
Decision Making Based on

Approximate and Smoothed Pareto Curves

Heiner Ackermann, Alantha Newman, Heiko Röglin ∗,
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Abstract

We consider bicriteria optimization problems and investigate the relationship be-
tween two standard approaches to solving them: (i) computing the Pareto curve and
(ii) the so-called decision maker’s approach in which both criteria are combined
into a single (usually non-linear) objective function. Previous work by Papadim-
itriou and Yannakakis showed how to efficiently approximate the Pareto curve for
problems like Shortest Path, Spanning Tree, and Perfect Matching. We
wish to determine for which classes of combined objective functions the approximate
Pareto curve also yields an approximate solution to the decision maker’s problem.
We show that an FPTAS for the Pareto curve also gives an FPTAS for the de-
cision maker’s problem if the combined objective function is growth bounded like
a quasi-polynomial function. If the objective function, however, shows exponen-
tial growth then the decision maker’s problem is NP-hard to approximate within
any polynomial factor. In order to bypass these limitations of approximate decision
making, we turn our attention to Pareto curves in the probabilistic framework of
smoothed analysis. We show that in a smoothed model, we can efficiently generate
the (complete and exact) Pareto curve with a small failure probability if there ex-
ists an algorithm for generating the Pareto curve whose worst case running time
is pseudopolynomial. This way, we can solve the decision maker’s problem w. r. t.
any non-decreasing objective function for randomly perturbed instances of, e. g.,
Shortest Path, Spanning Tree, and Perfect Matching.
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(Heiko Röglin), voecking@cs.rwth-aachen.de (Berthold Vöcking).
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1 Introduction

We study bicriteria optimization problems, in which there are two criteria, say
cost and weight, that we are interested in optimizing. In particular, we con-
sider bicriteria Spanning Tree, Shortest Path and Perfect Matching
problems. For such problems with more than one objective, it is not immedi-
ately clear how to define an optimal solution. However, there are two common
approaches to bicriteria optimization problems.

The first approach is to generate the set of Pareto optimal solutions, also
known as the Pareto set. A solution S∗ is Pareto optimal if there exists no other
solution S that dominates S∗, i. e., has cost and weight less or equal to the cost
and weight of S∗ and at least one inequality is strict. The set of cost/weight
combinations of the Pareto optimal solutions is called the Pareto curve. Often
it is sufficient to know only one solution for each possible cost/weight combi-
nation. Thus, we assume that the Pareto set is reduced and does not contain
two solutions with equal cost and equal weight. Under this assumption there
is a one-to-one mapping between the elements in the reduced Pareto set and
the points on the Pareto curve.

The second approach is to compute a solution that minimizes some non-

decreasing function f : R
2
+ → R+. This approach is often used in the field

of decision making, in which a decision maker is not interested in the whole
Pareto set but in a single solution with certain properties. For example,
given a graph G = (V, E) with cost c(e) and weight w(e) on each edge,
one could be interested in finding an s-t-path P that minimizes the value
(
∑

e∈P w(e))2 + (
∑

e∈P c(e))2. For a given function f : R
2
+ → R+ and a bicri-

teria optimization problem Π we denote by f -Π the problem of minimizing f
over all solutions of Π.

Note that these two approaches are actually related: for any non-decreasing

function f , there is a solution that minimizes f that is also Pareto optimal.
A function f : R

2
+ → R+ is non-decreasing if f(x1, y1) ≤ f(x2, y2) for any

x1, x2, y1, y2 ∈ R+ with x1 ≤ x2 and y1 ≤ y2. Thus, if for a particular bicri-
teria optimization problem, we can find the Pareto set efficiently and it has
polynomial size, then we can efficiently find a solution that minimizes any
given non-decreasing function. It is known, however, that there are instances
of Spanning Tree, Shortest Path and Perfect Matching problems
such that even the reduced Pareto set is exponentially large [6]. Moreover,
while efficient (i. e. polynomial in the size of the Pareto set) algorithms are
known for a few standard bicriteria optimization problems such as the Short-
est Path problem [7,18], it is not known how to generate the Pareto set
efficiently for other well-studied bicriteria optimization problems such as the
Spanning Tree and the Perfect Matching problem.

2



There has been a long history of approximating the Pareto set starting with
the pioneering work of Hansen [7] on the Shortest Path problem. We say a
solution S is ε-approximated by another solution S ′ if c(S ′)/c(S) ≤ 1 + ε and
w(S ′)/w(S) ≤ 1 + ε where c(S) and w(S) denote the total cost and weight
of a solution S. We say that Pε is an ε-approximation of a Pareto set P if
for any solution S ∈ P there is a solution S ′ ∈ Pε that ε-approximates it.
Papadimitriou and Yannakakis showed that for any Pareto set P, there is an
ε-approximation of P with polynomially many points [13] (w. r. t. the input
size and 1/ε). Furthermore they gave necessary and sufficient conditions under
which there is an FPTAS to generate Pε. Vassilvitskii and Yannakakis [17]
showed how to compute ε-approximate Pareto curves of almost minimal size.

1.1 Previous Work

There exists a vast body of literature that focuses on f -Π problems. For in-
stance it is well known that, if f is a concave function, an optimal solution
of the f -Π problem can be found on the border of the convex hull of the
solutions [9]. For some problems there are algorithms generating this set of so-
lutions. In particular, for the Spanning Tree Problem it is known that there
are only polynomially many solutions on the border of the convex hull [5], and
efficient algorithms for enumerating them exist [1]. Thus, there are polynomial-
time algorithms for solving f -Spanning Tree if f is concave. Katoh has de-
scribed how one can use f -Spanning Tree problems with concave objective
functions to solve many other problems in combinatorial optimization [10].
For instance, a well studied application is the Minimum Cost Reliability
Spanning Tree Problem, where one is interested in finding a spanning tree
minimizing the ratio of cost to reliability. This approach, however, is limited
to optimizing the ratio of these two criteria. It is also known how to solve the
f -Shortest Path problem for functions f being both pseudoconcave and
pseudoconvex in polynomial time [8]. Tsaggouris and Zaroliagis [15] investi-
gated the Non-additive Shortest Path Problem (NASP), which is to
find a path P minimizing fc(c(P )) + fw(w(P )), for some convex functions fc

and fw. This problem arises as core problem in different applications, e. g., in
the context of computing traffic equilibria. They developed exact algorithms
with exponential running time using a Lagrangian relaxation and the so called
Extended Hull Algorithm to solve NASP.

We consider bicriteria optimization problems in the smoothed analysis frame-
work of Spielman and Teng [14]. Spielman and Teng consider a semi-random
input model where an adversary specifies an input which is then randomly per-
turbed. Input instances occurring in practice usually possess a certain struc-
ture but usually also have small random influences. Thus, one can hope that
semi-random input models are more realistic than worst case and average case
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input models since the adversary can specify an arbitrary input with a cer-
tain structure that is subsequently only slightly perturbed. Since the seminal
work of Spielman and Teng explaining the efficiency of the Simplex method in
practical applications [14], many other problems have been considered in the
framework of smoothed analysis. Of particular relevance to the results in this
paper are the results of Beier and Vöcking [3,4]. First, they showed that the
expected number of Pareto optimal solutions of any bicriteria optimization
problem with two linear objective functions is polynomial if the coefficients in
the objective functions are randomly perturbed [3]. Then they gave a complete
characterization which linear binary optimization problems have polynomial
smoothed complexity, namely they showed that a linear binary optimization
problem has polynomial smoothed complexity if and only if there exists an
algorithm whose worst case running time is pseudopolynomially bounded in
the perturbed coefficients [4]. The only way to apply their framework to multi-
criteria optimization is by moving all but one of the criteria from the objective
function to the constraints.

1.2 Our Results

We study the complexity of the bicriteria optimization problems f-Shortest
Path, f-Spanning Tree and f -Perfect Matching under different classes
of functions f . Our study begins with an analysis showing that these prob-
lems are NP-hard even under seemingly harmless objective functions of the
form Minimize (

∑

e∈S c(e))a + (
∑

e∈S w(e))b, where a, b are arbitrary natural
numbers with a ≥ 2 or b ≥ 2. Thus, we focus on the approximability of these
problems. An FPTAS to approximate the Pareto curve of a problem Π can be
transformed into an FPTAS for f -Π for any polynomial function f easily. We
show that this transformation also works for quasi-polynomial functions and,
more generally, for non-decreasing functions whose first derivative is bounded
from above like the first derivative of a quasi-polynomial function. (A simi-
lar result has been shown recently in an independent work by Tsaggouris and
Zaroliagis [16].) Additionally, we show that the restriction to quasi-polynomial
growth is crucial.

In order to bypass the limitations of approximate decision making seen above,
we turn our attention to Pareto curves in the probabilistic framework of
smoothed analysis. We show that in a smoothed model, we can efficiently
generate the (complete and exact) Pareto curve of Π with a small failure
probability if there exists an algorithm for generating the Pareto curve whose
worst case running time is pseudopolynomial (w. r. t. costs and weights). Pre-
viously, it was known that the number of Pareto optimal solutions is polyno-
mially bounded if the input numbers are randomly perturbed [3]. This result,
however, left open the question of how to generate the set of Pareto-optimal
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solutions efficiently (except for the Shortest Path problem). The key result
in the smoothed analysis presented in this paper is that typically the smallest
gap (in cost and weight) between neighboring solutions on the Pareto curve
is bounded by n−O(1) from below. This result enables us to generate the com-
plete Pareto curve by taking into account only a logarithmic number of bits of
each input number. This way, an algorithm with pseudopolynomial worst-case
complexity for generating the Pareto curve can be turned into an algorithm
with polynomial smoothed complexity.

It can easily be seen that, for any bicriteria problem Π, a pseudopolynomial
algorithm for the exact and single objective version of Π (e. g. an algorithm for
answering the question “Does there exist a spanning tree with costs exactly
C?”) can be turned into an algorithm with pseudopolynomial worst-case com-
plexity for generating the Pareto curve. Therefore, in the smoothed model,
there exists a polynomial-time algorithm for enumerating the Pareto curve of
Π with small failure probability if there exists a pseudopolynomial algorithm
for the exact and single objective version of Π. Furthermore, given the exact
Pareto curve for a problem Π, one can solve f -Π exactly. Thus, in our smoothed
model, we can, for example, find spanning trees that minimize functions that
are hard to approximate within any factor in the worst case.

2 Approximating Bicriteria Optimization Problems

In this section, we consider bicriteria optimization problems in which the goal
is to minimize a single objective function that takes two criteria as inputs.
We consider functions of the form f(x, y) where x represents the total cost of
a solution and y represents the total weight of a solution. In Section 2.1, we
present NP-hardness and inapproximability results for the f -Spanning Tree,
f -Shortest Path, and f -Perfect Matching problems for general classes
of functions. In Section 2.2, we show that we can give an FPTAS for any f -Π
problem for a large class of quasi-polynomially bounded non-decreasing func-
tions f if there is an FPTAS for generating an ε-approximate Pareto curve for
Π. Papadimitriou and Yannakakis showed how to construct such an FPTAS
for approximating the Pareto curve of Π given an exact pseudopolynomial
algorithm for the problem [13]. For the exact s-t-Path problem, dynamic pro-
gramming yields a pseudopolynomial algorithm [18]. For the exact Spanning
Tree problem, Barahona and Pulleyblank gave a pseudopolynomial algo-
rithm [2]. For the exact Matching problem, there is a fully polynomial RNC
scheme [12,11]. Thus, for any quasi-polynomially bounded non-decreasing ob-
jective function, these problems have an FPTAS.
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2.1 Some Hardness Results

In this section, we present NP-hardness results for the bicriteria f -Spanning
Tree, f -Shortest Path, and f -Perfect Matching problems in which
the goal is to find a feasible solution S that minimizes an objective function
of the form f(x, y) = xa + yb, where x = c(S), y = w(S), and a, b ∈ N are
constants with a ≥ 2 or b ≥ 2. The NP-hardness of such functions follows
quite directly from a simple reduction from Partition when a = b. When a
and b differ, one can modify this reduction slightly by scaling the weights.

Theorem 1 Let f(x, y) = xa + yb with a, b ∈ N and a ≥ 2 or b ≥ 2. Then the

f -Spanning Tree, f -Shortest Path, and f -Perfect Matching prob-

lems are NP -hard.

PROOF. By simple reductions from Partition, one can prove that it is NP-
hard to decide whether a graph with edge costs and weights has a spanning
tree (or s-t-path or perfect matching) with cost at most C and weight at most
W , where C, W ∈ R [6]. We do not reproduce these reductions completely,
but mention only their key properties and adapt them appropriately to prove
the lemma.

A Partition instance consists of n natural numbers a1, . . . , an ∈ N and the
goal is to decide whether there is a partition of these numbers into disjoint
sets A1 and A2 such that

∑

ai∈A1
ai =

∑

ai∈A2
ai = A/2 with A =

∑n
i=1 ai.

The graphs constructed in the reductions contain for each number ai, two
edges e1

i and e2
i with cost ai and weight 0 and with cost 0 and weight ai,

respectively. In each feasible solution, exactly one of these edges is contained
for each number ai. Furthermore, the graphs possess the property that for
each partition (A1,A2) there exists a feasible solution containing edge e1

i for
every i ∈ A1 and edge e2

i for every i ∈ A2. Besides the edges e1
i and e2

i ,
the graphs contain only edges with costs and weights 0. Graphs possessing
these properties for the Spanning Tree, Shortest Path, and Perfect
Matching problem are depicted in Figures 1 and 2.

Due to the aforementioned properties, every feasible solution S satisfies c(S)+
w(S) = A. Note, that for every a ≥ 2, under the conditions x ≥ 0, y ≥ 0,
and x + y = A, the function f(x, y) = xa + ya takes its unique minimum
at x = y = A/2. Therefore, the reductions presented above show that for
functions of this type the considered f -Π problems are NP-hard as by solving
the f -Π problems one can decide whether the given numbers a1, . . . , an can
be partitioned into sets of equal size.

Now we modify the reductions presented above slightly to show that the con-
sidered f -Π problems are also NP-hard for functions f(x, y) = xa + yb with
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Fig. 1. The graph constructed in the reductions from Partition to the s-t-Path
problem and the Spanning Tree problem. In the reduction to the Spanning Tree
problem the edges are undirected.
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Fig. 2. For each number ai, the graph constructed in the reduction from Partition
to the Perfect Matching problem contains one of these gadgets.

a 6= b. We use the reductions from Partition to the bicriteria Spanning
Tree, Shortest Path and Perfect Matching problems as presented
above, except that we scale the cost of each edge (but not its weight) by a
factor of γ. Thus for any solution S, we have that c(S)/γ + w(S) = A. Let
y = w(S), then c(S) = γ(A−y). Define g(y) = f(γ(A−y), y) = γa(A−y)a+yb.
Our goal is to choose γ such that the function g(y) is minimized when y = A/2.
Thus, we want to show that g′(A/2) = 0 and g′′(A/2) > 0. We take the deriva-
tive of g(y) and obtain, g′(y) = −a ·γa(A−y)a−1 +byb−1. Basic calculus shows

g′
(

A

2

)

= 0 ⇐⇒ γ =

(

b

a

(

A

2

)b−a
)

1

a

.

Finally, we evaluate the second derivative of g(y) at A/2 and show that it
is positive. We have, g′′(y) = a(a − 1)γa(A − y)a−2 + b(b − 1)yb−2. Thus,
g′′(A/2) > 0 when a > 1 or b > 1.

Observe that, in general, γ is irrational but rounding γ after a polynomial
number of bits preserves the desired property. In order to see this, first of
all observe that for every y ∈ {0, . . . , A}, g(y) is a rational number whose
representation length l is polynomially bounded in the representation length

7



log A of A, say l < p(log A) for some polynomial p. Furthermore, g(A/2) <
g(y) for every y ∈ {0, . . . , A} with y 6= A/2. Together this implies for every
such y, g(y) − g(A/2) > 2−p(log A). Now let γ∗ denote γ rounded after B =
⌈p(log A) + 2a(log A + log γ) + 1⌉ bits. We denote by g∗ the function g∗(y) =
γa
∗ (A − y)a + yb. Then for every y ∈ {0, . . . , A},

|g(y)− g∗(y)| = |γa − γa
∗ |(A − y)a ≤ Aa|γa − γa

∗ | .

Combining this with |γ − γ∗| ≤ 2−B yields

|g(y)− g∗(y)| ≤ Aa · a(γ + 1)a · 2−B < 2−p(log A)−1 .

Altogether this implies for every y ∈ {0, . . . , A} with y 6= A/2

g∗(A/2) < g(A/2) + 2−p(log A)−1 < g(y) − 2−p(log A)−1 < g∗(y) .

This shows that we can replace γ by γ∗ without affecting the property that
A/2 is the unique minimum. 2

We will now have a closer look at exponential functions f(x, y) = 2xδ
+2yδ

, for
some δ > 0. In the following, we assume that there is an oracle, which given
two solutions S1 and S2, decides in constant time whether f(c(S1), w(S1)) is
larger than f(c(S2), w(S2)) or vice versa. We show that even in this model
of computation there is no polynomial time approximation algorithm with
polynomial approximation ratio, unless P = NP .

Theorem 2 Let f(x, y) = 2xδ
+ 2yδ

with δ > 0. There is no approximation

algorithm for the f -Spanning Tree, f -Shortest Path, and f -Perfect
Matching problem with polynomial running time and approximation ratio

less than 2|I|, where |I| denotes the input size, unless P = NP .

PROOF. We use the reductions from Partition to the problems we consider
as presented in the proof of Theorem 1. Assume that we are given an instance
a1, . . . , an of Partition and let A =

∑n
i=1 ai. Assume that we scale the natu-

ral numbers ai by a factor of b > 0 before constructing the graphs. If there is
a desired partition in the original instance, then there is also a solution in the
scaled instance with f(S) = 2(b·A/2)δ+1. If there is no desired partition, then
f(S) ≥ 2(b·A/2+b)δ

for any solution S. Obviously, this is a (2(b·A/2)δ+1, 2(b·A/2+b)δ
)

gap problem for which no polynomial time approximation algorithm with ap-
proximation ratio less than 2(b·A/2+b)δ

/2(b·A/2)δ+1 = 2(b·A/2+b)δ−(b·A/2)δ−1 exists,
unless P = NP . For arbitrary C > 0, choosing

b =









(

C + 1

(A/2 + 1)δ − (A/2)δ

)1/δ
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yields 2(b·A/2+b)δ−(b·A/2)δ−1 ≥ 2C.

Due to the scaling, the input size |I| of the constructed graph is increased.
Since the constructed graph contains O(n) vertices and edges, we can estimate
|I| as follows:

|I| ≤n · (log A + log b + κ)

≤n ·
(

log A +
1

δ

(

log(C + 1) − log((A/2 + 1)δ − (A/2)δ)
)

+ 1 + κ
)

for some constant κ.

We first consider the case δ ≥ 1. In this case, we have

(A/2 + 1)δ − (A/2)δ ≥ 1

and, hence,

|I| ≤ n ·
(

log A +
1

δ
(log(C) + 2) + 1 + κ

)

.

For C ≥ Aδ, we can estimate this by

|I| ≤ kn · log C

for an appropriately chosen constant k. Now assume that we had an algorithm
Z with approximation ratio less than 2|I|. Then

2|I| ≤ 2kn·logC = Ckn .

Hence, setting C = (kn)2Aδ yields that, for sufficiently large n and k, the
approximation ratio of Z is smaller than 2C . Thus, we can use algorithm Z to
solve the given Partition instance exactly. Note that the length of the input
I is polynomially bounded in the size of the Partition instance a1, . . . , an.

Now we consider the case δ ≤ 1. In this case, we can use the estimate

− log
(

(A/2 + 1)δ − (A/2)δ
)

≤ log(A/2)

δ

to obtain

|I| ≤ n ·
(

log A +
1

δ

(

log C + 1 +
log(A/2)

δ

)

+ 1 + κ

)

.

For C > A1/δ we can simplify this to

|I| ≤ kn

δ
log C
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for an appropriately chosen constant k. Now assume that we had an algorithm
Z with approximation ratio less than 2|I|. Then

2|I| ≤ 2
kn
δ
·log C = C

kn
δ .

Hence, setting C = (kn)2A1/δ

δ
yields that, for sufficiently large n and k, the

approximation ratio of Z is smaller than 2C . Thus, we can use algorithm Z to
solve the given Partition instance exactly. Note that the length of the input I
is polynomially bounded in the size of the Partition instance a1, . . . , an. 2

2.2 An FPTAS for a Large Class of Functions

In this section, we present a sufficient condition for the objective function f
under which there is an FPTAS for the f -Spanning Tree, the f -Shortest
Path, and the f -Perfect Matching problem. In fact, our result is not re-
stricted to these problems but applies to every bicriteria optimization problem
Π with an FPTAS for approximating the Pareto curve.

We begin by introducing a restricted class of functions f .

Definition 3 We call a non-decreasing function f : R
2
+ → R+ quasi-

polynomially bounded if there exist constants c > 0 and d > 0 such that

for every x, y ∈ R+

∂f(x, y)

∂x
· 1

f(x, y)
≤ c · lnd x · lnd y

x

and
∂f(x, y)

∂y
· 1

f(x, y)
≤ c · lnd x · lnd y

y
.

Observe that every non-decreasing polynomial is quasi-polynomially bounded.
Furthermore the sum of so-called quasi-polynomial functions of the form
f(x, y) = xpolylog(x) + ypolylog(y) is also quasi-polynomially bounded, whereas
the sum of exponential functions f(x, y) = 2xδ

+2yδ
is not quasi-polynomially

bounded. We are now ready to state our main theorem for this section.

Theorem 4 There exists an FPTAS for any f -Π problem in which f is non-

decreasing and quasi-polynomially bounded if there exists an FPTAS for ap-

proximating the Pareto curve of Π.

PROOF. Our goal is to find a solution for the f -Π problem in question
with value no more than (1 + ε) times optimal. The FPTAS for the f -Π
problem of relevance is quite simple. It uses the FPTAS for approximating
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the Pareto curve to generate an ε′-approximate Pareto curve Pε′ and tests
which solution in Pε′ has the lowest f -value. Recall that the number of points
in Pε′ is polynomial in the size of the input and 1/ε′ [13]. The only question to
be settled is how small ε′ has to be chosen to obtain a (1+ε)-approximation for
f -Π by this approach. In particular, we have to show that 1/ε′ is polynomially
bounded in 1/ε and the input size since then, an ε′-approximate Pareto curve
contains only polynomially many solutions and, thus, our approach runs in
polynomial time.

Let S∗ denote an optimal solution to the f -Π problem. Since f is non-decreasing
we can w. l. o. g. assume S∗ to be Pareto optimal. We denote by C∗ the cost
and by W ∗ the weight of S∗. We know that an ε′-approximate Pareto curve
contains a solution S ′ with cost C ′ and weight W ′ such that C ′ ≤ (1 + ε′)C∗

and W ′ ≤ (1 + ε′)W ∗. We have to choose ε′ > 0 such that f(C ′, W ′) ≤
(1 + ε)f(C∗, W ∗) holds, in fact, we will choose ε′ such that

f((1 + ε′) · C∗, (1 + ε′) · W ∗) ≤ (1 + ε) · f(C∗, W ∗) . (1)

In the following, we show that choosing

ε′ =
ε2

c2d+4 · lnd+1 C · lnd+1 W
,

where C denotes sum of all costs c(e) and W denotes the sum of all weights
w(e), satisfies inequality (1). Observe that 1/ε′ is polynomially bounded in
1/ε and ln C∗ and ln W ∗, i. e., the input size.

We start by rewriting f((1 + ε′)C∗, (1 + ε′)W ∗) as follows

f((1 + ε′) · C∗, (1 + ε′) · W ∗)

=



























f(C∗, W ∗)+

f((1 + ε′) · C∗, W ∗) − f(C∗, W ∗)+

f((1 + ε′) · C∗, (1 + ε′) · W ∗) − f((1 + ε′) · C∗, W ∗) .

Now, it is enough to find ε′ such that

f((1 + ε′) · C∗, W ∗) − f(C∗, W ∗) ≤ ε

2
· f(C∗, W ∗) (2)

and

f((1 + ε′) · C∗, (1 + ε′)W ∗) − f((1 + ε′) · C∗, W ∗) ≤ ε

2
· f(C∗, W ∗) . (3)
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Before we estimate the terms in (2) and (3) we remind the reader of a version
of Bernoulli’s inequality which we will use later.

Lemma 5 Let x > −1, x ∈ R and n ∈ N. Then

1 +
x

n(1 + x)
≤ n

√
1 + x ≤ 1 +

x

n
.

Estimating f((1 + ε′)C∗,W∗) − f(C∗,W∗):
We start by estimating the term f((1+ ε′)C∗, W ∗)− f(C∗, W ∗). Therefore we
define a function g : R+ → R+ by g(x) = f(x, W ∗). Then we can express the
difference we are interested in as g((1 + ε′)C∗) − g(C∗). Furthermore, for all
x ∈ R+, we know

g′(x)

g(x)
≤ c · lnd x · lnd W ∗

x
. (4)

Let z∗ denote g(C∗) = f(C∗, W ∗). The difference g((1+ε′)C∗)−g(C∗) becomes
maximal when the derivative of g is as large as possible. Thus, we assume
w. l. o. g. that inequality (4) is satisfied with equality, i. e.,

g′(x)

g(x)
=

c · lnd x · lnd W ∗

x
.

This differential equation with the additional condition g(C∗) = z∗ has a
unique solution, namely

g(x) =
z∗

e
c

d+1
·lnd+1 C∗·lnd W ∗

e
c

d+1
·lnd+1 x·lnd W ∗

.

We want to show g((1 + ε′)C∗) − g(C∗) ≤ ε/2 · g(C∗) which is equivalent to
g((1 + ε′)C∗)/g(C∗) ≤ 1 + ε/2. For the sake of simplicity, we assume w. l. o. g.
ε′ < 1, C∗ ≥ e and W ∗ ≥ e which implies ln(1 + ε′) < 1, ln C∗ > 1 and
ln W ∗ > 1. Then we have the following

g((1 + ε′)C∗)

g(C∗)
= exp

(

c

d + 1
· lnd W ∗(lnd+1((1 + ε′)C∗) − lnd+1 C∗)

)

= exp

(

c

d + 1
· lnd W ∗ ·

d+1
∑

i=1

(

d + 1

i

)

lni(1 + ε′) lnd+1−i C∗

)

≤ exp
(

c

d + 1
· lnd W ∗ · 2d+1 ln(1 + ε′) lnd+1 C∗

)

≤ (1 + ε′)⌈c2
d+1·lnd+1 C∗·lnd W ∗⌉ .

It suffices to show

ε′ ≤
(

1 +
ε

2

)
1

⌈c2d+1·lnd+1 C∗·lnd W∗⌉ − 1

12



since this implies

(1 + ε′)⌈c2
d+1·lnd+1 C∗·lnd W ∗⌉ ≤ 1 +

ε

2
.

We can apply Lemma 5 to obtain

ε′ ≤ ε/2

⌈c2d+1 · lnd+1 C∗ · lnd W ∗⌉(1 + ε/2)

⇒ ε′ ≤
(

1 +
ε

2

)
1

⌈c2d+1·lnd W∗·lnd+1 C∗⌉ − 1.

Thus, choosing

ε′ =
ε

c2d+4 · lnd+1 C∗ · lnd W ∗
(5)

yields g((1 + ε′)C∗) − g(C∗) ≤ ε/2 · g(C∗).

Estimating f((1 + ε′)C∗, (1 + ε′)W∗) − f((1 + ε′)C∗,W∗):
Now define h : R+ → R+ by h(y) = f((1 + ε′)C∗, y). Observe that we can use
the arguments we used in the previous paragraph to show h((1 + ε′)W ∗) −
h(W ∗) ≤ ε/2 ·h(W ∗) for an analogously chosen ε′ but this is not enough since
h(W ∗) = f((1 + ε′)C∗, W ∗) ≥ f(C∗, W ∗).

Following the arguments of the last paragraph we can show that setting

ε′ =
ε2

c2d+4 · lnd C∗ · lnd+1 W ∗
(6)

yields

f((1 + ε′)C∗, (1 + ε′)W ∗) − f((1 + ε′)C∗, W ∗) ≤ ε2

2
f((1 + ε′)C∗, W ∗) . (7)

We assume w. l. o. g. ε < 0.7. Then, a second application of the result of the
last paragraph shows

f((1 + ε′)C∗, W ∗) − f(C∗, W ∗)≤ ε

2
f(C∗, W ∗)

⇒ f((1 + ε′)C∗, W ∗) ≤ 2 + ε

2
f(C∗, W ∗)

⇒ 2

2 + ε
f((1 + ε′)C∗, W ∗) ≤ f(C∗, W ∗)

⇒ εf((1 + ε′)C∗, W ∗) ≤ f(C∗, W ∗) , (8)

where the last inequality follows from the assumption ε < 0.7. Putting together
inequalities (7) and (8) yields

13



f((1 + ε′)C∗, (1 + ε′)W ∗) − f((1 + ε′)C∗, W ∗)≤ ε2

2
f((1 + ε′)C∗, W ∗)

≤ ε

2
f(C∗, W ∗) .

Observe that the choice of ε′ in (5) and (6) is dependent on the cost C∗ and
the weight W ∗ of an optimal solution. These values are unknown but can be
upper bounded by C and W the sum of all costs c(e) respectively all weights
w(e). Thus, in (5) and (6) we can replace C∗ by C and W ∗ by W and choose

ε′ =
ε2

c2d+4 · lnd+1 C · lnd+1 W
. 2

Observe that Theorem 4 is almost tight since for every δ > 0 we can construct
a function f for which the quotients of the partial derivatives and f(x, y)
are lower bounded by δ/x1−δ respectively by δ/y1−δ and for which the f -Π
problem does not posses an FPTAS, namely f(x, y) = 2xδ

+ 2yδ
.

3 Smoothed Analysis of Bicriteria Problems

In the previous section, we have shown that f -Π problems are NP-hard even
for simple polynomial objective functions and we have also shown that it is
even hard to approximate them for rapidly increasing objective functions if
Π is either the bicriteria Spanning Tree, Shortest Path or Perfect
Matching problem. In this section, we will analyze f -Π problems in a prob-
abilistic input model rather than from a worst-case viewpoint. In this model,
we show that, for every p > 0 for which 1/p is polynomial in the input size,
the f -Π problem can be solved in polynomial time for every non-decreasing
objective function with probability 1 − p if there exists a pseudopolynomial
time algorithm for generating the Pareto set of Π. It is known that for the bi-
criteria graph problems we deal with the expected size of the Pareto set in the
considered probabilistic input model is polynomially bounded [3]. Thus, if we
had an algorithm for generating the set of Pareto optimal solutions whose run-
ning time is bounded polynomially in the input size and the number of Pareto
optimal solutions, then we could, for any non-decreasing objective function
f , devise an algorithm for the f -Π problem that is efficient on semi-random
inputs.

For a few problems, e. g., the Shortest Path problem, efficient (w. r. t. the
input size and the size of the Pareto set) algorithms for generating the Pareto
set are known [18,7]. But it is still unknown whether such an algorithm ex-
ists for the Spanning Tree or the Perfect Matching problem, whereas
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it is known that there exist for, e. g., the Spanning Tree and the Per-
fect Matching problem, pseudopolynomial time algorithms (w. r. t. costs
and weights) for generating the reduced Pareto set. This follows since the exact
versions of the single objective versions of these problems, i. e., the question,
“Is there a spanning tree/perfect matching with cost exactly c?”, can be solved
in pseudopolynomial time (w. r. t. the costs) [2,11,12]. We will show how such
pseudopolynomial time algorithms can be turned into algorithms for efficiently
generating the Pareto set of semi-random inputs.

3.1 Probabilistic Input Model

Usually, the input model considered in smoothed analysis consists of two
stages: First an adversary chooses an input instance, then this input is ran-
domly perturbed in the second stage. For the bicriteria graph problems consid-
ered in this paper, the input given by the adversary is a graph G = (V, E, w, c)
with weights w : E → R+ and costs c : E → R+, and in the second stage these
weights and costs are perturbed by adding independent random variables to
them.

We can replace this two-step model by a one-step model where the adversary
is only allowed to specify a graph G = (V, E) and, for each edge e ∈ E,
two probability distributions, namely one for c(e) and one for w(e). The costs
and weights are then independently drawn according to the given probability
distributions. Of course, the adversary is not allowed to specify arbitrary dis-
tributions since this would include deterministic inputs as a special case. We
place two restrictions upon the distributions concerning the expected value
and the maximal density. To be more precise, for each weight and each cost,
the adversary is only allowed to specify a distribution which can be described
by a piecewise continuous density function f : R+ → R+ with expected
value at most 1 and maximal density at most φ, i. e.,

∫

x∈R+
xf(x) dx ≤ 1

and supx∈R+
f(x) = φ, for a given φ ≥ 1.

Observe that restricting the expected value to be at most 1 is without loss of
generality, since we are only interested in the Pareto set which is not affected
by scaling weights and costs. The parameter φ can be seen as a parameter
specifying how close the analysis is to a worst case analysis. The larger φ
the more concentrated the probability distribution can be. Thus, the larger
φ, the more influence the adversary has. We will call inputs created by this
probabilistic input model φ-perturbed inputs.

Spielman and Teng use Gaussian perturbations in their smoothed analysis of
the simplex algorithm to model random noise [14]. Observe that Gaussian
distributions with standard deviation σ are a special case of our input model
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with φ = 1/(σ
√

2π).

Note that the costs and weights are irrational with probability 1 since they
are chosen according to continuous probability distributions. We ignore their
contribution to the input length and assume that the bits of these coefficients
can be accessed by asking an oracle in time O(1) per bit. Thus, in our case
only the representation of the graph G = (V, E) determines the input length.
In the following, let m denote the number of edges, i. e., m = |E|.

We assume that there do not exist two different solutions S and S ′ with
either w(S) = w(S ′) or c(S) = c(S ′). We can assume this without loss of
generality since in our probabilistic input model, two such solutions exist only
with probability 0.

3.2 Generating the Pareto set

In this section, we will show how a pseudopolynomial time algorithm A for
generating the Pareto set can be turned into a polynomial time algorithm
which succeeds with probability at least 1− p on semi-random inputs, for any
given p > 0 where 1/p is polynomial in the input size. In order to apply A
efficiently it is necessary to round the costs and weights, such that they are
only polynomially large after the rounding, i. e., such that the lengths of their
representations are only logarithmic in the input size. Let ⌊c⌋b and ⌊w⌋b denote
the costs and weights rounded down to the b-th bit after the binary point. We
denote by P the Pareto set of the φ-perturbed input G = (V, E, w, c) and by
Pb the Pareto set of the rounded φ-perturbed input G = (V, E, ⌊w⌋b, ⌊c⌋b).

Theorem 6 For b = Θ
(

log
(

mφ
p

))

, P is a subset of Pb with probability at

least 1 − p.

This means, we can round the coefficients after only a logarithmic number of
bits and use the pseudopolynomial time algorithm, which runs on the rounded
input in polynomial time, to obtain Pb. With probability at least 1−p the set
Pb contains all Pareto optimal solutions from P but it can contain solutions
which are not Pareto optimal w. r. t. w and c. By removing these superfluous
solutions we obtain the set P with probability at least 1 − p.

Corollary 7 There exists an algorithm for generating the Pareto set of Π
on φ-perturbed inputs with failure probability at most p and running time

poly(m, φ, 1/p), if there exists a pseudopolynomial time algorithm for gen-

erating the reduced Pareto set of Π.

From the definition of a Pareto optimal solution, it follows that the optimal
solution S of a constrained problem, i. e., the weight-minimal solution among
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ε

S1

S2

S3
S4

S5

S6

t1 t2 t3 t4 t5 t6

∆min

w

c

ε

S1

S2

S3
S4

S5

S6

t1 t2 t3 t4 t5 t6

⌊w⌋b

⌊c⌋b

Fig. 3. Successful case: ε < ∆min, S(1) = S
(1)
b = S6, S(2) = S

(2)
b = S(3) = S

(3)
b = S3,

S(4) = S
(4)
b = S(5) = S

(5)
b = S2, S(6) = S

(6)
b = S1, c(Si) ≤ z · ε = 6 · ε.

all solutions fulfilling a cost constraint c(S) ≤ t, is always a Pareto optimal
solution. This is because, if there were a solution S ′ that dominates S, then S ′

would also be a better solution to the constrained problem. We will show that,
for every S ∈ P, with sufficiently large probability we can find a threshold t
such that S is the optimal solution to the constrained problem min⌊w⌋b(S)
w. r. t. ⌊c⌋b(S) ≤ t, i. e., with sufficiently large probability every S ∈ P is
Pareto optimal w. r. t. the rounded coefficients.

To be more precise, we consider, for appropriately chosen z and ε, z many
constrained problems with weights ⌊w⌋b, costs ⌊c⌋b and thresholds ti = i · ε,
for i ∈ [z] := {1, 2, . . . , z}. We will denote the minimal cost difference between
two different Pareto optimal solutions by ∆min, i. e.,

∆min = min
S1,S2∈P
S1 6=S2

|c(S1) − c(S2)| .

If ∆min is larger than ε, then P consists only of solutions to constrained prob-
lems of the form min w(S), w. r. t. c(S) ≤ ti, since, if ε < ∆min, we do not
miss a Pareto optimal solution by our choice of thresholds. Based on results
by Beier and Vöcking [4], we will prove that, for each i ∈ [z], the solution
S(i) to the constrained problem min w(S) w. r. t. c(S) ≤ ti is the same as the

solution S
(i)
b to the constrained problem min⌊w⌋b(S) w. r. t. ⌊c⌋b(S) ≤ ti with

sufficiently large probability. Thus, if ε < ∆min and S(i) = S
(i)
b for all i ∈ [z],

then P ⊆ Pb. See Figure 3 for an illustration of this approach.

We do not know how to determine ∆min in polynomial time, but we can show
a lower bound ε for ∆min that holds with a certain probability. Based on this
lower bound, we can appropriately choose ε. We must choose z sufficiently
large, so that c(S) ≤ z · ε holds with sufficiently high probability for every
solution S. Thus, our analysis fails only if one of the following three failure
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Fig. 4. Failure event F1: ε > ∆min. S6 is
not a solution to any of the constrained
problems.

ε
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t1 t2 t3 t4 t5 t6

w

c

Fig. 5. Failure event F3:
c(S1) > z · ε = 6 · ε. S1 is not a
solution to any of the constrained
problems.

S1

S2

S3
S4

S5

S6

t1 t2 t3 t4 t5 t6

w

c

S1

S2

S3

S4

S5

S6

t1 t2 t3 t4 t5 t6

⌊w⌋b

⌊c⌋b

Fig. 6. Failure event F2: S(2) = S3 6= S4 = S
(2)
b .

events occurs (see also Figures 4, 5, and 6):

• F1: ∆min is smaller than the chosen ε.
• F2: For one i ∈ [z], the solution S(i) to min w(S) w. r. t. c(S) ≤ ti does not

equal the solution S
(i)
b to min⌊w⌋b(S) w. r. t. ⌊c⌋b(S) ≤ ti.

• F3: There exists a solution S with c(S) > z · ε.

In order to prove Theorem 6, we first have to estimate the probability of
the failure events F1,F2,F3. Depending on these failure probabilities, we can
choose appropriate values for z, ε and b yielding the theorem. We start by
estimating the probability of the first failure event, which is the most involved
part of the proof. The probability of F2 is estimated directly by using a result
of Beier and Vöcking [3], and the probability of F3 is estimated by a simple
application of Markov’s inequality.
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Fig. 7. ∆4 = ∆5 = 0 and ∆min = ∆6.

3.3 Estimating the Size of the Smallest Gap

In order to bound the probability of the failure event F1, we first write Π as
a binary program. We introduce a variable xe ∈ {0, 1} for every edge e ∈ E,
and we denote by S ⊆ {0, 1}m the set of all solutions of Π, e. g., the set of
all spanning trees or all perfect matchings of G. For bounding ∆min, it is not
necessary that the weights are chosen at random, since the bound we will
prove holds for every deterministic choice of the weights. Thus, we assume the
weights to be fixed arbitrarily.

Now let S1, . . . , Sl denote a sequence containing all elements from S ordered
such that w(S1) ≤ . . . ≤ w(Sl). For j ∈ {2, . . . , l}, we define
∆j = mini∈[j−1] c(Si) − mini∈[j] c(Si). Observe that a solution Sj, for j ∈
{2, . . . , l}, is Pareto optimal if and only if ∆j > 0 and that ∆j describes
how much less Sj costs compared to the cheapest solution Si with i < j (see
Figure 7). Thus, we can write ∆min as follows

∆min = min
j∈[l]\{1}

{∆j |∆j > 0} .

Our goal is to bound the probability that ∆min lies below a given value ε.
Therefore, we rewrite Pr [∆min < ε] as follows:

Pr [∆min < ε] =Pr [∃j ∈ [l]\{1} : 0 < ∆j < ε]

≤
∑

j∈[l]\{1}

Pr [∆j > 0] · Pr [∆j < ε|∆j > 0] . (9)

Assume, we could bound Pr [∆j < ε|∆j > 0] from above for every j by some
term a. Then we would have
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Pr [∆min < ε]≤ a ·
∑

j∈[l]\{1}

Pr [∆j > 0]

= a · (E [q] − 1)

≤ a · E [q] ,

where q denotes the number of Pareto optimal solutions.

In this scenario, we can apply the analysis of Beier and Vöcking to obtain
a polynomial upper bound on the expected number of Pareto optimal solu-
tions [3]. The crucial point in their analysis is a lower bound on E [∆j |∆j > 0]
for every j ∈ [l] \ {1}. Unfortunately, we cannot apply their results directly
to bound the conditional probability Pr [∆j < ε|∆j > 0] since, in general, a
bound on the conditional expectation does not imply a bound on the condi-
tional probability. Nonetheless, we prove the following result.

Theorem 8 Let the costs be independent, positive random variables whose

expectations are bounded by 1 and whose densities are bounded by φ, i. e., for

all x ∈ R+ and for all e ∈ E it holds fe(x) ≤ φ. Then, for m = |E| and

ε ≤ (6m8φ2)−1,

Pr [∆min < ε] ≤ 2(6εm5φ2)1/3 .

Analogously to the analysis in [3], we also look at long-tailed distributions
first and, after that, use the results for long-tailed distributions to analyze the
general case.

3.3.1 Long-Tailed Distributions

One can classify continuous probability distributions by comparing their tails
with the tail of the exponential distribution. In principle, if the tail function
of a distribution can be lower bounded by the tail function of an exponential
function, then we say the distribution has a ”long tail”.

Of special interest to us is the behavior of the tail function under a logarithmic
scale. Given any continuous probability distribution with density f : R+ →
R+, the tail function T : R+ → [0, 1] is defined by T (t) =

∫∞
t f(x) dx. We

define the slope of T at x ∈ R+ to be the first derivative of the function
− ln(T (·)) at x, i. e., slopeT (x) = −[ln(T (x))]′. For example, the tail function
of the exponential distribution with parameter λ is T (x) = exp(−λx) so that
the slope of this function is slopeT (x) = λ, for every x ≥ 0. The tail of
a continuous probability distribution is defined to be long if there exists a
constant α > 0 such that slopeT (x) ≤ α, for every x ≥ 0.

We denote by Te the tail function of c(e) and by fe the corresponding density.
Beier and Vöcking prove the following theorem on the expected number of
Pareto optimal solutions.
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Theorem 9 ([3]) Let c(e) be a positive, long-tailed random variable with ex-

pected value at most µ, for each e ∈ E, and let α be a positive real number

satisfying slopeTe
(x) ≤ α, for every x ≥ 0 and every e ∈ E. Finally, let q

denote the number of Pareto optimal solutions and let m = |E|. Then

E [q] ≤ αµm2 + 1 ≤ 2αµm2 .

In order to bound the conditional probability Pr [∆j < ε|∆j > 0], we have to
take a closer look at the proof of Theorem 9. The following lemma is implicitly
contained in this proof.

Lemma 10 ([3]) Let α and µ as in Theorem 9, then, for every j ∈ [l] and

for m = |E|, it holds

Pr [∆j < ε|∆j > 0] ≤ 1 − exp(−mαε) .

Let ε ≥ 0 be fixed arbitrarily. Combining Theorem 9 and Lemma 10 with
equation (9) yields

Pr [∆min < ε]≤
∑

j∈[l]\{1}

Pr [∆j > 0] · Pr [∆j < ε|∆j > 0]

≤ (1 − exp(−mαε)) ·E [q]

≤ ε · mα ·E [q]

≤ ε · 2m3α2µ .

Thus, we obtain the following lemma.

Lemma 11 For each e ∈ E, let c(e) be a positive, long-tailed random variable

with expected value at most µ and let α be a positive real number satisfying

slopeTe
(x) ≤ α, for every x ≥ 0 and every e ∈ E. Then, for every ε ≥ 0 and

for m = |E|, it holds

Pr [∆min < ε] ≤ ε · 2m3α2µ .

3.3.2 General Distributions with Bounded Mean and Bounded Density

For general distributions, a statement like Lemma 10 is not true anymore.
Nonetheless, Beier and Vöcking were able to bound the expected number of
Pareto optimal solutions for any continuous distribution with bounded mean
and bounded density.

Theorem 12 ([3]) Let the costs be independent, positive random variables

whose expectations are bounded by µ and whose densities are bounded by φ,
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i. e., for all x ∈ R+ and for all e ∈ E, it holds fe(x) ≤ φ. Then for m = |E|,

E [q] = O(φµm4) .

We will use Theorem 12 to prove the following bound for ∆min which contains
Theorem 8 as a special case.

Theorem 13 Let µ, φ, and m as in Theorem 12. Then for ε ≤ (6m8φ2µ)−1,

Pr [∆min < ε] ≤ 2(6εm5φ2µ)1/3 .

PROOF. For every edge e ∈ E, we define a random variable xe = Te(c(e)).
For any a > 0, let Fa denote the event that, for at least one edge e ∈ E, it
holds xe ≤ a. We will show, that we can apply the analysis for long-tailed
distributions, if Fa does not occur. We obtain

Pr [∆min < ε] ≤ Pr [Fa] + Pr [∆min < ε ∧ ¬Fa] . (10)

Observe that the xe’s are uniformly distributed over [0, 1], as

Pr [xe ≤ z] =Pr
[

c(e) ≥ T−1
e (z)

]

=
∫ ∞

T−1
e (z)

fe(x) dx

=Te(T
−1
e (z)) = z .

Thus, we obtain

Pr [Fa] = Pr [∃e ∈ E : xe ≤ a] ≤ ma . (11)

We would like to estimate Pr [∆min < ε ∧ ¬Fa] in such a way that we get
rid of the event ¬Fa, since, under the condition ¬Fa, the random variables
c(e) are short-tailed instead of long-tailed. If the event Fa does not occur, the
distribution of c(e) for values larger than T−1

e (a) is not important, thus, we
can replace the tail function Te by a tail function T ∗

e with

T ∗
e (x) =











Te(x) if x ≤ T−1
e (a)

a · exp(−φm(x − T−1
e (a)) otherwise

.

We denote by c∗(e) a random variable drawn according to the tail function
T ∗

e . Furthermore, we denote by ∆∗
min the random variable equivalent to ∆min

but w. r. t. the costs c∗(e) drawn according to the tail functions T ∗
e instead of

Te, and obtain

Pr [∆min < ε ∧ ¬Fa] = Pr [∆∗
min < ε ∧ ¬Fa] ≤ Pr [∆∗

min < ε] . (12)
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Let f ∗
e denote a density corresponding to the tail function T ∗

e . The random
variable c∗(e) is long-tailed, as the following calculation shows:

slopeT ∗
e
(x) = − d

dx
ln(T ∗

e (x)) =
f ∗

e (x)

T ∗
e (x)

≤











φ/a if x ≤ T−1
e (a)

φm otherwise
.

For a ≤ 1/m, we obtain
slopeT ∗

e
(x) ≤ φ/a .

Before we can apply Lemma 11, we have to calculate the expectations of the
random variables c∗(e) drawn according to the tail functions T ∗

e . It holds

∫ ∞

0
xf ∗

e (x) dx =
∫ T−1

e (a)

0
xfe(x) dx +

∫ ∞

T−1
e (a)

xf ∗
e (x) dx

≤µ + aφm
∫ ∞

0
(x + T−1

e (a))e−φmx dx

≤µ + aφm
(
∫ ∞

0
xe−φmx dx +

∫ ∞

0
T−1

e (a)e−φmx dx
)

≤µ +
a

φm
+ a · T−1

e (a) .

An application of Markov’s inequality yields Te(a) = Pr [c(e) ≥ a] ≤ µ/a,
and, hence, also T−1

e (a) ≤ µ/a. Therefore, we have

∫ ∞

0
xf ∗

e (x) dx ≤ µ +
a

φm
+ µ ≤ 2µ + 1 ≤ 3µ .

Applying Lemma 11 with α′ = φ/a and µ′ = 3µ yields, for every ε ≥ 0,

Pr [∆∗
min < ε] ≤ 6εm3φ2µ

a2
. (13)

Equations (10) to (13) result in the following bound

Pr [∆min < ε] ≤ ma +
6εm3φ2µ

a2
.

We choose a = (6εm2φ2µ)1/3 and obtain

Pr [∆min < ε] ≤ 2(6εm5φ2µ)1/3 .

We assumed a to be less or equal to 1/m, thus, we have to choose ε such that
(6εm5φ2µ)1/3 ≤ 1/m. This is equivalent to ε ≤ (6m8φ2µ)−1. 2
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3.4 Proof of Theorem 6

In the following, fix some i ∈ [z] and let F (i)
2 denote the event that the solution

S(i) does not equal the solution S
(i)
b . The situation is very similar to the situ-

ation considered in [4]: We have a linear binary optimization problem and we
need to bound the probability that rounding the coefficients in the objective
function and the constraint changes the optimal solution. In order to bound
this probability, Beier and Vöcking introduce and analyze three structural
properties, called winner, loser, and feasibility gap.

Let S∗ denote the optimal solution of the constraint problem minw(S) w. r. t.
c(S) ≤ ti and S ∈ S and let S∗∗ denote the second best solution. The win-

ner gap ∆ denotes the difference in the objective values of S∗ and S∗∗, i. e.,
∆ = w(S∗∗) − w(S∗). The feasibility gap Γ denotes the slack of S∗ w. r. t. the
threshold ti, i. e., Γ = ti − c(S∗). We call a solution S ∈ S a loser if its ob-
jective value is better than that of S∗ but it is not feasible due to the linear
constraint, i. e., w(S) ≤ w(S∗) and c(S) > ti. Let L denote the set of losers
and let the loser gap Λ denote the distance of L from the threshold ti, i. e.,
Λ = minS∈L c(S) − ti.

The crucial observation in Beier and Vöcking’s analysis is that, whenever win-
ner, loser, and feasibility gap are large, the optimal solution of the constraint
problem stays optimal even w. r. t. the rounded coefficients. In order to see
this, observe that rounding down a coefficient after the b-th bit lowers its
value by at most 2−b. Hence the total cost and the total weight of any solution
S is decreased due to the rounding by at most m2−b. Assume that we first
round the costs and consider the intermediate problem with rounded costs
but unrounded weights. The optimal solution to this intermediate problem
can only deviate from the optimal solution S∗ of the original problem if the
loser gap Λ is smaller than m2−b since otherwise no solution with smaller
weight than S∗ becomes feasible due to the rounding. Now consider the prob-
lem with rounded weights and costs and an optimal solution to this problem.
This solution can only deviate from the optimal solution of the intermediate
problem if the winner gap ∆ of the intermediate problem is smaller than m2−b.

Hence, if S∗ is not the optimal solution w. r. t. the rounded coefficients, then
either the loser gap Λ is smaller than m2−b or the winner gap ∆ of the interme-
diate problem is smaller than m2−b. The following bounds on the probabilities
of these events are shown in [4].

Lemma 14 ([4]) Let m = |E| and let φ denote the maximal density of the

probability distributions for the costs and weights. For every ε ≥ 0,

Pr [∆ ≤ ε] ≤ 2φm · ε
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and

Pr [Λ ≤ ε] ≤ φm2 · ε .

Using this lemma and the previous observations yields the following theorem.

Theorem 15 For every i ∈ [z], Pr
[

F (i)
2

]

≤ 2−b+2m3φ.

PROOF. Combining our previous observations with Lemma 14 yields

Pr
[

F (i)
2

]

≤Pr
[

∆ ≤ m2−b
]

+ Pr
[

Λ ≤ m2−b
]

≤m2 · 2−b+1 · φ + m3 · 2−b · φ
≤ 2−b+2m3φ .

2

By applying a union bound, we get the following corollary.

Corollary 16 Pr [F2] ≤ z · 2−b+2m3φ.

Now we use Theorem 8 and Corollary 16 to prove Theorem 6.

PROOF of Theorem 6. We would like to choose ε, z and b in such a way
that each of the failure probabilities Pr [Fi] is bounded by p/3. By Theorem 8,
choosing ε = p3(1296m5φ2)−1 yields Pr [F1] ≤ p/3. By a simple application
of Markov’s inequality, we obtain that choosing

z =
3888m6φ2

p4

implies Pr [F3] ≤ p/3. With Corollary 16 we obtain, that setting b = log(αm9φ3/p5),
for an appropriate constant α, yields Pr [F2] ≤ p/3.

This proves the theorem, since for b = log(αm9φ3/p5) = Θ(log(mφ/p)) the
failure probability is at most p. 2

4 Conclusions

We considered two approaches to bicriteria optimization problems Π, namely
generating the Pareto set and solving the decision maker’s problem f -Π. In
particular, we developed algorithms to the decision maker’s problem based
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on approximate and smoothed Pareto sets. We showed that there is an FP-
TAS for every f -Π problem if f is quasi-polynomially bounded and if there
is a pseudo-polynomial time algorithm for generating the Pareto set. To by-
pass the limitations of approximate decision making, we turned our attention
to decision making in the context of smoothed analysis. We showed how a
deterministic algorithm for generating the Pareto set with pseudopolynomial
running time can be turned into an algorithm for generating the smoothed
Pareto set with small failure probability and polynomial running time. We
left open the question whether there is a deterministic algorithm for generat-
ing the Pareto set of the Spanning Tree or Perfect matching problem
whose running time is polynomially bounded in the size of the Pareto set.

Finally, let us remark that all results about the (in)approximability of f -
Π problems from Section 2 can be canonically generalized to problems with
more than 2 dimensions. However, we do not know whether our results on
the smoothed complexity from Section 3 are still valid for higher dimensions.
The main open question is whether the expected number of Pareto optimal
solutions can still be bounded polynomially for higher dimensions.
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