl@almaden.ibm.com

Abstract

We consider the problem of protein folding in the HP model on the 3D square lattice. This problem is
combinatorially equivalent to folding a string of 0’s and 1’s so that the string forms a self-avoiding walk
on the 3D square lattice and the number of adjacent pairs of 1’s is maximized. The previously best-known
approximation algorithm for this problem has a guarantee of3

8 = :375 and was given by Hart and Istrail
[HI95] almost a decade ago.

In this paper, we first present another3
8-approximation algorithm for the 3D folding problem based on

different geometric ideas. This algorithm improves on the absolute approximation guarantee of Hart and
Istrail’s algorithm. We then show a connection between the 3D folding problem and a basic combinatorial
problem on binary strings, which may be of independent interest. Given a binary string infa;bg�, we
want to find a long subsequence of the string in which every sequence of consecutivea’s is followed by at
least as many consecutiveb’s. We show a non-trivial lower-bound on the existence of such subsequences.
Building upon this result, we obtain a(:439�O(δ(S)=jSj))-approximation algorithm, whereδ(S) is the
number of transitions in the input stringS from sequences of 1’s in odd positions to sequences of 1’s in even
positions. Combining this with an(:375+Ω(δ(S)=jSj))-approximation algorithm, we obtain an algorithm
with a slightly improved approximation ratio of at least .37501 for the 3D folding problem. All of our
algorithms run in linear time.

1 Introduction

We consider the problem of protein folding in the HP model on the three-dimensional (3D) square lattice. This
problem is combinatorially equivalent to folding a string of 0’s and 1’s, i.e. placing adjacent elements of the
string on adjacent lattice points, so that the string forms aself-avoiding walk on the 3D lattice and the number
of adjacent pairs of 1’s is maximized. Figure 1 shows an example of such a 3D folding of a binary string.

Background. The widely-studied HP model was introduced by Dill [Dil85, Dil90]. A protein is a chain of
amino acid residues. In the HP model, each amino acid residueis classified as an H (hydrophobic or non-polar)
or a P (hydrophilic or polar). An optimal configuration for a string of amino acids in this model is one that
has the lowest energy, which is achieved when the maximum number of H-H contacts (i.e. pairs of H’s that
are adjacent in the folding but not in the string) are present. Theprotein foldingproblem in the hydrophobic-
hydrophilic (HP) model on the 3D square lattice is combinatorially equivalent to the problem we just described:
we are given a string of P’s and H’s (instead of 0’s and 1’s) andwe wish to maximize the number of adjacent
pairs of H’s (instead of 1’s). An informative discussion on the HP model and its applicability to protein folding
is given by Hart and Istrail [HI95].

1

lower plane

upper plane

Figure 1: Two views of a folding for the string 10101010000000101010101001010101010101010101, where
white circles represent 0’s and black circles represent 1’s. This folding yields 26 contacts and occupies twox-y
planes in the 3D lattice.

Related Work. Berger and Leighton showed that this problem is NP-hard [BL98]. On the positive side, Hart
and Istrail gave a simple38-approximation algorithm [HI95]. Folding in the HP model has also been studied for
the 2D square lattice. This variant is also NP-hard [CGP+98]. Hart and Istrail gave a14-approximation algorithm
for this problem [HI95], which was recently improved to a1

3-approximation algorithm [Ala02]. Improving on
the approximation guarantee of3

8 for the 3D problem has been an open problem for almost a decade.

Our Contribution. In this paper, we first present a new 3D folding algorithm (Section 2.1). Our algorithm
produces a folding with3

8OPT�Θ(1) contacts. This improves on the absolute approximation guarantee of
3
8OPT�Θ(pOPT) given by Hart and Istrail’s algorithm [HI95].

We then show that if the input string is of a certain special form, we can modify our algorithm to produce
3
4OPT�O(δ(S)) contacts, whereδ(S) is the number of transitions in the input stringSfrom sequences of 1’s in
odd positions in the string to sequences of 1’s in even positions. This is described in Sections 2.2 and 2.3.

In Section 3, we reduce the general 3D folding problem to the special case above, yielding a folding algo-
rithm producing:439�OPT�O(δ(S)) contacts. This reduction is based on a simple combinatorialproblem for
strings, which may be of independent interest.

We call a binary string fromfa;bg� block-monotoneif every maximal sequence of consecutivea’s is im-
mediately followed by a block of at least as manyb’s. Suppose we are given a binary string with the following
property: every suffix of the string (i.e. every sequence of consecutive elements that ends with the last element
of the string) contains at least as manyb’s asa’s. What is the longest block-monotone subsequence of the string?
It is easy to see that we can find a block-monotone subsequencewith length at least half the length of the string
by removing all thea’s. In Section 3.2, we show that there always is a block-monotone subsequence containing
at least a(2�p2)� :5857 fraction of the string’s elements.

Finally, we combine our folding algorithm with a simple, buttedious, case-based algorithm producing:375�
OPT+Ω(δ(S)) contacts that is described in Appendix B. We therefore remove the dependence onδ(S) in the
approximation guarantee and obtain an algorithm with a slightly improved approximation guarantee of:37501
for the 3D folding problem.

2 A New 3D Folding Algorithm

Let S2 f0;1gn represent the string we want to fold. We refer to each 0 or 1 as an element. We letsi represent
the ith element ofS, i.e. S= s1s2 : : :sn. We refer to a 1 in an odd position (i.e.si = 1 with odd indexi) as
an odd-1 and a 1 in an even position (i.e.si = 1 with even indexi) as aneven-1. An odd or evenlabel is
determined by an element’s position in the input string and does not change at any stage of the algorithm. We

2

will useO[S℄ andE [S℄ to denote the number of odd-1’s and even-1’s, respectively,in a stringS. For example,
for S= 10111100101101, we haveO[S℄ = 5 andE [S℄ = 4.

Note that because the square lattice is bipartite, the odd/even label determines the set of lattice points on
which an element can be placed. For example, suppose we divide the lattice points into two bipartite sets, one
red and one blue. If the first element of the string is placed ona red lattice point, then all the elements in odd
positions in the string will be placed on red lattice points and all the elements in even positions in the string will
be placed on blue lattice points.

A contact between two elements placed on the square lattice can therefore only occur between an odd-1 and
an even-1. Each lattice point is adjacent to six neighboringlattice points. In any folding, if an odd-1 is placed
on a particular lattice point, two neighboring lattice points will be occupied by preceding and succeeding (even)
elements of the string unless the element is one of the two endpoints of the string. Therefore, there are four
remaining adjacent lattice points with which contacts can be formed. Thus, an upper bound on the size of an
optimal solution is:

OPT � 4minfO[S℄;E [S℄g+2: (1)

This upper bound was introduced by Hart and Istrail [HI95]. Their algorithm for the 3D folding problem
produces a folding with3

8OPT�Θ(pOPT) contacts in the worst case. We will now present an algorithm
that produces a folding with at least3

8OPT�Θ(1) contacts in the worst case, thereby improving theabsolute
approximation guarantee.

Our algorithm is based ondiagonal folds. The algorithm guarantees that contacts form on and betweentwo
adjacent 2D planes. Each point in the 3D lattice has an(x;y;z)-coordinate, wherex;y, andz are integers. We
will fold the string so that all contacts occur on or between the planesz= 0 andz= 1.

2.1 The Diagonal Folding Algorithm

DIAGONAL FOLDING ALGORITHM

Input: a binary stringS.

Output: a folding of the stringS.

1. Letk= minfO[S℄;E [S℄g.
2. Divide S into two strings such thatSO contains at least half the odd-1’s andSE contains at least

half the even-1’s. We can do this by finding a point on the string such that half of the odd-1’s are
on one side of this point and half the odd-1’s are on the other side. One of these sides contains at
least half of the even-1’s. We call this sideSE and the remaining sideSO. Then we replace all the
even-1’s inSO with 0’s and replace all the odd-1’s inSE with 0’s.

3. Place the first odd-1 inSO on lattice point(1;1;1) and the next odd-1 inSO on lattice point(2;2;1)
and so on. For the firstk4 of the odd-1’s inSO, place theith odd-1 on lattice point(i; i;1). Then
place the(k=4+1) odd-1 on lattice point(k=4�1;k=4+1;1). For the firstk4�1 of the even-1’s in
SE , place theith even-1 on lattice point(i; i+1;1). Use the dimensionsz> 1 to place the strings of
0’s between consecutive odd-1’s inSO and the strings of 0’s between consecutive even-1’s inSE .

4. Place the(k=4+2) odd-1 inSO on lattice point(k=4�2;k=4+1;0). Then place the(k=4+ i) odd-
1 in SO on lattice point(k=4� i +1;k=4� i +2;0). Place the(k=4) even-1 inSE on lattice point(k=4�1;k=4�1;0). Place the(k=4+ i) even-1 inSE on lattice point(k=4� i�1;k=4� i�1;0).
Use the dimensionsz< 0 to place the strings of 0’s between consecutive 1’s inSO or SE .

3

z=0

z=1

x

y z

Figure 2: This figure illustrates Steps 2 and 3 of the DIAGONAL FOLDING ALGORITHM. In the folding resulting
from this algorithm, all contacts are formed on or between the 2D planesz= 0 (lower) andz= 1 (upper).

Lemma 1. TheDIAGONAL FOLDING ALGORITHM produces a folding with at least38OPT�9 contacts.

Proof: Without loss of generality, we assume thatk = O[S℄. Consider theith odd-1 from the first half ofSO.
It is placed on lattice point(i; i;1). In Step 2, this odd-1 forms contacts with the even-1’s on thelattice points(i; i +1;1) and(i�1; i;1). In Step 3, it forms a contact with the lattice point(i; i;0). Thus, each odd-1 from the
first half of SO has three contacts. Now consider an odd-1 with an indexk=4+ i, wherei ranges from 3 andk4.
Each such odd-1 is placed on lattice point(k=4� i+1;k=4� i+2;0). In Step 3, it forms contacts with even-1’s
on the lattice points(k=4� i +1;k=4� i +1;0) and(k=4� i +2;k=4� i +2;0). In Step 2, it forms a contact
with the even-1 on lattice point(k=4� i +1;k=4+ i +2;1). Thus, it also has 3 contacts. By (1), we see that an
upper bound on the number of contacts isOPT� 4O[S℄ = 4k+2. We obtain 3 contacts fork2�3 of the odd-1’s.
Thus, the number of contacts in the resulting folding is at least 3

8OPT�9.

2.2 Relating Folding to String Properties

As the number of 1’s placed on the diagonal in the DIAGONAL FOLDING ALGORITHM (i.e. 1
2 minfO[S℄;E [S℄g)

increases, the length of the resulting folding increases ina direction parallel to the linex = y. The height
of the folding may also increase depending on the maximum distance between consecutive odd-1’s inSO or
consecutive even-1’s inSE . However, regardless of the input string, the resulting folding has the same constant
width in the direction parallel to the linex = �y. In other words, although the algorithm produces a three-
dimensional folding, with increasingk andn, the folding may increase in length and height but not in width. We
will explain how we can use this unused space to improve the algorithm for a special class of strings.

By consecutive odd-1’swe mean odd-1’s that are not separated by even-1’s and similarly for consecutive
even-1’s. For example, in the string 1010001100011, there is a string of 3 consecutive odd-1’s followed by two
consecutive even-1’s followed by an odd-1.

Definition 2. A string SO is calledodd-monotoneif every maximal sequence of consecutive even-1’s is preceded
by at least as many consecutive odd-1’s. A string SE is called even-monotoneif every maximal sequence of

4

consecutive odd-1’s is preceded by at least as many consecutive even-1’s.

For example, the string 10101100011 is odd-monotone and thestring 0100010101101101011 is even-
monotone. We define aswitchas follows:

Definition 3. A switch is an odd-1 followed by an even-1 (separated only by 0’s). We denote the number of
switches in S byδ(S).

For example, for the stringS= 100100010101101101011,δ(S) = 2 since there are two transitions (under-
lined) from a maximal sequence of consecutive odd-1’s to a sequence of even-1’s.

Suppose we can divide a given stringS into SO and SE such thatSO is odd-monotone andSE is even-
monotone andO[SO℄ = E [SE ℄ andE [SO℄ = O[SE ℄. Additionally, suppose the number ofswitchesin S is δ(S).
Then we have the following theorem:

Theorem 4. Let S= SOSE and let SO be an odd-monotone string and SE be an even-monotone string such thatO[SO℄ = E [SE ℄ andE [SO℄ =O[SE ℄. Then there is a linear time algorithm that folds these two strings achieving
3
4OPT�16δ(S)�O(1) contacts.

The main idea behind the proof of Theorem 4 is that we partition the elements inSO andSE into main-
diagonal elementsandoff-diagonal elements. We then use the DIAGONAL FOLDING ALGORITHM to fold the
main-diagonal elements along the directionx= y and the off-diagonal elements into branches along the direction
x = �y (see Figures 3 and 4). All 1’s will receive 3 contacts except for a constant number of 1’s for each off-
diagonal branch, which correspond to switches in the strings SO andSE , and a constant number at the ends of
the main diagonal. This yields the claimed number of3

4OPT�O(δ(S))�O(1) contacts.
To precisely definemain-diagonalandoff-diagonalelements, we need some additional notation. We use

0k and 1k (for some integerk� 0) to refer to the strings consisting ofk 0’s andk 1’s, respectively. By writing
S= Ek for some integerk, we mean thatS is of the form

S= 02i0+1102i1+1102i2+1102i3+1 : : :02ik�1+110ik

for integersi j � 0, and all the 1’s inSare even-1’s. Likewise, we writeS= Ok to refer a string of the same form
where all 1’s are odd-1’s, i.e.

S= 102i1+1102i2+1102i3+1 : : :02ik�1+110ik:
So we can express any stringSE asSE = Ea1Ob1Ea2Ob2 : : :EakObk for k = δ(SE) and integersai andbi . If SE
is even-monotone, thenai � bi for all i. We can express any stringSO asSO = Oc1Ed1Oc2Ed2 : : :Oc`Ed` for`= δ(SO) and integersci anddi . If SO is even-monotone, thenci � di for all i.

Definition 5. For an even-monotone string SE =Ea1Ob1Ea2Ob2 : : :EakObk, the first set of ai�bi even-1’s in each
block, i.e. the elements Ea1�b1Ea2�b2 : : :Eak�bk, are themain-diagonal elementsand the remaining elements
Eb1Ob1Eb2Ob2 : : :EbkObk are theoff-diagonal elementsin SE .

Definition 6. For an odd-monotone string SO = Oc1Ed1Oc2Ed2 : : :Oc`Ed`, the first set of ci �di odd-1’s in each
block, i.e. the elements Oc1�d1Oc2�d2 : : :Oc`�d` , are themain-diagonal elementsand the remaining elements
Od1Ed1Od2Ed2 : : :Od`Ed` are theoff-diagonal elementsin SO.

For the algorithm, it will be useful to haveSE andSO in a special form. Two sets of off-diagonal elements
in SO, Odi Edi andOdi+1Edi+1, are separated byci+1�di+1 odd-1’s that are main-diagonal elements. We want
them to be separated by a number of main-diagonal elements that is a multiple of 8. This will guarantee that the
off-diagonals used to fold the off-diagonal elements are regularly spaced so that none of the off-diagonal folds
interfere with each other. We will use the following simple lemma.

5

Lemma 7. For any odd-monotone string SO it is possible to change at most8δ(SO) 1’s to 0’s so that the
resulting string S0 is of the form

S0 = Oa1Eb1Oa2Eb2 : : :Oak;
where ai �bi is a positive multiple of 8 for1� i < k.

Proof: Suppose thatSO initially is of the form

SO = Oα1Eβ1Oα2Eβ2 : : :Oα` :
First, we convert allEβi with βi � 8 into 0’s. This will merge some maximal sequences of odd-1’s, yielding a
string of the form

Oa1Eγ1Oa2Eγ2 : : :Oak

with k� `. For eachi, we then convert(γi �ai)mod 8 even-1’s ofEγi into 0’s, yielding a string of the desired
form.

We note that there is an analogous version of Lemma 7 for even-monotone strings. With this preparation,
we can now state our folding algorithm.

2.3 A Modified Diagonal Folding Algorithm

OFF-DIAGONAL FOLDING ALGORITHM

Input: A binary stringS= SOSE , such thatSO is odd-monotone,SE is even-monotone,O[SO℄ = E [SE ℄ andE [SO℄ =O[SE ℄.
Output: A folding of the stringS.

1. Change at most 8δ(S) 1’s to 0’s inSO andSE to yield the form specified in Lemma 7.

2. Run DIAGONAL FOLDING ALGORITHM on main-diagonalelements along the direction
x= y and change from planez= 0 to z= 1 when the length of the main diagonal equals
4� bO[SO℄=8+2. See Figure 3.

3. Run DIAGONAL FOLDING ALGORITHM on theoff-diagonalelements along the direction
x=�y. Theoff-diagonalelements attached to themain-diagonalelements on the plane
z= 1 are folded along the diagonalsx=�y+8k. Theoff-diagonalelements attached to
themain-diagonalelements on the planez= 0 are folding along the diagonals
x=�y+8k+4. See Figure 4.

Proof of Theorem 4: By the correctness of the DIAGONAL FOLDING ALGORITHM, it suffices to consider
whether some off-diagonals intersect each other. The first step of the algorithm ensures that all off-diagonal
branches are spread apart by multiples of 8 on the main-diagonal. Thus, neighboring branches do not intersect.
Furthermore, branches off the upper (z= 1) plane do not intersect with branches off the lower (z= 0) place due
to Step 3. Changing the plane when the main diagonal has a length � 2 mod 4 ensures that branches on the
upper plane will follow diagonalsx = �y+8k for somek, and branches on the lower plane follow diagonals
x = �y+ 8k+ 4 for somek. Thus, branches are at least 4 lattice points apart, showingthat the folding is
non-intersecting.

It remains to analyze the number of contacts produced by the folding. The DIAGONAL FOLDING ALGO-
RITHM generally produces 3 contacts for every 1. So it suffices to bound the number of 1’s inS that do not
receive 3 contacts. The following is an exhaustive list: (i)the up to 8δ(S) 1’s changed into 0’s in Step 1; (ii)

6

a constant number of 1’s at the ends of the main-diagonal (cf.Lemma 1) and because we fold over at a length� 2 mod 4 in Step 2; (iii) in Step 3, for each of the at mostδ(S) off-diagonal branches: at most 3 1’s at the
end of each branch (by Lemma 1), and at most 5 1’s to connect theoff-diagonal branch to the main-diagonal
(see Figure 4). So in summary, up to 16δ(S) +O(1) 1’s might not receive three contacts, so that we obtain
3O[S℄�16δ(S)�O(1)� 3

4OPT�16δ(S)�O(1) contacts.

z=0

z=1

Figure 3: Folding themain-diagonalelements in Step 2 of the OFF-DIAGONAL FOLDING ALGORITHM. The
solid lines represent themain-diagonalelements and the dashed lines represent theoff-diagonalelements.

7

z=0

z=1

Figure 4: Folding theoff-diagonalelements in Step 3 of the OFF-DIAGONAL FOLDING ALGORITHM. The
main-diagonalelements are represented by the dashed lines on the main diagonal. Theoff-diagonalelements
are represents by the solid lines on the off-diagonals. Thisfigure shows how the repetitions of the DIAGONAL

FOLDING ALGORITHM on the off-diagonals interleave and thus so not interfere with each other. The closeup
gives an example of how the off-diagonal folds are connectedto the main diagonal.

8

3 Combinatorial Problems on Strings

3.1 Solving the General Folding Problem

In this section, we will prove a combinatorial theorem aboutbinary strings, which will allow us to use the
algorithm from Section 2.3 to solve the general 3D string folding problem. The binary strings that we consider
in this section are from the setfa;bg�. Given a string to fold inf0;1g�, we map it to a corresponding string
in fa;bg� by representing each odd-1 by ana and each even-1 by ab. For example, the string 10100101
would be mapped to the stringaabb. We will use theorems about the strings infa;bg� to prove theorems about
subsequencesof the strings inf0;1g� that we want to fold.

The combinatorial problem that we want to solve is the following: given a stringS2 f0;1g� such thatE [S℄ = O[S℄, we want to divide the string into two substrings such that one contains an even-monotone subse-
quence and the other contains an odd-monotone subsequence and the number of 1’s contained in these monotone
subsequences is as large as possible, since the 1’s in these subsequences are the 1’s that will have contacts in the
folding algorithm in Section 2.3.

Given a stringS2 f0;1g�, we will treat it as a loopL(S) by attaching its endpoints. In other words, we are
only going to consider foldings of the string that place the first and last element ofSon adjacent lattice points.
(If Shas odd length, we can add a 0 to the end of the string and fold this string instead ofS; a folding of this
augmented string will yield a valid folding of the original string.)

Lemma 8. Let L(S) 2 f0;1g� be a loop, and k= minfO[S℄;E [S℄g. Then it is possible to change some 1’s of
L(S) to 0’s such that there is a partition L(S) = SOSE with SO and SE odd- and even-monotone, respectively,O[SO℄ = E [SE ℄, E [SO℄ =O[SE ℄, andO[SO℄+O[SE ℄� (2�p2)k. Furthermore, this partition can be constructed
in linear time.

This Lemma implies that every 3D folding instance can be converted into the case required by Theorem 4
by converting not too many some 1’s into 0’s. We get the following Corollary.

Corollary 9. There is a linear time algorithm for the 3D folding problem that generates at least:439�OPT�
16δ(S)�O(1) contacts.

Proof: Given an input stringS, first obtainSO andSE with Lemma 8. Note that the number of switches does
not increase fromSto SOSE . Since the number of 1’s is reduced by a factor of(2�p2), the optimal number of
contacts might also have been decreased by that factor. Applying Theorem 4 toSO andSE therefore leads to a
folding with at least34(2�p2)OPT�16δ(S)�O(1)> :439�OPT�16δ(S)�O(1) contacts.

Proof (Lemma 8): We can generateSO andSE by cuttingL(S) in two places. First, we will use Lemma 2.2
from [Ala02]. This lemma states that given a loopL(S), there is an elementp in L(S) such that if we start at
point p and move around the loop in the clockwise direction, we see atleast as many odd-1’s as even-1’s and if
we move around the loop in the counter-clockwise direction starting at pointp, we see at least as many even-1’s
as odd-1’s.

We choose such a pointp to be the first point where we cut the loopL(S). We choose the second point
simply by ensuring that both resulting substrings contain the same number of 1’s. Now we have two substrings
SO andSE . The substringSO has the property that every suffix (or prefix–depending on howyou view the string)
has at least as many odd-1’s as even-1’s andSE has the property that every suffix has at least as many even-1’s
as odd-1’s.

Now we want to change the minimum number of 1’s to 0’s inSO andSE so that the resulting substrings
are odd-monotone and even-monotone, respectively, andO[SO℄ = E [SE ℄ andE [SO℄ = O[SE ℄, since these are
the conditions required by Theorem 4. Consider a binary string S0 corresponding to the subsequence of 1’s in
SE in which each odd-1 is replaced by ana and each even-1 is replaced by ab. The problem of changing the
minimum number of 1’s to 0’s inSE so that the resulting string is odd-monotone is equivalent to finding the

9

longestblock-monotonesubsequence in the stringS0. A subsequence isblock-monotoneif every block ofa’s is
immediately followed by a block of at least as manyb’s. (For the stringSO, we have the same problem stated
with a’s andb’s inverted: we want to find the longest subsequence in which every block ofb’s is immediately
followed by a block of at least as manya’s.)

The rest of this section is devoted to solving the following combinatorial problem: Given a binary string infa;bg� in which every suffix contains at least as manyb’s asa’s, what is the longest block-monotone subse-
quence? For example, suppose we are given the stringaaaaaabbbbabbbab, some block-monotone subsequences
are:aaaabbbbabbbabandaaaaaabbbbbbbab. If the number ofa’s andb’s are equal, it is clear that we can al-
ways find a block-monotone subsequence containing at least half the elements by just choosing the subsequence
of all b’s. Can we always find a block-monotone subsequence of more than half the elements? We will prove in
Theorem 15 that we can always find a block-monotone subsequence of with at least(2�p2)n elements where
n is the number of elements in the input string and the input string contains an equal number ofa’s andb’s.

By Lemma 17, we can furthermore choose these subsequences such thatO[SO℄ = E [SE ℄ andE [SO℄ =O[SE ℄
after the transformation. This completes the proof of the Lemma.

3.2 Block-Monotone Subsequences

In this section, we will prove a combinatorial theorem aboutbinary strings. LetSbe a binary string,S2 fa;bgn.
We will use the following definitions.

Definition 10. A block is a maximal substring of consecutive a’s or b’s in a binary string.

For example, the stringbbbbaaabbhas two blocks ofb’s (of length four and two) and one block ofa’s (of length
three).

Definition 11. A binary string isblock-monotoneif every block of a’s is immediately followed by a block of at
least as many b’s.

For example, the stringbaaabbbaaabbbbis block-monotone. The stringaabbaaabbis not block-monotone.

Definition 12. Let na(S) and nb(S) denote the number of a’s and b’s, respectively, in a string S.

Given a binary stringS, our goal is to find a long block-monotone subsequence. It is easy to see thatS
contains a block-monotone subsequence of length at leastnb(S) since the subsequence ofb’s is trivially block-
monotone. It is also easy to see that there are strings for which we cannot do better than this. For example,
consider the stringbiai . In this string, there is no block monotone subsequence thatcontains any of thea’s. Thus,
we will put a stronger condition on the binary strings in which we want to find block-monotone subsequences.

Notation 13. α := 1� 1p
2
� 0:2929

Definition 14. A binary string S= s1 : : :sn is suffix-monotoneif for every suffixSk = sk+1 : : :sn, 0� k < n, we
have nb(Sk)� α � (n�k).

For example if every suffix ofShas at least as manyb’s asa’s, the string is suffix-monotone. (If in addition,
Salso has the same number ofa’s andb’s, thenScorresponds to a string in the set of well-balanced parentheses.)
We will give an algorithm to prove the following theorem.

Theorem 15. Suppose S is a suffix-monotone string of length n. Then there is a block-monotone subsequence
of S with length at least n�na(S)(2p2�2). Furthermore, such a subsequence can be found in linear time.

If na(S) � 1
2n andS is suffix-monotone, then Theorem 15 states that we can find a block-monotone sub-

sequence of length at least(2�p
2) > :5857 the length ofS. Now we will give an algorithm for finding a

block-monotone subsequence of a suffix-monotone string.

10

BLOCK-MONOTONE ALGORITHM

Input: a suffix-monotone stringS= s1 : : :sn

Output: a block-monotone subsequence ofS

Let Si = s1 : : :si ; Si = si+1 : : :sn for i : 1< i � n

1. If s1 = b:

(i) Find the largest indexk such thatSk is a block ofb’s and outputSk

2. If s1 = a:

(i) Find the smallest indexk such that:

nb(Sk)� αk

(ii) Let S0̀ = s̀ +1 : : :sk for ` : 1� ` < k

(iii) Find ` such that:

na(S̀)� nb(S0̀)
na(S̀)+nb(S0̀) is maximized

(iv) Remove all theb’s from S̀ and outputS̀

(v) Remove all thea’s from S0̀ and outputS0̀
3. Repeat algorithm on stringSk

l k

Figure 5: These three figures give a pictorial representation of a binary stringS. An up edge corresponds to ana
and a down edge corresponds to ab. In the first figure,k denotes the point chosen in Step 2 (i) and` denotes the
point chosen in Step 2 (iii). In the second figure, the crossed-out edges represent the elements that are removed
from the string. The third figure shows the string after removing the crossed-out elements.

Because of space limitations, we put the proofs of Lemma 16 and Lemma 17 in Appendix A.

Lemma 16. For a suffix-monotone string S of length n, theBLOCK MONOTONEALGORITHM outputs a block-
monotone subsequence of length at least n�na(S)(2p2�2).
Lemma 17. We can modify the block-monotone subsequence S0 output by theBLOCK-MONOTONE ALGO-
RITHM so that

na(S0) = ��
1� 1p

2

�
na(S)� and nb(S0) = �

n�� 3p
2
�1

�
na(S)� :

11

4 Conclusion

We conclude the paper by stating an approximation guaranteeindependent ofδ(S). We give a case-based
algorithm whose approximation guarantee is3

8OPT+O(δ(S)). This algorithm is based on the following idea:
SupposeSO andSE contain half the odd-1’s and half the even-1’s, respectively. We use the DIAGONAL FOLDING

ALGORITHM, but for each switch inSO, we use different local foldings to obtain an additional (constant)
number of contacts, e.g. we use an even-1 in the switch to obtain another contact with an odd-1 placed on the
main diagonal. The different cases for this algorithm are detailed in Appendix B, which contains the proof of
following lemma.

Lemma 18. We can modify theDIAGONAL FOLDING ALGORITHM to create a folding with3
8OPT+ δ(S)

256 �
O(1) contacts for any binary string S.

Corollary 19. There is a polynomial time algorithm for the 3D folding problem that creates a folding with:37501�OPT�O(1) contacts for any binary string S.

Proof: We run the algorithms referred to in Corollary 9 and Lemma 18,outputting the better of the two foldings.
Their output guarantees are lowest if they are equal, i.e.3

8OPT+ δ(S)
256 = :439OPT�16δ(S), which happens for

δ(S)� :04OPT, yielding an approximation guarantee of slightly more than:3750156.

So we have obtained an algorithm for protein folding in the HPmodel on the 3D square lattice that slightly im-
proves on the previously best-known algorithm to yield an approximation guarantee of .37501. The contribution
of this paper is not so much the actual gain in the approximation ratio, but the demonstration that the previously
best-known algorithm is not optimal, even though there havebeen no improvements for almost a decade. We
also explore different approaches to this problem, i.e. foldings that mainly exploit properties of the string.

In closing, we discuss the problem of finding block-monotonesubsequences of binary strings. One way to
improve the approximation ratio of our algorithm is to improve the guarantee given by Theorem 15. We note that
we only apply Theorem 15 to binary strings in which every suffix contains at least as manyb’s asa’s–a stronger
condition that our definition of block-monotone. Theorem 15implies that such strings contain block-monotone
subsequences of at least:5857 their length. We conjecture that the real lower bound isactually 2

3 their length.
Currently, the best upper bound we are aware of is the string:

aaaaabaaaabaaabaababbbaaabaaabababaababbbbbbbbbbbbbb

whose longest block-monotone subsequence isa18b19, which is 37
52 � 71:15% of the length of the original string.

Acknowledgments

We thank Santosh Vempala for many helpful discussions and suggestions and comments on the presentation.
We thank Edith Newman for drawing Figures 2, 3, and 4.

References

[Ala02] Alantha Newman. A New Algorithm for Protein Foldingin the HP Model. InProceedings of the 13th ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2002.

[BL98] Bonnie Berger and Tom Leighton. Protein Folding in the Hydrophobic-Hydrophilic (HP) Model is NP-
Complete. InProceedings of the 2nd Conference on Computational Molecular Biology (RECOMB), 1998.

[CGP+98] P. Crescenzi, D. Goldman, C. Papadimitriou, A. Piccolboni, and M. Yannakakis. On the Complexity of Protein
Folding. InProceedings of the 2nd Conference on Computational Molecular Biology (RECOMB), 1998.

[Dil85] K. A. Dill. Theory for the Folding and Stability of Globular Proteins.Biochemistry, 24:1501, 1985.

12

[Dil90] K. A. Dill. Dominant Forces in Protein Folding.Biochemistry, 29:7133–7155, 1990.

[HI95] William E. Hart and Sorin Istrail. Fast Protein Folding in the Hydrophobic-hydrophilic Model within Three-
eighths of Optimal. InProceedings of the 27th ACM Symposium on the Theory of Computing (STOC), 1995.

A Appendix: Proofs

Proof of Lemma 16: Note that in Step 2 (i), there always is an indexk with the required property because the
definition ofsuffix-monotoneimplies it is true fork= n. Similarly, `= 1 satisfiesna(S̀) = 1� nb(S0̀), thus there
always is aǹ of the required form in Step 2 (iii). Finally, the algorithm outputs a block-monotone subsequence
because whenever it outputs a subsequence ofa’s (in Step 2 (iv)), it also outputs at least as manyb’s (in Step 2
(v)). This shows that the algorithm is correct.

In the algorithm, we modify the input string by removinga’s andb’s. However, in order to analyze the
algorithm, we will first consider a version of the problem in which we can remove a fraction of eacha or b.
Note that the algorithm can be used for the continuous problem as well as the discrete problem. We will show
that in the continuous case, the resulting string has a certain minimum length and then show that in the discrete
case, the resulting string has at least this length.

Since we will cut the string fractionally, let us consider each element as a unit-length interval. For example,
if si = a, thensi is a unit-length segment labeled ‘a’ and if si = b, thensi is a unit-length segment labeled ‘b’.
Thus, we will view the stringSas a string of unit-lengtha- andb-segments. Supposes1 = 0 andSk is a prefix
of the input suffix-monotone stringSsuch thatnb(Sk)� αk andnb(Sj)< α j for all j : 1� j < k as in Step 2 (i)
of the algorithm.

Let t denote the point in the string at whichnb(St) = αt. The pointt can be viewed as a fractional, rather
than integral, index of the stringS. Note that there always exists a pointt at whichnb(St) = αt because the string
S is suffix-monotone, which implies that at least anα fraction ofS is b’s. Note thatt may be a non-integer real
number betweenk�1 andk and that the stringSt may end with a fractional part of ab.

Let g(t) = t�bt. Let y be the point in the stringSt such thatna(Sy) = nb(Sy). (We defineSy as the substring
starting at positiony up to positiont). If we could keep fractional portions of the string, we could keep all the
(fractions of)a-intervals inSy and all the (fractions of)b-intervals inSy. Note that at least a(1�α) fraction of
the elements inSy area’s, and at least anα-fraction of the elements inSy areb’s. So for the fractional problem,
the best place to cut the string is at the point`= βt where:

β(1�α) = (1�β)α =) β = α

Thus, we keep a 2α(1�α) fraction of each substring considered in Step 2. Next, we aregoing to compute the
total length of the output of our algorithm. LetT1 represent the set of substrings (i.e. blocks ofb’s) that are
output unmodified during the first step of the algorithm and let jT1j represent their total length. LetT2 represent
the set of substrings which are modified during the second step of the algorithm and letjT2j represent their total
length. Letm be the length of the output of the algorithm. Then we have the following equations:

n = jT1j+ jT2j
na(S) = (1�α)jT2j

m = jT1j+2α(1�α)jT2j
Solving these three equations, we find that the total fraction of the string that remains is:

m = �
2α+ 1

α�1

�
na(S)+n:

This expression is maximized forα = 1�1=p2, which is why we assignedα this value. Substituting, we get:

m= n� (2p2�2)na(S): (2)

13

Thus, in the case where we can remove fractions of thea’s andb’s, the algorithm results in a string whose length
is indicated in Equation (2).

In the integral case, we will show that the algorithm resultsin a string whose length is at least as large as the
fraction in Equation (2). If the pointy in St is in ab-interval, then we can keep the wholeb-interval. In other
words, in addition to keeping thea’s in Sy and theb’s in Sy, we are also keeping the fraction of theb-interval that
lies in Sy. This will only make the block ofb’s from Sy longer, which does not violate the block-monotonicity
of the output string.

If the point y in St is in an a-interval, then note that the (fractional) number ofa’s in Sy is equal to the
(fractional) number ofb’s in Sy. We will denote the former quantity bye+ f and the latter quantity byc+d,
wheree andc are integers andf andd are fractions less than 1. Note that sincee+ f = c+d, it follows that
e= c and f = d. Also, note thatd = g(t). Thus, f = g(t). In the fractional version of the algorithm, in the next
iteration, we would skip over at least 1�g(t) b’s, applying Step 1 (i). Thus, we keep the wholeb-interval in
which t lies, we are keepingc+d b’s from Sy as well as the remaining 1�g(t) fraction of the lastb-interval
in Sy. Thus, if we keep the additional 1� f = 1�g(t) fraction of thea-interval in whichy lies, this does not
violate the block-monotonicity of the output string.

Proof of Lemma 17: Following the notation of the proof of Lemma 16, in the fractional case, we keepα(1�
α)jT2j = αna(S) a’s andjT1j+α(1�α)jT2j = n� 1�α+α2

1�α na(S) b’s. Since these are lower bounds on what we

keep in the integral case, the subsequence output by the algorithm has at least(1� 1p
2
)na(S) a’s andn� (3p

2
�

1)na(S) b’s. To keep exactly the number of symbols claimed in this Lemma, it suffices to delete the excess
number ofa’s andb’s. To do this, first delete the excessa’s anywhere in the output string, the result will clearly
still be block-monotone. Then we delete the excessb’s. Note that at this point, the number ofb’s exceeds the
number ofa’s, so there will always be a block ofb’s strictly greater than the preceding block ofa’s and we can
deleteb’s from this block.

B Appendix: A Case-Based 3D String Folding Algorithm with Approximation
Guarantee3=8+O(δ(S))

In this section, we give a case-based algorithm that has an approximation guarantee of:375+O(δ(S)). We will
analyze this algorithm to conclude with a proof of Lemma 18.

Consider the substringsSO andSE such thatO[SO℄ = E [SE ℄ andE [SO℄ =O[SE ℄. (It is shown how to divide
S into such substrings in Section 3.) Furthermore, in this section, we can assume thatO[SO℄ = E [SO℄. If we
haveO[SO℄> E [SO℄, then the algorithms we describe below will have strictly better approximation ratios than
what we prove.

We will consider the following modified version of the stringSO. For every sequence of consecutive even-
1’s, we turn all but one of them into a 0. For example, we would transform the string 1101011 into 1100001.
Slightly abusing notation, we will from now on refer to this modified string asSO. We will divide the even-1’s
in SO into the following disjoint categories. Suppose each of these categories hasδ1k;δ2k;δ3k, andδ4k even-1’s
respectively, wherek =O[S℄. Without loss of generality, we assume thatδ1+ δ2+ δ3+ δ4 � δ=2, i.e. half the
switches occur inSO.

14

Each even-1 inSO falls in exactly one of the following categories:

1. Even-1’s in blocks of 1’s of length at least 10 or in a block of 1’s of length 9 that
begins with an odd-1.

2. Even-1’s in blocks of 1’s of length at least 2 and at most 9 that begin or end with an
even-1.

3. Even-1’s in blocks of length 1.

4. Even-1’s in blocks of length at least 3 and at most 7 that begin and end with an odd-1.

For each of the four cases above, we will show how to slightly modify the DIAGONAL FOLDING ALGORITHM

so that it gives an approximation guarantee of3
8 + ciδi for some constantci . In the DIAGONAL FOLDING

ALGORITHM, one way to account for contacts is to attribute3
2 of a contact to each odd-1 on the main diagonal

and3
2 of a contact to each even-1 on the main diagonal. The main ideabehind the modifications of the algorithm

is to fold the string so that some odd-1’s may no longer be on the main diagonal (thus losing32 contacts per odd-
1) but form more than32 contacts per odd-1 with neighboring even-1’s (making use ofthe switches). In some of
the modifications (such as Case 2) we do not actually remove any of the odd-1’s from the main diagonal; due to
the nature of the switches, we can still getO(1) contacts per switch. We will first prove a lemma that we will
use in several of the cases.

Lemma 20. Suppose we delete (i.e. change 1’s to 0’s) i odd-1’s in SO. Then we can re-divide S into substrings
SO and SE so that we again haveE [SE ℄ = O[SO℄. If we run theDIAGONAL FOLDING ALGORITHM on these
new strings SE and SO, we will obtain a folding with at least32(O[S℄� i) contacts on the main diagonal.

Proof: In Section 3, we used Lemma 2.2 from [Ala02] to chooses1 so thatO[Si ℄ � E [Si ℄ for all i = 1; : : :n,
whereSi = s1 : : :si . If we defineeSi := snsn�1 : : :si , then again by Lemma 2.2 in [Ala02] we haveE [eSi ℄ � O[eSi ℄
for all i = 1; : : :n. In Lemma 2.2 of [Ala02], we foundsp so thatSO = s1 : : :sp andSE = sn : : :sp+1.

If we removei odd-1’s fromSO, then the main diagonal fold ofSO would be much shorter than that ofSE .
However, if we movesp = sp+ j for some j so that once againO[SO℄ = E [SE ℄, then the number of odd-1’s inSO
is at leastO[S℄�i

2 . Thus, we obtain at least3
2(O[S℄� i) contacts on the main diagonal.

Case 1

Lemma 21. There is a modification of theDIAGONAL FOLDING ALGORITHM with approximation guarantee
at least3

8 + δ1
40.

Proof: An even-1 in Case 1 occurs in a block of 1’s of length at least 10or in a block of 1’s of length 9 beginning
with an odd-1. Suppose we have a block of 11 1’s that begins with an odd-1, which will give the worst case
approximation ratio. Then we fold this block as in Figure 6 starting at the point labeleda. Note that 3 odd-1’s
from SO that would be on the main diagonal in the DIAGONAL FOLDING ALGORITHM are not placed on the
main diagonal. Thus, the main diagonal will be shorter – at least 3δ1k

5 shorter, because for every 5 even-1’s in
Case 1, we take at least 3 odd-1’s off the main diagonal. By Lemma 20 we can then assume that the length of
the main diagonal is:

1
2

�O[S℄� 3δ1O[S℄
5

�
15

a

b

c

Figure 6: Cases 1 and 2. The first figure shows a folding for even-1’s in Case 1. At pointa begins the folding
for a block of 1’s of length 9 that begins with an odd-1. Note that 3 odd-1’s are not placed on the main diagonal,
but 5 contacts – in addition to those that will be formed on themain diagonal – are obtained. At pointb, a block
of 1’s of length 13 is folded. Here, 5 odd-1’s are not placed onthe main diagonal, but 8 additional contacts are
formed off the main diagonal. At pointc, a block of 1’s of length 11 is folded. It is basically the samefolding
as used for blocks of length 9. The second figure shows even-1’s in Case 2. For at least half of the blocks of
1’s of length at least 2 and at most 9 that begin or end with an even-1, we can get an extra contact by placing an
even-1 adjacent to an odd-1 on the main diagonal.

For every odd-1 inSO on the main diagonal, we obtain 3 contacts. For every 3 odd-1’s in SO off the diagonal
(corresponding to 5 even-1’s in Case 1), we obtain 5 contacts. Thus, the approximation guarantee is:�

3
2

�O[S℄� 3δ1O[S℄
5

�+ 5δ1O[S℄
5

�
1

4O[S℄ = 3
8
� 9δ1

40
+ δ1

4
= 3

8
+ δ1

40

Case 2

Lemma 22. There is a modification of theDIAGONAL FOLDING ALGORITHM with approximation guarantee
at least3

8 + δ2
32.

Proof: An even-1 in Case 2 is in a block of 1’s of length at least 2 and atmost 9 that begins or ends with an even-
1. In this case, the main diagonal will remain the same lengthas in the DIAGONAL FOLDING ALGORITHM. We
will obtain extra contacts by placing even-1’s fromSO next to odd-1’s on the main diagonal. This is shown in
Figure 6.

For at least half of the blocks (inSO) of 1’s of length at least 2 and at most 9 that begin or end with even-1’s,
we can get an extra contact by placing an even-1 adjacent to anodd-1 on the main diagonal. We may only
be able to do this for half of the blocks, because the folding in Figure 6 will work only for an even-1 followed
immediately by an odd-1 or an odd-1 followed immediately by an even-1, but does not allow alternating between
these two cases. Among these types of blocks, the worst case is a block of 8 1’s that begins or ends with an
even-1. Such a block uses 4 even-1’s from Case 2. If all the Case 2 even-1’s fell in this category, we could get
an extra contact for half of them, which is one per 8 switches.This ratio is better for block lengths other than
8. In particular, note that a block of length 9 that begins with an even-1 must also end with an even-1, so we
always get a contact for one of the two ends of such a block. In summary, we get the following approximation

16

guarantee: �
3O[S℄

2
+ δ2O[S℄

8

�
1

4O[S℄ = 3
8
+ δ2

32

Case 3

(i)

(ii)

(iii)

(iv)

Figure 7: Case 3.

Lemma 23. There is a modification of theDIAGONAL FOLDING ALGORITHM with approximation guarantee
at least3

8 + δ3
32.

Proof: An even-1 in Case 3 is in a block of length 1. Thus, substrings containing such an even-1 look like:
1001001;100001001, etc. In other words, an even-1 in Case 3 is in a substring 10q110q21 whereq1 andq2 are
both positive even integers. Consider the string 10i10q110q210j1 wherei and j are odd integers, i.e. the first two
1’s and last two 1’s in the string are odd-1’s and the middle 1 is an even-1. (We can assume for now that there is
no even-1 between the first two odd-1’s or the last two odd-1’sbecause as we will discuss later, if there are two
Case 3 even-1’s that share an odd-1 as a neighbor, our foldingwill only use one of these even-1’s.) We will use
four different modifications of the DIAGONAL FOLDING ALGORITHM based on the values ofi and j. We name
these types of even-1’s as follows: (i)i � 3; j � 3; (ii) i = 1; j = 1; (iii) i � 3; j = 1; (iv) i = 1; j � 3. See Figure
7 for illustrations of the foldings for each of these types. We now distinguish two cases: first, if more than half
of the Case 3 even-1’s are of type (i),(ii) or (iii), and second, if more than half are of type (iv).

Suppose that more than half of the Case 3 even-1’s are of types(i)-(iii). The foldings for these three types
can be used consecutively (as opposed to the folding of (iv),which cannot be applied right after itself). However,
we can only guarantee a contact for half of the even-1’s in these three types because we may have, for example,
10i10q110q21001001, i.e. 2 even-1’s that are both adjacent to the same odd-1. In this case, we can only get an
extra contact for one such even-1.

We note that the approximation guarantee obtained is a linear combination of the approximation guarantees
for the three types, weighted by their relative frequency. The worst case therefore occurs if half the of Case 3
even-1’s are of a single type, (i),(ii) or (iii). Since they change the length of the main diagonal, types (i) and (ii)
are worse than (iii).

Since types (i) and (ii) either remove an odd-1 from the main diagonal (type (ii)) or result in some even-1’s
from SE not having contacts on the main diagonal (type (i)), they areworse than type (iii). Both of these types
have the same approximation guarantee. We will just analyzethe case when half the Case 3 even-1’s are type

17

(i). The folding modification for this type changes the length of the main diagonal to at least:

1
2

�O[S℄+ δ3O[S℄
4

�
This is because we assumed that at least half of the Case 3 even-1’s are of types (i)-(iii) and we can use half of
these even-1’s. For each even-1 in Case 3, we lose 1 odd-1 on the main diagonal and we gain 2 contacts per
even-1 off the main diagonal. Therefore, the approximationguarantee is:�

3

�
1
2

�O[S℄+ δ3O[S℄
4

�� δ3O[S℄
4

�+ 2δ3O[S℄
4

�
1

4O[S℄ = 3
8
+δ3

�
3
8
� 3

4
+ 1

2

�
1

4O[S℄ = 3
8
+ δ3

32
(3)

In the other case, when more than half of Case 3 even-1’s are oftype (iv), per type (iv) even-1 we obtain 2
contacts and one odd-1 is not used on the main diagonal. Therefore, in this case the approximation guarantee is
better than that in (3).

Case 4

Lemma 24. There is a modification of theDIAGONAL FOLDING ALGORITHM with approximation guarantee
at least3

8 + δ4
24.

Proof: In Case 4, even-1’s occur in blocks of length at least 3 and at most 7 that begin and end with an odd-1.
Consider all the odd-1’s that occur in blocks of length at least 3 and at most 7 and that begin and end with an
odd-1. Note that the number of such odd-1’s is at least4δ4

3 since the ratio of odd-1’s to even-1’s in this case is
at least 4 to 3. To deal with Case 4, we will cut the loopL(S) into two pieces in a particular way. Recall that
in Section 3, we cut the loopL(S) into two pieces to secure certain properties. Here, we will cut the loopL(S)
into two pieces in the following (different) way: Lets0 be an element inSO that dividesSO into two parts, each
containing half the odd-1’s of Case 4 (i.e. odd-1’s that are in blocks with Case 4 even-1’s). This will be one of
the new points at which we cutL(S). Then we find another point such that one string contains at least half the
odd-1’s and the other string contains at least half the even-1’s. For these new strings, let us call themS0O andS0E ,
note that nowS0E contains at least half of theO[S℄ odd-1’s that were in blocks with the Case 4 even-1’s. Thus,
we can apply the Case 2 folding toS0E , i.e. S0E now contains blocks of 1’s that begin with odd-1’s. This gives the
following the approximation guarantee:�

3O[S℄
2

+ 1
4

4δ4O[S℄
3

1
2

�
1

4O[S℄ = 3
8
+ δ4

24

Now we can prove Lemma 18.

Proof of Lemma 18: Setting all the approximation guarantees equal, we have:

δ1

40
= δ2

32
= δ3

32
= δ4

24

Using the fact thatδ1+δ2+δ3+δ4 = δ
2, we obtain that whenδ1 � 5δ

32, we should use the Case 1 modification.
This implies that the approximation guarantee for the four cases is at least:

3
8
+ 5δ

32
1
40

= 3
8
+ δ

256

18

