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Abstract

We address optimization problems in which we are given contradictory pieces of input informa-
tion and the goal is to find a globally consistent solution that minimizes the extent of disagreement
with the respective inputs. Specifically, the problems we address are rank aggregation, the feedback
arc set problem on tournaments, and correlation and consensus clustering. We show that for all
these problems (and various weighted versions of them), we can obtain improved approximation
factors using essentially the same remarkably simple algorithm. Additionally, we almost settle a
long-standing conjecture of Bang-Jensen and Thomassen and show that unless NP⊆BPP, there is
no polynomial time algorithm for the problem of minimum feedback arc set in tournaments.

1 Introduction

The problem of aggregating inconsistent information from many different sources arises in numerous
contexts and disciplines. For example, the problem of ranking a set of contestants or a set of alter-
natives based on possibly conflicting preferences is a central problem in the areas of voting and social
choice theory. Combining k different complete ranked lists on the same set of n elements into a single
ranking, which best describes the preferences expressed in the given k lists, is known as the problem
of rank aggregation. This problem dates back to as early as the late 18th century when Condorcet
and Borda each proposed voting systems for elections with more than two candidates [Con85, Bor81].
There are numerous applications in sports, databases, and statistics [DKNS01a, FKS03] in which it
is necessary to effectively combine rankings from different sources. Another example of aggregating
information is the problem of integrating possibly contradictory clusterings from existing data sets
into a single representative clustering. This problem is known as consensus clustering or ensemble
clustering and can be applied to remove noise and incongruencies from data sets [FS03] or combine
information from multiple classifiers [Str02].

In the last half century, rank aggregation has been studied and defined from a mathematical
perspective. In particular, Kemeny proposed a precise criterion for determining the “best” aggregate
ranking1 [Kem59, KS62]. Given n candidates and k permutations of the candidates, {π1, π2, . . . , πk},
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a Kemeny optimal ranking of the candidates is the ranking π that minimizes a “sum of distances”,
∑k

i d(π, πi), where d(πj , πk) denotes the number of pairs of candidates that are ranked in different
orders by πj and πk.

2 For example, if πj = (1, 2, 3, 4) and πk = (2, 3, 1, 4), then d(πj , πk) = 2 since
elements 1 and 2 appear in different orders in the two rankings as do elements 1 and 3. In other
words, a Kemeny optimal ranking minimizes the number of pairwise disagreements with the given k
rankings. Throughout this paper we will refer to the problem of finding a Kemeny optimal ranking as
Rank-Aggregation.

More recently, Rank-Aggregation has been studied from a computational perspective. Finding
a Kemeny optimal ranking is NP-hard [BTT89] and remains NP-hard even when there are only four
input lists to aggregate [DKNS01a]. This motivates the problem of finding a ranking that approxi-
mately minimizes the number of disagreements with the given input rankings. Several 2-approximation
algorithms are known [DG77, DKNS01a]. In fact, if we take the best of the input rankings, then the
number of disagreements between this ranking and the k input rankings is no more than twice optimal.

The feedback arc set problem on tournaments is closely related to the Rank-Aggregation prob-
lem. A tournament is a directed graph G = (V,A) such that for each pair of vertices i, j ∈ V , either
(i, j) ∈ A of (j, i) ∈ A. The minimum feedback arc set is the smallest set A′ ⊆ A such that (V,A−A′)
is acyclic. The size of this set is exactly the minimum number of backward edges induced by a linear
ordering of V . Throughout the paper, we refer to this problem as Fas-Tournament. This problem
turns out to be useful in studying Rank-Aggregation, but is also interesting in its own right. For
example, imagine a sports tournament where each player plays against every other player once: How
should we rank the players based on these possibly non-transitive (inconsistent) outcomes? The com-
plementary problem to finding a minimum feedback arc set is the maximum acyclic subgraph problem,
also known as the linear ordering problem. Rank-Aggregation can be cast as a special case of
weighted Fas-Tournament, where the objective is to minimize the total weight of backward edges in
a linear order of the vertices. When the weight of edge (i, j) is the fraction of input rankings that or-
der i before j, solving Rank-Aggregation is equivalent to solving this weighted Fas-Tournament

instance.

The last problem we consider is that of clustering objects based on complete but possibly conflict-
ing pairwise information. An instance of this problem can be represented by a graph with a vertex
for each object and an edge labeled ”+” or ”−” for each pair of vertices, indicating that two elements
should be in the same or different clusters, respectively. The goal is to cluster the elements so as
to minimize the number of “−” edges within clusters and “+” edges crossing clusters. This prob-
lem is known as Correlation-Clustering (on complete graphs) [BBC04]. A useful application of
Correlation-Clustering is optimally combining the output of different machine learning classi-
fiers [Str02, BBC04]. Bansal, Blum and Chawla provide in-depth descriptions of other applications of
Correlation-Clustering [BBC04]. An analog to Rank-Aggregation is known as Consensus-

Clustering. In this problem, we are given k clusterings of the same set of n elements. The goal is
to find a clustering that minimizes the number of pairwise disagreements with the given k clusterings.
This problem can also be used to optimally combine datasets. For example, Consensus-Clustering

has been applied to the problem of integrating data resulting from experiments that measure gene
expression [FS03].

1.1 Previous Work

The minimum feedback arc set problem can be approximated to within O(log n log log n) in general
graphs [ENSS98, Sey95] and has (at least) the same hardness of approximation as the vertex cover

2The distance function d(·, ·) is in fact a distance function and is known as the Kendall tau distance.
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problem [Kar72], which is 1.36 [DS02]. More than a decade ago, Bang-Jensen and Thomassen con-
jectured that Fas-Tournament is NP-hard [BJT92]. However, for the past decade, no progress has
been made on settling this conjecture. In contrast, the minimum feedback vertex set problem on
tournaments is NP-hard [Spe89] and is approximable to within 5/2 [CDZ00].

We are not aware of any approximation for Fas-Tournament that improves on the bound for the
feedback arc set problem in general graphs. The complementary maximization problem on tourna-
ments has been studied; Arora, Frieze and Kaplan [AFK96] and Frieze and Kannan [FK99] gave PTASs
for the maximum acyclic subgraph problem in dense graphs, which implies a PTAS for the problem
on tournaments. Interestingly, since the appearance of the conference version of this work [ACN05],
Kenyon-Mathieu and Schudy [KMS07] used the maximization PTAS as a main component in a min-
imization PTAS. This significantly improves on the result in this work for the ranking problems (in
particular for Rank-Aggregation), since here we guarantee only constant approximation factors.
Neverthelss, our algorithms are very simple and practical and more suitable for applications. Refer to
Section 10 for a complete survey and comparison with followup work.

There are two well-known factor 2-approximation algorithms for Rank-Aggregation. Since both
Rank-Aggregation and Consensus-Clustering are equivalent to finding the median of a set of
points with a metric distance function, it easy to see that choosing one of the given lists or given clusters
at random, yields a 2-approximation algorithm. We refer to these algorithms as Pick-A-Perm and
Pick-A-Cluster, respectively. The Spearman’s footrule distance between two permutations πi and
πj on n elements is defined to be: F (πi, πj) =

∑n
k=1 |πi(k) − πj(k)|. The footrule distance is no more

than twice the Kemeny distance [DG77] and can be computed in polynomial time via a minimum cost
matching [DKNS01a, DKNS01b]. These observations yield another 2-approximation.

Correlation-Clustering has been studied both on general and complete graphs. Both the
minimization and maximization versions have been investigated. Bansal, Blum and Chawla gave
the first constant-factor approximation for the problem of minimizing disagreements on the complete
graph [BBC04]. This factor was improved to 4 by rounding a linear program [CGW03]. The weighted
version of Correlation-Clustering, in which edges have fractional ± assignments has also been
studied. Each edge is assigned fractional values w+

ij and w−
ij rather than a discrete “+” or “−”

label. When the edge weights satisfy the probability constraints (i.e. w+
ij + w−

ij = 1 for all edges),
the best previous approximation factor was 7 [GMT05, BBC04]. When the edge weights satisfy the
probability and the triangle inequality constraints (see Section 1.2), the best previous approximation
factor was 3 [GMT05]. Correlation-Clustering on complete graphs is MAX-SNP-hard [CGW03]
and Consensus-Clustering is NP-hard [Wak98]. However, Consensus-Clustering is not known
to be NP-hard if the number of input clusters is constant [FS03].

1.2 Our Results

We give improved approximation algorithms for the following optimization problems:

• Fas-Tournament,

• Rank-Aggregation,

• Correlation-Clustering and

• Consensus-Clustering.

We show that they can all be approximated using essentially the same remarkably simple algorithm.
For example, the algorithm for Fas-Tournament, called KwikSort, is as follows: First, we pick a
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random vertex i to be the “pivot” vertex. Second, we place all vertices connected to i with an in-edge
on the left side of i and all vertices connected to i with an out-edge on the right side of i. We then
recurse on the two tournaments induced by the vertices on each side.

The analysis of KwikSort yields a 3-approximation algorithm for Fas-Tournament, improving
on the best-known previous factor of O(log n log log n). Our analysis relies on a new technique for
arguing a lower bound for Fas-Tournament by demonstrating a fractional packing of edge disjoint
directed triangles. The KwikSort algorithm is presented in Section 3, in which we introduce the
basic ideas we use throughout the paper. In Section 4, we extend these ideas to approximate weighted
Fas-Tournament.

We further extend our techniques to Rank-Aggregation in Section 5. We convert the Rank-

Aggregation instance into a weighted Fas-Tournament instance, which we convert to an un-
weighted Fas-Tournament instance using the majority tournament (see Definition 1), and we then
run KwikSort on this majority tournament. Although this algorithm by itself is yet another 2-
approximation, the following is an 11/7-approximation: run both KwikSort and Pick-A-Perm and
output the best solution. This improved approximation ratio is due to the fact that each algorithm
does well on instances in which the other algorithm does poorly.

A simple lower bound on the value of an optimal solution for the weighted Fas-Tournament is
to take the sum over all vertices i < j of min{wij , wji}. In contrast, our analysis uses a stronger lower
bound based on the weight of directed triangles (“bad triangles”) in the majority tournament. Inter-
estingly, the analysis of our simple combinatorial algorithm bounds the integrality gap of a natural LP
relaxation for Fas-Tournament. In fact, it demonstrates an LP dual solution based on probabilities
of random events occurring during the execution.

For Correlation-Clustering and Consensus-Clustering we present similar combinatorial
algorithms and analyses, with a different notion of “bad triplets”. Interestingly, this gives results
that are analogous to the results for Fas-Tournament and Rank-Aggregation and improve upon
previously known approximation factors. We discuss Correlation-Clustering and Consensus-

Clustering in Section 6.

Our analysis is applied to various cases of weighted Fas-Tournament (resp. weighted Correlation-

Clustering). More precisely, we analyze the following cases:

(i) Probability Constraints: wij + wji = 1 (resp. w+
ij + w−

ij = 1) for all i, j ∈ V .

(ii) Triangle Inequality: wij ≤ wik + wkj (resp. w−
ij + w−

jk ≤ w−
jk) for all i, j, k ∈ V .

(iii) Aggregation: Edge weights are a convex combination of actual permutations (resp. clusters).
Constraints (i) and (ii) are implied in this case.

As indicated, in instances of weighted Fas-Tournament that correspond to Rank-Aggregation,
the edge weights obey both the probability constraints and triangle inequality, although these instances
corresponding to Rank-Aggregation are even more restricted.

Table 1 summarizes the approximation factors we achieve for the different scenarios with the combi-
natorial algorithms. Additionally, we consider LP relaxations for Fas-Tournament and Correlation-

Clustering. After choosing a pivot vertex, instead of deterministically placing vertices on the right
or left side (in KwikSort), or in a cluster (in KwikCluster), we decide randomly based on LP
values. This results in vastly improved approximation factors.

Finally, we show that Fas-Tournament has no polynomial time algorithm assuming NP*BPP.
The question of NP-hardness of Fas-Tournament has been a long-standing conjecture of Bang-
Jensen and Thomassen [BJT92]. We show a randomized reduction from the problem of finding a
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Ordering Clustering Ordering-LP Clustering-LP

Unweighted
Instances

3 (*) 3 (4)[CGW03] 5/2 5/2

Probability
Constraints (i)

5 (*) 5 (9) [CGW03, BBC04] 5/2 5/2

Triangle
Inequality (ii)

2 (*) N/A (**)

Probability
Constraints +
Triangle
Inequality (i,ii)

2 (*) 2 (3) [GMT05] 2 2

Aggregation (iii) 11/7 (2) 11/7 (2) 4/3 4/3

Table 1: The previous best-known factors are shown in parentheses. (*) The best-known factor was
the O(log n log log n) algorithm [ENSS98, Sey95] for digraphs. (**) Our techniques cannot directly
be applied to weighted Correlation-Clustering with triangle inequality but no probability con-
straints.

minimum feedback arc set in general digraphs (which is known to be NP-hard) to the special case
of tournaments. This construction has been recently derandomized by Noga Alon [Alo06], and the
conjecture is therefore proven completely. We present the weaker randomized version here.

In Section 7, we extend our ideas to round LP’s for Fas-Tournament and Correlation-

Clustering. In Section 8, we prove certain polynomial inequalities that are stated in several lemmas
in the preceding sections. In Section 9, we prove hardness results for Fas-Tournament. In Sec-
tion 10 we discuss work that has appeared since the publication of the conference version of this work
[ACN05], and finally in Section 11 we discuss open problems.

2 Preliminaries and Definitions

We study the following problems in this paper. In what follows, we fix a ground set V = {1, . . . , n}.

• Fas-Tournament: (Minimum Feedback Arc Set in Tournaments) We are given a tournament
G = (V,A) (a digraph with either (i, j) ∈ A or (j, i) ∈ A for all distinct i, j ∈ V ). We want to
find a permutation π on V minimizing the number of pairs ordered pairs (i, j) such that i <π j
and (j, i) ∈ A (backward edges with respect to π).3 In a weighted Fas-Tournament instance,
we are given weights wij ≥ 0 for all ordered i, j ∈ V . We want to find a permutation π on V
minimizing

∑

i,j:i<πj wji. Clearly, the unweighted case can be encoded as a 0/1 weighted case.

• Rank-Aggregation: We are given a list of permutations (rankings) corresponding to k voters
π1, .., πk on V . We want to find a permutation π minimizing the sum of distances

∑k
i=1 d(π, πi),

where d(π, ρ) is the number of ordered pairs (i, j) such that i <π j but j <ρ i (the Kemeny
distance).

• Correlation-Clustering: Between any two unordered i, j ∈ V we either have a “+” or a
“−” relation, indicating that i and j are similar or different, respectively. We let E+ (resp. E−)

3By i <π j we mean that π ranks i before j.
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denote the set of pairs i 6= j which are “+”-related (resp. “−”-related). We want to find disjoint
clusters C1, . . . , Cm covering V and minimizing the number of disagreement pairs (“+” pairs in
different clusters or “−” pairs in the same cluster). In a weighted Correlation-Clustering

instance, we assign for each pair i, j two weights w+
ij ≥ 0 and w−

ij ≥ 0. The cost of a clustering

will now be the sum of w+
ij over all i, j in different clusters, plus the sum of w−

ij over all i, j in
the same cluster. Clearly, the unweighted case can be encoded as a 0/1 weighted case.

• Consensus-Clustering: We are given a list of clusterings corresponding to k voters C1, . . . , Ck

of V , and we wish to find one clustering C that minimizes
∑k

i=1 d(C, Ci), where the distance
d(C,D) between two clusterings is the number of unordered pairs i, j ∈ V that are clustered
together by one and separated by the other.

For a weighted Fas-Tournament instance, we will apply our algorithm for Fas-Tournament on
an unweighted graph to a majority tournament, which is an unweighted tournament that corresponds
to the input weighted tournament. Similarly, a weighted Correlation-Clustering instance has a
corresponding unweighted majority instance.

Definition 1 Given an instance (V,w) of weighted Fas-Tournament, we define the unweighted
majority tournament Gw = (V,Aw) as follows: (i, j) ∈ Aw if wij > wji. If wij = wji, then we decide
(i, j) ∈ Aw or (j, i) ∈ Aw arbitrarily.

Given an instance (V,w+, w−) of weighted Correlation-Clustering, we define the unweighted
majority instance (V,E+

w , E−
w ) as follows: (i, j) ∈ E+

w if w+
ij > w−

ij , and (i, j) ∈ E−
w if w−

ij > w+
ij . If

w+
ij = w−

ij , then we decide arbitrarily.

Note that although the majority instances depend on the weights of the weighted instances, they are
unweighted instances.

We will use (i, j, k) to denote the directed triangle (i → j,j → k, k → i). It will be clear from the
context whether a triangle is the set of its vertices or its edges.

3 Minimum Feedback Arc Set in Tournaments

Let G = (V,A) be a Fas-Tournament instance. We present the following algorithm KwikSort for
approximating it.
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KwikSort(G = (V, A))

If V = ∅ then return empty-list

Set VL → ∅, VR → ∅.
Pick random pivot i ∈ V .

For all vertices j ∈ V \ {i}:
If (j, i) ∈ A then

Add j to VL (place j on left side).
Else (If (i, j) ∈ A)

Add j to VR (place j on right side).

Let GL = (VL, AL) be tournament induced by VL.

Let GR = (VR, AR) be tournament induced by VR.

Return order KwikSort(GL),i,KwikSort(GR).
(Concatenation of left recursion, i, and right recursion.)

In our analysis, we will use the following notation. Let COPT denote the cost of an optimal solution.
Let CKS denote the cost of KwikSort on G = (V,A).

Theorem 2 KwikSort is a randomized algorithm for Fas-Tournament with expected cost at most
three times the optimal cost.

Proof: We want to show that E
[

CKS
]

≤ 3COPT . An edge (i, j) ∈ A becomes a backward edge if
and only if there exists a third vertex k such that (i, j, k) form a directed triangle in G and k was
chosen as a pivot when all three were input to the same recursive call. Pivoting on k would then place
i to its right and j to its left, rendering edge (i, j) backward. In this case, we will charge a unit cost
of the backward edge (i, j) to the directed triangle (i, j, k). Let T denote the set of directed triangles.
For a directed triangle t ∈ T , denote by At the event that one of its vertices is chosen as pivot when all
three are part of the same recursive call. Let pt denote the probability of event At. Now we observe,
that a triangle t is charged a unit cost exactly when At occurs, and it can be charged at most once.
Therefore, the expected cost of KwikSort is exactly E

[

CKS
]

=
∑

t∈T pt.

Clearly, if we had a set of edge disjoint triangles, then its cardinality would be a lower bound
for COPT . This is also true fractionally : If {βt}t∈T is a system of nonnegative weights on triangles
in T such that for all e ∈ A,

∑

t:e∈t βt ≤ 1, then COPT ≥
∑

t∈T βt. Indeed, consider the following
LP relaxation for the problem: minimize

∑

e∈A xe, subject to xe1
+ xe2

+ xe3
≥ 1 for edge sets

{e1, e2, e3} ∈ T , and xe ≥ 0 for all e ∈ A. The solution to this LP clearly lower bounds COPT . It is
easy to show that a packing {βt} is a feasible solution to the dual LP, hence a lower bound on the
optimal. Specifically, let C represent the set of directed cycles in G, and let yc correspond to cycle
c ∈ C. Then the dual LP is:

max
∑

c∈C

yc

∀e ∈ E,
∑

c∈C:e∈c

yc ≤ 1

0 ≤ yc ≤ 1.
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We will demonstrate such a packing using the probabilities pt. Let t = (i, j, k) be some triangle.
Conditioned on the event At, each one of the 3 vertices of t was the pivot vertex with probability 1/3,
because all vertices input to a recursive call are chosen as pivot with equal probability. Therefore, any
edge e = (i, j) of t becomes a backward edge with probability 1/3 (still, conditioned on At). More
formally, if we let Be denote the event that e becomes a backward edge, then

Pr [Be ∧ At] = Pr [Be|At] Pr [At] =
1

3
pt.

The event Be ∧ At means that the backwardness of edge e was charged to triangle t to which it is
incident. The main observation of this proof is as follows: for two different triangles t, t′ ∈ T sharing
an edge e, the events Be ∧At and Be ∧At′ are disjoint. Indeed, an edge e can be charged to only one
triangle t incident to e. Therefore, for all e ∈ E,

∑

t:e∈t

1

3
pt ≤ 1 . (1)

So {pt/3}t∈T is a fractional packing of T . Thus, COPT ≥
∑

t∈T pt/3 = E
[

CKS
]

/3, as required. 2

4 Minimum Feedback Arc Set in Weighted Tournaments

Let (V,w) be a weighted Fas-Tournament instance, where w ∈ (R+)
n(n−1)

. We suggest the following
approximation algorithm: construct the unweighted majority tournament Gw = (V,Aw) and return
the ordering generated by KwikSort(Gw). We analyze this algorithm.

For an edge e = (i, j) ∈ Aw, we let w(e) = wij , and w(e) = wji = 1−w(e) ≤ w(e). Fix an optimal
solution π∗, and let c∗(e) denote the cost incurred to it by e = (i, j) ∈ Aw, that is, c∗(e) = w(e) if
j <π∗ i, else c∗(e) = w(e). So COPT =

∑

e∈Aw

c∗(e). Let T denote the set of directed triangles in Gw.
For any t = (e1, e2, e3) ∈ T , we define c∗(t) = c∗(e1)+c∗(e2)+c∗(e3) and w(t) = w(e1)+w(e2)+w(e3).
Note that c∗(t) is always less than w(t). Finally, let CKS denote the cost the solution returned by
KwikSort(V,Gw).

Lemma 3 For an instance (V,w) of weighted Fas-Tournament, if there exists a constant α > 0
such that w(t) ≤ αc∗(t) for all t ∈ T , then E

[

CKS
]

≤ αCOPT , that is, KwikSort(Gw) is an expected
α-approximate solution.

Proof: Note that for any triangle t, any ordering will incur cost at most w(t) on the edges of this
triangle, whereas the optimal cost is c∗(t). The assumption that w(t) < αc∗(t) means that we do
not incur much more cost than the optimal solution. In order to extend this to the whole graph, we
generalize the triangle packing idea presented in Section 3.

When KwikSort is run on Gw, an edge e ∈ Aw is heavily charged if it becomes a backward edge,
and thus incurs the heavy cost w(e). It is lightly charged if it incurs the light cost w(e). Clearly,
e = (i, j) ∈ Aw is heavily charged if and only if a third vertex k is chosen as pivot when all three
i, j, k are in the same recursive call, and (i, j, k) form a directed triangle in Gw. We charge this cost to
triangle t = (i, j, k). Again we consider the set T of directed triangles in Gw, and their corresponding
events At with probability pt (see Section 3). Fix a triangle t ∈ T with edges e1, e2, e3. Conditioned
on At, each of e1, e2 and e3 are equally likely to be heavily charged, so the expected charge of t is
1
3ptw(t). The probability that an edge e ∈ Aw does not incur a heavy cost (not charged to a triangle
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t ∈ T ) is exactly 1 −
∑

t:e∈t
1
3pt. Therefore, E

[

CKS
]

= BKS + FKS, where

BKS =
∑

t∈T

1

3
ptw(t)

FKS =
∑

e∈Aw

(

1 −
∑

t:e∈t

1

3
pt

)

w(e).

We rearrange the sum COPT =
∑

e∈T c∗(e) as COPT = BOPT + FOPT , where

BOPT =
∑

t∈T

1

3
ptc

∗(t)

FOPT =
∑

e∈Aw

(

1 −
∑

t:e∈t

1

3
pt

)

c∗(e) .

Notice that for all e ∈ Aw, the term (1 −
∑

t:e∈t
1
3pt) is nonnegative (see Section 3). Obviously,

FKS ≤ FOPT , because w(e) ≤ c∗(e) for any e ∈ Aw. Therefore, if for some α > 0, w(t) ≤ αc∗(t) for
all t, then E

[

CKS
]

≤ αCOPT as required. 2

Lemma 4 If the weights satisfy the probability constraints (wij + wji = 1), then w(t) ≤ 5c∗(t) for all
t ∈ T . If the weights satisfy the triangle inequality constraints (wij ≤ wik + wkj), then w(t) ≤ 2c∗(t).

Proof: First assume probability constraints on the weights. In this case, we claim that w(t) ≤ 5c∗(t).
Indeed, in this case w(e) ≥ 1/2 for all e ∈ Aw, and w(e) = 1−w(e). Fix a triangle t containing edges
e1, e2, e3, and assume

1/2 ≤ w(e1) ≤ w(e2) ≤ w(e3) ≤ 1 . (2)

Clearly, w(t) = w(e1) + w(e2) + w(e3) ≤ 2 + w(e1). Any solution has to direct at least one of the
edges in t backwards, therefore c∗(t) ≥ w(e1). Since w(e1) ∈ [1/2, 1], we therefore have w(t) ≤ 5c∗(t).
Consequently, KwikSort has an expected approximation ratio of at most 5 on weighted tournament
instances with probability constraints on the weights.

Now we assume that the edge weights satisfy the triangle inequality. Fix t ∈ T with edge weights
w(e1), w(e2), w(e3). By the triangle inequality,

w(e3) ≤ w(e1) + w(e2)

w(e1) ≤ w(e2) + w(e3)

w(e2) ≤ w(e3) + w(e1)

(3)

Summing up, we get w(t) ≤ 2(w(e1)+w(e2)+w(e3)). But c∗(t) ≥ w(e1)+w(e2)+w(e3), because the
optimal solution must at least pay the lower cost at each edge. This concludes the proof. 2

In the conference version [ACN05], a weaker bound of 3 was proven for the triangle inequality
constraints only case and 2 for the combined constraints. This improvement in Lemma 4 is due to
Warren Schudy.

Combining Theorem 3 and Lemma 4, we get

Theorem 5 Running algorithm KwikSort on Gw gives an expected 5 and 2 approximation for the
probability constraints case and the triangle inequality constraints case, respectively.
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5 An Improved Approximation Ratio for Rank Aggregation

Let {π1, . . . , πk} be a Rank-Aggregation instance over some V . Consider the corresponding equiv-
alent weighted Fas-Tournament instance (V,w) (where wij is the fraction of inputs ranking i before
j). Clearly, this weight system {wij} is a convex combination of acyclic tournaments. Therefore, by
linearity, the edge weights obey the probability constraints and the triangle inequality constraints.
Theorem 5 shows that we get a 2 approximation for this case, but the additional structure in these
instances allows us to improve upon this factor. As stated in the introduction, there already exists a
well known 2-approximation algorithm for Rank-Aggregation:

Pick-A-Perm({π1, π2, . . . πk})
Output a permutation πi chosen uniformly at random

from the input permutations.

(In practice, we can pick the permutation πi that minimizes the cost, but we use the randomized version
for the analysis.) Let CPAP denote the cost of Pick-A-Perm on the Rank-Aggregation instance.
Let Gw = (V,Aw) be the corresponding unweighted majority tournament. Let z(e) = 2w(e)w(e),
where w(e) and w(e) are defined as in Section 4. We claim that

E
[

CPAP
]

=
∑

e∈Aw

z(e) . (4)

Indeed, edge e ∈ Aw becomes a backward (respectively, forward) edge with probability w(e) (respec-
tively, w(e)), in which case it incurs the cost of w(e) (respectively, w(e)). For a directed triangle
t = (e1, e2, e3) ∈ T , we let z(t) = z(e1) + z(e2) + z(e3). The following theorem shows how to analyze
a “convex combination” of KwikSort and Pick-A-Perm:

Theorem 6 If there exist constants β ∈ [0, 1] and γ > 0 such that

βw(t) + (1 − β)z(t) ≤ γc∗(t) for all t ∈ T, and

βw(e) + (1 − β)z(e) ≤ γc∗(e) for all e ∈ Aw,

then the best of KwikSort and Pick-A-Perm is a γ-approximation for Rank-Aggregation.

Proof: We use the notation COPT , FOPT , BOPT , c∗(e), c∗(t) defined in Section 4. We rearrange (4)
as E

[

CPAP
]

= BPAP + FPAP , where

BPAP =
∑

t∈T

1

3
ptz(t), FPAP =

∑

e∈Aw

(

1 −
∑

t:e∈t

1

3
pt

)

z(e) .
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If we now have β, γ as in the statement of the theorem, then (keeping in mind the crucial fact that
(

1 −
∑

t:e∈t
1
3pt

)

≥ 0 for all e ∈ Aw),

βE
[

CKS
]

+ (1 − β)E
[

CPAP
]

= βBKS + (1 − β)BPAP + βFKS + (1 − β)FPAP

=
∑

t∈T

1

3
pt (βw(t) + (1 − β)z(t))

+
∑

e∈Aw

(

1 −
∑

t:e∈t

1

3
pt

)

(βw(e) + (1 − β)z(e))

≤
∑

t∈T

1

3
ptγc∗(t) +

∑

e∈Aw

(

1 −
∑

t:e∈t

1

3
pt

)

γc∗(e)

= γCOPT ,

as required. 2

Lemma 7 For all t ∈ T , 3
7w(t) + 4

7z(t) ≤ 11
7 c∗(t) , and for all e ∈ Aw, 3

7w(e) + 4
7z(e) ≤ 11

7 c∗(e).

Proof: The second inequality in the lemma is obtained by verifying the simple fact that w(e) ≤ c∗(e)
and z(e) ≤ 2c∗(e) for all e ∈ Aw. To prove the first inequality, we want to show that

f(t) =
3

7
w(t) +

4

7
z(t) −

11

7
c∗(t) ≤ 0, (5)

where (slightly changing notation) t = (w1, w2, w3) and

w(t) = w1 + w2 + w3

z(t) = 2w1(1 − w1) + 2w2(1 − w2) + 2w3(1 − w3)

c∗(t) = 1 − w2 + 1 − w3 + w1

1/2 ≤ w1 ≤ wj ≤ 1 for j = 2, 3

w1 + w2 + w3 ≤ 2

The proof can be completed by finding the global maximum of f(t) on the defined polytope using
standard techniques of multivariate calculus. 2

Note that for (w1, w2, w3) = (1/2, 3/4, 3/4) we obtain w(t) = 2, z(t) = 5/4 and c∗(t) = 1, so (5)
is tight. Theorem 8 follows from Theorem 6 and Lemma 7, using β = 3/7 and γ = 11/7:

Theorem 8 The best of KwikSort on Gw and Pick-A-Perm is an expected 11/7 approximation
for Rank-Aggregation.

In using Theorem 6 to derive bounds we can also take advantage of a priori knowledge of the system
of weights w. We illustrate this using the special case of only k = 3 voters, a case of independent
interest in applications [CCMR06]:

Lemma 9 If k = 3, then for all t ∈ T , 2
5w(t) + 3

5z(t) ≤ 6
5c∗(t) and for all e ∈ Aw, 2

5w(e) + 3
5z(e) ≤

6
5c∗(e).

11



Proof: In this special case, we have that w(e) ∈ {2/3, 1} for all e ∈ Aw, and w(e1) = w(e2) = w(e3) =
2/3 for all t = (e1, e2, e3) ∈ T , therefore w(t) = 2, z(t) = 4/3 and c∗(t) ≥ 4/3. The inequalities can
now be easily verified. 2

Theorem 10 follows from Theorem 6 and Lemma 9, using β = 2/5 and γ = 6/5:

Theorem 10 The best of KwikSort on Gw and Pick-A-Perm is an expected 6/5 approximation
for Rank-Aggregation when there are k = 3 voters.

6 Correlation Clustering and Consensus Clustering

In this section, we show how to apply the techniques presented in Section 3 to Correlation-

Clustering and Consensus-Clustering. Recall that our goal is to minimize disagreements. In
Fas-Tournament, we used “bad triangles” in tournaments to charge the disagreements in our so-
lution. In Correlation-Clustering, disagreements in the solution can also be charged to “bad
triplets”, which will be defined shortly. Thus, the bad triplets replace the role taken by the directed
triangles in tournaments. Let (V,E+, E−) be a Correlation-Clustering instance. Our algorithm
KwikCluster, which is an analog of KwikSort, is defined as follows:

KwikCluster(G = (V, E+, E−))

If V = ∅ then return ∅
Pick random pivot i ∈ V .

Set C = {i}, V ′ = ∅.

For all j ∈ V, j 6= i:
If (i, j) ∈ E+ then

Add j to C
Else (If (i, j) ∈ E−)

Add j to V ′

Let G′ be the subgraph induced by V ′.

Return C ∪KwikCluster(G′) .

As in the analysis of KwikSort, a pair i, j incurs a unit cost if a third vertex k is chosen as pivot
when the triplet (i, j, k) is in the same recursive call, and there are two “+” and one “−” relations
among i, j, k (doesn’t matter in which order). A triplet (i, j, k) is therefore a bad triplet if it has two
“+” and one “−” relations.4 Let T denote the set of (not necessarily disjoint) bad triplets. For each
t = (i, j, k) ∈ T we define At as the event that all three i, j, k are in the same recursive call when the
first one among them was chosen as pivot. Let pt denote the probability of At. The analysis continues
identically to that of KwikSort.

Theorem 11 Algorithm KwikCluster is a randomized expected 3-approximation algorithm for
Correlation-Clustering.

4A Correlation-Clustering instance with no bad triplets induces a consistent clustering, just as a tournament
with no 3-cycles is acyclic. Our algorithms have an optimal cost of 0 on these instances.
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Now let (V,w+, w−) be a weighted Correlation-Clustering instance, where w+, w− ∈ (R+)(
n

2
).

Unlike weighted Fas-Tournament, we will only consider weight systems that satisfy the probability
constraints w+

ij + w−
ij = 1. We create the unweighted majority Correlation-Clustering instance

Gw = (V,E+
w , E−

w ) and return the clustering generated by KwikCluster(Gw).

Triangle inequality constraints in weighted Correlation-Clustering have the following form:
for all i, j, k, w+

ij + w+
jk + w−

ik ≤ 2. (Equivalently, w−
ik ≤ w−

ij + w−
jk.) Theorem 12 is analogous to

Theorem 5:

Theorem 12 Algorithm KwikCluster on Gw is a 5 (respectively, 2) approximation for weighted
Correlation-Clustering with probability constraints (respectively, with probability and triangle
inequality constraints combined).

The proof is almost identical to that of Theorem 5, with “+ + −” (bad) triplets in Gw replacing the
role of directed (bad) triangles in tournaments.

Solving Consensus-Clustering is equivalent to solving weighted Correlation-Clustering

with w+
ij (respectively, w−

ij) as the fractional number of input clusters with a “+” (respectively, “−”)
relation between i and j. This weighted Correlation-Clustering instance obeys both the probabil-
ity constraints and the triangle inequality constraints, but we can do better than the 2 approximation
guaranteed by Theorem 12. Analysis almost identical to the one in Section 5 gives an expected 11/7
approximation for this case. The KwikCluster is coupled with Pick-A-Cluster, which is defined
analogously to Pick-A-Perm: Simply return a cluster chosen uniformly at random from the list.

Theorem 13 The best of KwikCluster on Gw and Pick-A-Cluster has an expected approxima-
tion ratio of at most 11

7 for Consensus-Clustering.

7 Using the Pivot Scheme for Rounding the LP

We show how the techniques introduced above can be used for rounding the LP’s for Fas-Tournament

and Correlation-Clustering. We consider the LP’s given in Figure 1 [Pot80, CGW03]. Given
a solution to the LP, we consider algorithms LP-KwikSort and LP-KwikCluster (Figure 1) for
rounding the solutions for Fas-Tournament and Correlation-Clustering, respectively. The
main idea of these algorithms is that, after we choose some pivot, we use the LP solution variables
to randomly decide where to put all other vertices, instead of deciding greedily. We note that our
LP-based algorithms only solve the LP once and use the same LP solution in all recursive calls.

Theorem 14 Our sorting LP rounding algorithm LP-KwikSort obtains the following approximation
ratios on weighted Fas-Tournamentinstances:

• 5/2 when the weights satisfy the probability constraints,

• 2 when the weights satisfy the probability and the triangle inequality constraints, and

• 4/3 for Rank-Aggregation.

The result for Rank-Aggregation is obtained by returning the better of LP-KwikSort and Pick-

A-Perm.

Theorem 15 Our clustering LP rounding algorithm LP-KwikClustering obtains the following ap-
proximation ratios on weighted Correlation-Clustering instances:

13



LP for weighted Fas-Tournament LP for weighted Correlation-Clustering

minimize
∑

i<j(xijwji + xjiwij) s.t. minimize
∑

i<j(x
+
ijw

−
ji + x−

jiw
+
ij) s.t.

xik ≤ xij + xjk for all distinct i, j, k x−
ik ≤ x−

ij + x−
jk for all distinct i, j, k

xij + xji = 1 for all i 6= j x+
ij + x−

ij = 1 for all i 6= j

xij ≥ 0 for all i 6= j x−
ij, x

+
ij ≥ 0 for all i 6= j

LP-KwikSort(V, x)
A recursive algorithm for rounding the LP for
weighted Fas-Tournament. Given an LP
solution x = {xij}i,j∈V , returns an ordering on
the vertices.

If V = ∅ then return empty-list

Pick random pivot i ∈ V.
Set VR = ∅, VL = ∅.

For all j ∈ V, j 6= i:
With probability xji

Add j to VL.
Else (With probability xij = 1 − xji)

Add j to VR.

Return order

LP-KwikSort(VL, x), i,LP-KwikSort(VR, x)

LP-KwikCluster(V, x+, x−)
A recursive algorithm for rounding the LP for
weighted Correlation-Clustering. Given an
LP solution x+ = {x+

ij}i<j , x− = {x−
ij}i<j,

returns a clustering of the vertices

If V = ∅ then return ∅
Pick random pivot i ∈ V.
Set C = {i}, V ′ = ∅.

For all j ∈ V, j 6= i :
With probability x+

ij

Add j to C.
Else (With probability x−

ij = 1 − x+
ij)

Add j to V ′.

Return clustering

{C}∪LP-KwikCluster(V ′, x+, x−).

Figure 1: Standard LP relaxations and their corresponding rounding algorithms.
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• 5/2 when the weights satisfy the probability constraints,

• 2 when the weights satisfy the probability and the triangle inequality constraints, and

• 4/3 for Consensus-Clustering.

The result for Consensus-Clustering is obtained by returning the better of LP-KwikCluster and
Pick-A-Cluster.

The bounds in Theorems 14 and 15 are obtained with respect to the optimal corresponding LP
solution, and hence imply bounds on their integrality gaps. We further remark that the integrality
gap of the Fas-Tournament LP can be lower bounded by 3/2. This follows from the fact that for
any tournament on n vertices, there is a feasible solution to the Fas-Tournament LP that has value
at most m/3 and there exist tournaments with no minimum feedback arc set of size smaller than
m(1/2 − ε), where ε is arbitrarily small, and where m is the number of edges.

We now prove Theorems 14 and 15. The common technique will be to reduce the problem to
proving global bounds of certain multinomials in high dimensional polytopes. We start with the
analysis of LP-KwikSort (Theorem 14).

Let CLKS denote the cost of the ordering returned by the rounding algorithm LP-KwikSort.
We divide all pairs i, j into those that are charged dangerously and those that are charged safely by
the algorithm. The safe edges are charged when one of their endpoints is chosen as pivot, and the
other endpoint is in the same recursive call. The expected cost of pairs that are charged safely in
LP-KwikSort is

xijwji + xjiwij , (6)

which is exactly the contribution to the LP solution. We let c∗ij denote expression (6). So the value of
the LP solution is CLP =

∑

i<j c∗ij .

A pair i, j is charged dangerously when a third vertex k is chosen as pivot, all three i, j, k are in
the same recursive call, and i, j are placed on opposite sides of k. The charge is wij (respectively, wji)
if j (respectively, i) is placed on the left side of k and i (respectively, j) on its right. In either case, we
charge this cost to the triplet i, j, k. We let T denote the set of all triplets of distinct vertices, and for
any t = {i, j, k} ∈ T we denote by At the event that all of i, j, k are in the same recursive call when
the first one among them is chosen as pivot. Let pt denote the probability of At. Let Bt

ij denote the
event that (i, j) is dangerously charged to triangle t, in that order (i to the left, j to the right). Then
we have for any t = {i, j, k},

Pr
[

At ∧ Bt
ij

]

= Pr [At] Pr
[

Bt
ij|At

]

=
1

3
ptxikxkj.

(The 1/3 comes from the fact that conditioned on At, each one of i, j, k was equally likely to be the
pivot vertex.) Denote qt

ij = 1
3xikxkj. So the total expected charge to a triplet t = {i, j, k} is pty(t),

where
y(t) = qt

ijwji + qt
jiwij + qt

jkwkj + qt
kjwjk + qt

kiwik + qt
ikwki.

Now we notice that for any t = {i, j, k} and t′ = {i, j, k′} (two triplets sharing a pair i, j), the
events At ∧ (Bt

ij ∨ Bt
ji) and At′ ∧ (Bt′

ij ∨ Bt′
ji) are disjoint, because a pair i, j can be split into two

different recursion branches only once. Thus,

∑

t:i,j∈t

pt(q
t
ij + qt

ji) ≤ 1 .
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The above expression is exactly the probability that the pair i, j is dangerously charged. Therefore,
the total expected cost of LP-KwikSort is E

[

CLKS
]

= BLKS + FLKS, where

BLKS =
∑

t

pty(t)

FLKS =
∑

i<j



1 −
∑

t:i,j∈t

pt(q
t
ij + qt

ji)



 c∗ij .

The following expression is a rearrangement of the sum CLP =
∑

i<j c∗ij : CLP = BLP +FLP , where

BLP =
∑

t

pt

∑

{i,j}⊆t

(qt
ij + qt

ji)c
∗
ij

FLP =
∑

i<j



1 −
∑

t:i,j∈t

pt(q
t
ij + qt

ji)



 c∗ij .

So FLP = FLKS ≥ 0. We have the following lemma. We defer the proof to Section 8.

Lemma 16 If the weight system satisfies the probability constraints (respectively, probability con-
straints and triangle inequality constraints), then for any t ∈ T ,

y(t) ≤ τ
∑

{i,j}⊆t

(qt
ij + qt

ji)c
∗
ij ,

where τ = 5/2 (respectively, τ = 2).

Therefore, in this case, BLKS ≤ τBLP . We conclude that E
[

CLKS
]

≤ τCLP . This concludes the
proof of the first two items of Theorem 14.

We now prove the last item of Theorem 14 by coupling LP-KwikSort with Pick-A-Perm. Recall
from Section 5 that the expected value of the Pick-A-Perm algorithm is

E
[

CPAP
]

=
∑

i<j

zij ,

where zij = 2wij(1 − wij). We rearrange this sum as follows:

E
[

CPAP
]

= BPAP
LP + FPAP

LP ,

where

BPAP
LP =

∑

t

pt

∑

{i,j}⊆t

(qt
ij + qt

ji)zij

FPAP
LP =

∑

i<j



1 −
∑

t:{i,j}⊆t

pt(q
t
ij + qt

ji)



 zij .

It is easy to see that 0 ≤ FPAP
LP ≤ 2FLP (because zij ≤ 2c∗ij , and

∑

t:i,j∈t pt(q
t
ij + qt

ji) ≤ 1). Along

with FLKS = FLP , this implies that 2
3FLKS + 1

3FPAP
LP ≤ 4

3FLP . Likewise, in Lemma 17 (proof in
Section 8), we bound a convex combination of BLKS and BPAP

LP .
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Lemma 17 For all t = {i, j, k},

2

3
y(t) +

1

3

∑

{i,j}⊆t

(

qt
ij + qt

ji

)

zij ≤
4

3

∑

{i,j}⊆t

(

qt
ij + qt

ji

)

c∗ij .

As a consequence, 2
3BLKS + 1

3BPAP
LP ≤ 4

3BLP .

Combining, we conclude that

2

3
E
[

CLKS
]

+
1

3
E
[

CPAP
LP

]

≤
4

3
CLP .

This means, in particular, that the best of LP-KwikSort and Pick-A-Perm has an expected
approximation ratio of at most 4

3 with respect to the LP cost. This concludes the proof of Theorem 14.

We now prove Theorem 15, by analyzing the output of LP-KwikCluster on Corre-

lation-Clustering and Consensus-Clustering instances. Define c∗ij = x+
ijw

−
ij + x−

ijw
+
ij . This

is the LP contribution as well as the expected charge of the safe pairs, which are defined as above:
these are pairs of vertices i 6= j such that one was chosen as pivot when the other was in the same
recursive call to LP-KwikCluster. All other pairs are dangerously charged.

For a triplet t = (i, j, k) of disjoint vertices, as usual, we let At denote the event that one of i, j, k
was chosen as pivot when the other two vertices are in the same recursive call to LP-KwikCluster.
Let pt = Pr [At]. Let Bt

{i}j denote the event that i, j was dangerously charged to t, because k is the

pivot, i is taken in k’s cluster and j is placed aside (the charge to t is then w+
ij). The probability of Bt

{i}j

conditioned on At is qt
{i}j = 1

3x+
kix

−
kj. Let Bt

{ij} denote the event that i, j was dangerously charged to

t, because k is the pivot, and both i and j are taken in k’s cluster (the charge is w−
ij). The probability

of Bt
{ij} conditioned on At is qt

{ij} = 1
3x+

kix
+
kj. Define y(t) =

∑

{i,j}⊆t(q
t
{i}j + qt

{j}i)w
+
ij + qt

{ij}w
−
ij .

For all i 6= j,
∑

t:{i,j}⊆t

pt(q
t
{i}j + qt

{j}i + qt
{ij}) ≤ 1

by disjointness of events. As before, we decompose E
[

CLKS
]

= BLKS +FLKS and CLP = FLP +BLP ,
where

BLKS =
∑

t

pty(t)

FLKS =
∑

i<j



1 −
∑

t:{i,j}⊆t

pt(q
t
{i}j + qt

{j}i + qt
{ij})



 c∗ij .

BLP =
∑

t

pt

∑

{i,j}⊆t

(

qt
{i}j + qt

{j}i + qt
{ij}

)

c∗ij

FLP =
∑

i<j



1 −
∑

t:{i,j}⊆t

pt(q
t
{i}j + qt

{j}i + qt
{ij})



 c∗ij .

Lemma 18 If the weight system satisfies the probability constraints (respectively, probability con-
straints and triangle inequality constraints), then for any t ∈ T ,
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y(t) ≤ τ
∑

{i,j}⊆t

(

qt
{i}j + qt

{j}i + qt
{ji}

)

c∗ij ,

where τ = 5/2 (respectively, τ = 2).

As a result, we get a 5/2 approximation for the probability constraints case, and a 2 approxima-
tion for the probability and triangle inequality constraints case. This proves the first two items of
Theorem 15.

For Consensus-Clustering, we let CPAC
LP denote the value of Pick-A-Cluster. So E

[

CPAC
LP

]

=
BPAC

LP + FPAC
LP , where

BPAC
LP =

∑

t

pt

∑

{i,j}⊆t

(

qt
{i}j + qt

{j}i + qt
{ij}

)

zij

FPAC
LP =

∑

i<j



1 −
∑

t:{i,j}⊆t

pt(q
t
{i}j + qt

{j}i + qt
{ij})



 zij ≥ 0.

zij = 2w+
ijw

−
ij

Lemma 19 For all t = {i, j, k},

2

3
y(t) +

1

3

∑

{i,j}⊆t

(

qt
{i}j + qt

{j}i + qt
{ij}

)

zij ≤
4

3

∑

{i,j}⊆t

(

qt
{i}j + qt

{j}i + qt
{ij}

)

c∗ij .

Also, it is easy to see that zij ≤ 2c∗ij , so 0 ≤ FPAC
LP ≤ 2FLP and consequently 2

3FLKS + 1
3FPAC

LP ≤
4
3FLP . Combining this with Lemma 19, we conclude that 2

3CLKS + 1
3CPAC

LP ≤ 4
3FLP , as desired. The

proofs of Lemmas 18 and 19 can be found in Section 8. This completes the proof of Theorem 15. 2

8 Proving Polynomial Inequalities in Polytopes

In this section we prove Lemmas 16,17,18 and 19. All these lemmas are equivalent to proving certain
inequalities on polynomials in R6. We restate these inequalities for the sake of clarity, and slightly
change notation to reduce indexing. In what follows we fix a triplet t consisting of three arbitrary
vertices, t = (1, 2, 3) ⊆ V . For the ranking proofs (Lemmas 16 and 17) we let x1 = x23, x2 =
x31, x3 = x12 and w1 = w23, w2 = w31, w3 = w12. For the clustering proofs (Lemmas 18 and 19), we
let x1 = x−

23, x2 = x−
31, x3 = x−

12 and w1 = w−
23, w2 = w−

31, w3 = w−
12. We use x ∈ R3 as shorthand

for (x1, x2, x3) and w ∈ R3 as shorthand for (w1, w2, w3). We will use the same symbols to denote
parallel objects in the ranking (Lemmas 16 and 17) and clustering (Lemmas 18 and 19) proofs. To
avoid confusion, we now separate between the two.

8.1 Polyhedral Inequalities for Ranking

Let Π ⊆ R3 denote the probability constraints polytope, that is,

Π = {(a1, a2, a3) : 0 ≤ ai ≤ 1, i = 1, 2, 3} . (7)

Let ∆ ⊆ Π denote the triangle inequality and probability constraints for ranking polytope, that is

∆ = {(a1, a2, a3) ∈ Π : 1 ≤ a1 + a2 + a3 ≤ 2} .
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We define three functions, piv, pap, lp : R6 → R, as follows:

piv(x,w) = x1x2w3 + (1 − x1)(1 − x2)(1 − w3)

+ x2x3w1 + (1 − x2)(1 − x3)(1 − w1)

+ x3x1w2 + (1 − x3)(1 − x1)(1 − w2)

pap(x,w) = (x1x2 + (1 − x1)(1 − x2))2w3(1 − w3)

+ (x2x3 + (1 − x2)(1 − x3))2w1(1 − w1)

+ (x3x1 + (1 − x3)(1 − x1))2w2(1 − w2)

lp(x,w) = (x1x2 + (1 − x1)(1 − x2))(x3(1 − w3) + (1 − x3)w3)

+ (x2x3 + (1 − x2)(1 − x3))(x1(1 − w1) + (1 − x1)w1)

+ (x3x1 + (1 − x3)(1 − x1))(x2(1 − w2) + (1 − x2)w2)

(8)

Lemma 16 is equivalent to showing that f = piv − 5
2 lp ≤ 0 for all (x,w) ∈ ∆ × Π and g =

piv − 2lp ≤ 0 for all (x,w) ∈ ∆ × ∆. We make two simplification steps.

1. Linearity in w: The functions f and g are linear in w (for x fixed). Therefore f obtains its
maximum on (x,w) for w which is some vertex of Π, and similarly g obtains its maximum value
on (x,w) for w which is some vertex of ∆. For f it suffices to check w = (0, 0, 0) and w =
(0, 0, 1) (due to symmetry), and for g it suffices to check w = (0, 0, 1). Let f̃(x) = f(x, 0, 0, 0),
f̂(x) = f(x, 0, 0, 1) and g̃(x) = g(x, 0, 0, 1). It remains to show that f̃ , f̂ , g̃ : R3 → R are bounded
above by 0 on ∆.

2. Trilinearity in x: For i = 1, 2, 3 the functions f̃ , f̂ and g̃ are linear in xi when xj’s are fixed for
j ∈ {1, 2, 3} \ {i}. This means that any point x ∈ ∆ such that x + tei ∈ ∆ for all t ∈ [−ε, ε] for
some ε > 0 and some i ∈ {1, 2, 3} (where ei is a standard basis element of R3) is not a strict
local maximum of f̃ , f̂ and g̃ in ∆, so these points x can be ignored. The points that are left
are x ∈ ∆ s.t. that x1 + x2 + x3 = 1 or x1 + x2 + x3 = 2.

Let Hk ⊆ R3 denote the hyperplane x1 + x2 + x3 = k for k = 1, 2, and let ∆k = ∆ ∩ Hk. The closed
polytopes ∆k are two dimensional and the polynomials f̃ , f̂ and g̃ are of total degree 3 and maximal
degree 2 in each variable. It is tedious yet elementary to verify that the maxima are obtained in
accordance with Table 2.

function \ domain ∆1 ∆2

f̃ 0 at (1/2, 0, 1/2) 0 at (1, 0, 1)

f̂ 0 at (0, 0, 1) 0 at (1, 0, 1)

g̃ 0 at (0, 0, 1) 0 at (1, 0, 1)

Table 2: Maxima of f̃ , f̂ and g̃ on ∆1,∆2.

Lemma 17 is equivalent to proving that h = 2piv/3 + pap/3 − 4lp/3 ≤ 0 for all (x,w) ∈ ∆ × ∆.
The trilinearity in x still holds true for h, so as before we can assume that either x ∈ ∆1 or x ∈ ∆2.
We can assume without loss of generality (by symmetry) that x ∈ ∆2, that is, x1 + x2 + x3 = 2.
When x is fixed, then h is a (possibly degenerate) concave paraboloid in w. In case of non-degeneracy,
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its unique global maximum is obtained when ∇wh = 0, which can be easily verified to be solved by
w = w∗ = (w∗

1, w
∗
2, w

∗
3) defined by

w∗
1 =

x2x3

x2x3 + (1 − x2)(1 − x3)
+ 2x1 − 1

w∗
2 =

x3x1

x3x1 + (1 − x3)(1 − x1)
+ 2x2 − 1

w∗
3 =

x1x2

x1x2 + (1 − x1)(1 − x2)
+ 2x3 − 1

(9)

(the paraboloid in w is degenerate if and only if any of the denominators in (9) are 0, equivalently
xi = 0 and xj=1 for some i, j. But this implies that after possibly permuting coordinates, x = (1, 1, 0).
But h(1, 1, 0,w) = −2w2

3/3 ≤ 0, proving the desired assertion trivially). Since we are assuming
x1 + x2 + x3 = 2, we have that for any 1 ≤ i < j ≤ 3, xi + xj ≥ 1, equivalently xixj ≥ (1−xi)(1−xj).
Therefore (9) implies wi ≥ 1

2 + 2xi − 1 for i = 1, 2, 3. Summing up, we obtain w1 + w2 + w3 ≥
−3

2 +2(x1 +x2 +x3) = 5
2 > 2. In other words, (9) implies that w∗ and ∆ are strictly on different sides

of H2. Let w′ = (w′
1, w

′
2, w

′
3) be any point in ∆. Consider the straight line ℓ passing through w′ and

w∗, and let w′′ the intersection of this line with H2. Restricted to ℓ (and for our fixed x ∈ ∆2) h is a
parabola, attaining its maximum on w∗. Therefore h(x,w′′) ≥ h(x, w′), and we can assume in what
follows that w = w′′ ∈ H2 (we must drop the assumption that w ∈ ∆ though). We change variables
and let h̃ : R4 → R be defined by h̃(x1, x2, w1, w2) = h(x1, x2, 2 − x1 − x2, w1, w2, 2 − w1 − w2). We
reduced the problem to proving that h̃ ≤ 0 on {x1 ≤ 1, x2 ≤ 1, x1 + x2 ≥ 1} × R2. It is elementary
to verify, using vanishing derivatives, that for (x1, x2) fixed, the maximum of h̃ is obtained when
(w1, w2) = (x1, x2). Substituting, we get h̃(x1, x2, x1, x2) = −2(−1+x1)(−1+x2)(−1+x2 +x3) which
is less than or equal to 0 because x1 + x2 ≥ 1 and x1, x2 ≤ 1.

8.2 Polyhedral Inequalities for Clustering

Let Π ⊆ R3 denote the probability constraints polytope as defined in (7). Let ∆ ⊆ Π denote the
triangle inequality and probability constraints polytope for clustering, that is,

∆ = {(a1, a2, a3) ∈ Π : a3 ≤ a1 + a2, a1 ≤ a2 + a3, a2 ≤ a3 + a1} .

We define three functions, piv, pap, lp : R6 → R, as follows:

piv(x,w) = (1 − x1)(1 − x2)w3 + (x1(1 − x2) + (1 − x1)x2)(1 − w3)

+ (1 − x2)(1 − x3)w1 + (x2(1 − x3) + (1 − x2)x3)(1 − w1)

+ (1 − x3)(1 − x1)w2 + (x3(1 − x1) + (1 − x3)x1)(1 − w2)

pap(x,w) = ((1 − x1)(1 − x2) + (1 − x1)x2 + x1(1 − x2))2w3(1 − w3)

+ ((1 − x2)(1 − x3) + (1 − x2)x3 + x2(1 − x3))2w1(1 − w1)

+ ((1 − x3)(1 − x1) + (1 − x3)x1 + x3(1 − x1))2w2(1 − w2)

lp(x,w) = ((1 − x1)(1 − x2) + (1 − x1)x2 + x1(1 − x2))(x3(1 − w3) + (1 − x3)w3)

+ ((1 − x2)(1 − x3) + (1 − x2)x3 + x2(1 − x3))(x1(1 − w1) + (1 − x1)w1)

+ ((1 − x3)(1 − x1) + (1 − x3)x1 + x3(1 − x1))(x2(1 − w2) + (1 − x2)w2)

(10)

Lemma 18 is equivalent to showing that f = piv − 5
2 lp ≤ 0 for all (x,w) ∈ ∆ × Π and g =

piv − 2lp ≤ 0 for all (x,w) ∈ ∆ × ∆. We make the two simplification steps as before.
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1. Linearity in w: The functions f and g are linear in w (for x fixed). Arguing as before, it
suffices to analyze f on w = (0, 0, 0), w = (0, 0, 1), w = (0, 1, 1) and w = (1, 1, 1), and g on
w = (0, 0, 0),w = (0, 1, 1),w = (1, 1, 1). We denote the functions on x after substituting for w

by f000, f001, f011, f111 and g000, g011, g111 (with obvious correspondence).

2. Trilinearity in x: For i = 1, 2, 3 the functions f and g are linear in xi when xj ’s are fixed for
j ∈ {1, 2, 3} \ {i}. This means that any point x ∈ ∆ such that x + tei ∈ ∆ for all t ∈ [−ε, ε]
for some ε > 0 and some i ∈ {1, 2, 3} (where ei is a standard basis element of R3) is not a
strict local maximum of f, g in ∆, so these points x can be ignored. The points that are left
are x ∈ ∆1 ∪ ∆2 ∪ ∆3 where ∆i = ∆ ∩ Hi for i = 1, 2, 3 and H1 = {(a1, a2, a3) ∈ R3 : a1 =
a2 + a3}, H2 = {(a1, a2, a3) ∈ R3 : a2 = a3 + a1}, H3 = {(a1, a2, a3) ∈ R3 : a3 = a1 + a2}.

The functions f, g restricted to one of the finitely many “interesting” points w and to x ∈ ∆i for some
i ∈ {1, 2, 3} can be represented as polynomials of total degree 3 and maximal degree 2 in each variable.
∆k are two dimensional and the polynomials f̃ , f̂ and g̃ are of total degree 3 and maximal degree 2 in
each variable. It is tedious yet elementary to verify that the maxima are obtained in accordance with
Table 3.

function \ domain ∆1 ∆2 ∆3

f000 0 at (0, 0, 0) 0 at (0, 0, 0) 0 at (0, 0, 0)
f001 0 at (1/2, 0, 1/2) −1 at (0, 1/2, 1/2) 0 at (1/2, 1/2, 1)
f011 −3/2 at (1/2, 0, 1/2) 0 at (0, 1, 1) 0 at (0, 1, 1)
f111 0 at (1, 0, 1) 0 at (1, 1, 0) 0 at (1, 0, 1)
g000 0 at (0, 0, 0) 0 at (0, 0, 0) 0 at (0, 0, 0)
g011 −1 at (1, 0, 1) 0 at (0, 1, 1) 0 at (0, 1, 1)
g111 0 at (1, 0, 1) 0 at (1, 1, 0) 0 at (1, 0, 1)

Table 3: Maximum of f000, f001, f011, f111, g000, g011, g111 on ∆1,∆2,∆3.

Lemma 19 is equivalent to proving that h = 2piv/3 + pap/3 − 4lp/3 ≤ 0 for all (x,w) ∈ ∆ × ∆.
We prove this assertion as follows:

Using symmetries of h: Let (x,w) be some local maximum of h in ∆ × ∆. Assume there is
an index i ∈ {1, 2, 3} such that all of xi, xi+1, wi, wi+1 /∈ {0, 1} (the index arithmetic is modulo
3). Without loss of generality, assume that x1, x2, w1, w2 /∈ {0, 1}. Since (x,w) is a local max-
imum of h on ∆ × ∆, and since x1, x2, w1, w2 /∈ {0, 1}, the derivatives of h on the hyperplane
H = {(x,w) + t(1,−1, 0, 0, 0, 0) + s(0, 0, 0, 1,−1, 0)|t, s ∈ R} must vanish at t = s = 0. One veri-
fies that h is a polynomial of total degree 2 in t, s on H, and the derivatives vanish in the unique
point t = (x2 − x1)/2, s = (w2 −w1)/2. Therefore, we may assume that x1 = x2 and w1 = w2. Now if
in addition x3, w3 /∈ {0, 1} then we use the same argument (switching the roles of the variables), and
we can assume that x1 = x2 = x3, w1 = w2 = w3. It is trivial to show that h ≤ 0 under this constraint.

Boundary cases: We can now assume that either: (1) at least two of x1, x2, x3, w1, w2, w3 are in
{0, 1}, or, (2) x1 = x2, w1 = w2 and at least one of x3, w3 are in {0, 1}. In addition, the function h is
trilinear in x, so we may assume (as above) that x ∈ ∆1∪∆2∪∆3. This reduces the problem to proving
inequalities for polynomials of total degree at most 4 and maximal degree at most 3 (respectively, 2)
in each x-variable (respectively, w-variable), in 3-dimensional polytopes. We summarize the analysis
in Table 4.

21



constraint ∆1 ∆2 ∆3 constraint ∆1 ∆2 ∆3

00**** 0:000000 0:000000 0:000000 01**** infeasible 0:0111
211 0:0111

211
11**** 0:110111

2 0:110111
2 infeasible ***00* 0:000000 0:000000 0:000000

***01* −2
3 :101011 0:011011 0:011011 ***11* 0:101111 0:110111

2 0:101111
0**0** 0:000000 0:000000 0:000000 0**1** −5

4 :00011
4

3
4 0:011111 0:011111

1**0** −2
3 :110011 −2

3 :110011 −2
3 :101011 1**1** 0:159

64
5
64159

64
5
64 0:110111

2 0:10111
21

0***0* 0:000000 0:000000 0:000000 0***1* −5
3 :0001

211
2 0:0111

211 0:0111
211

1***0* 0:101101 −2
3 :110101 0:101101 1***1* 0:110111

2 0:110111
2 0:101111

xx0ww* 0:000000 0:000000 0:000000 xx1ww* infeasible infeasible 0:12
1
211

2
1
21

xx*ww0 0:000000 0:000000 0:000000 xx*ww1 0:110111 0:110111 0:12
1
211

2
1
21

Table 4: Maxima of f given different constraints on ∆1, ∆2, ∆3. The constraint 0**0*1 means, as
an example, x1 = 0, w1 = 0, w3 = 1. A constraint of the form xx0ww* means x1 = x2, x3 = 0, w1 =
w2. The maxima are denoted by M :x1x2x3w1w2w3, where M is the maximum value, attained at
(x1, x2, x3, w1, w2, w3).

9 NP-Hardness of Feedback Arc Set on Tournaments

All the problems referred to in Table 1 in Section 1.2 were previously known to be NP-hard except
for Fas-Tournament. In this section we show:

Theorem 20 Unless NP ⊆ BPP, Fas-Tournament has no polynomial time algorithm.

Proof: We reduce to Fas-Tournament from Fas-DiGraph, which is the problem of finding a
minimum feedback arc set in a general directed graph. Fas-DiGraph is NP-hard [Kar72] (in fact, it
is MAX-SNP-hard, see [H̊as01, New00, NV01]).

Let G = (V,A) (with |V | = n) be an instance of Fas-Digraph. Suppose we could add a set of
edges AR to G such that (V,A∪AR) is a tournament, and such that exactly half of AR are backward
in any ordering π of V . Then by solving Fas-Tournament we would be able to recover the feedback
arc set of G. This is generally impossible. However, if we add the edges AR randomly (i.e. for every
i, j such the neither (i, j) nor (j, i) are in A add (i, j) or (j, i) to AR with equal probability) then
for any π the expected number of backward edges is half |R|. The variance makes this approach fail.
By blowing up G and using a concentration property of the random variable counting the number
of backward edges in AR, we can use this construction (see similar random digraph constructions in
[New00, NV01]).

We pick an integer k = poly(n) (chosen later). The blow-up digraph Gk = (V k, Ak) is defined as
follows:

V k =
⋃

v∈V

{v1, . . . , vk}

Ak = {(ui, vj)|(u, v) ∈ A, i, j ∈ {1, . . . , k}} .

We observe that the minimum feedback arc set of Gk is exactly k2 times the minimum feedback
arc set of G. Indeed, it suffices to consider only rankings π on V k that rank the vertices v1, . . . , vk

as one block for all v ∈ V (as explained in [Alo06], if vi <π vj are not adjacent in the ranking, then
either moving vi immediately to the left of vj or moving vj immediately to the right of vi will result
in a ranking inducing no more feedback edges than π).
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Now we turn Gk into a tournament T k = {V k, Ak ∪Ak
R} using the construction defined above. For

a ranking π of V k, let fR(π) denote the number of feedback edges in Ak
R with respect to π. Denote by µ

the expected value of fR(π), which is the same for all π, and can be efficiently computed. We claim that
for k = poly(n), with probability at least 2/3, all rankings π satisfy |fR(π)−µ| = O((nk)3/2

√

log(nk)).
This would imply, using the above observation, that for big enough k = poly(n) the size of the minimum
feedback arc set of T k can be used to efficiently recover the size of the minimum feedback arc set of
G, because (nk)3/2

√

log(nk) = o(k2). To prove the claim, for any fixed ranking π, set a random
indicator variable Xπ

wz for every non-edge {w, z} of Gk which equals 1 iff the edge between w and z
in Ak

R is backward w.r.t. π. So fR(π) =
∑

Xπ
wz. A simple application of Chernoff bounds [AS92] and

union bound (over all possible (nk)! rankings) completes the proof of the claim. It follows that unless
Fas-Digraph ∈ BPP , we cannot solve Fas-Tournament in polynomial time. 2

We wish to thank Noga Alon for ideas significantly simplifying the proof [Alo06]. Our initial
hardness result was via max-SNP hardness of Fas-DiGraph, and Noga Alon pointed out that the
same idea also works with the weaker NP-hardness.

10 Related Work

Since the publication of the conference version of this work [ACN05], there have been interesting
developments in the field.

On the ranking side, Kenyon-Mathieu and Schudy [KMS07] present a PTAS for Fas-Tournament,
thus considerably improving the constant approximation guarantee presented here. Williamson and
Van Zuylen [vZW07] derandomized the pivot algorithms introduced in this paper for both ranking
and clustering, with matching approximation guarantees. In addition, Coppersmith et al. [CFR06]
showed that ordering a weighted tournament by in-degree is a 5-approximation for weighted Fas-

Tournament with probability constraints, thus obtaining another natural constant factor approxi-
mation. Ailon [Ail07] extends this work to partial rankings, often found in information science appli-
cations. In the machine learning community, the problem of learning how to rank has been revisited in
the context of reduction to binary preference learning. We refer the reader to a recent paper by Ailon
and Mohri [AM08] which is inspired by this work, and improves a result by Balcan et al. [BBB+07]
(inspired by [CFR06]).

On the clustering side, Ailon and Charikar [AC05] extend results here to hierarchical clulstering, a
problem well studied in phylogeny. They generalize KwikCluster to that setting and obtain constant
factor approximation guarantees.

11 Open Problems

• KwikSort is in fact the well-known quick-sort algorithm for ordered data with transitivity
violations. Can we use other standard sorting algorithms, such as merge-sort to obtain similar
approximation algorithms?

• Finding tight examples for the algorithms presented in this work is an interesting problem. For
weighted weighted Fas-Tournament and weighted Correlation-Clustering with proba-
bility constraints, Warren Schudy communicated the following tight example for the KwikSort

and KwikCluster, respectively. It suffices to consider unweighted instances (weights are 0, 1).
For the ranking problem, take an acyclic tournament and flip the edge connecting the lowest
and the highest ranked vertices. The optimal solution pays 1. KwikSort pays n − 2 if the
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lowest or highest ranked vertices are chosen as pivot in the first step, otherwise 1. Therefore,
the expected ratio is 3(n − 2)/n, which tends to 3 as n → ∞. For the clustering problem set all
edges to “+” except for one which is set to “−”. The optimal solution pays 1 by clustering all
the vertices together. KwikCluster pays n−2 if one of the two vertices incident to the unique
“−”-edge is chosen as pivot in the first step, otherwise the optimal cost of 1, giving an expected
ratio of 3(n − 2)/n. Finding tight examples for the triangle inequality cases as well as for the
aggregation problems remains an open problem.

• Is Rank-Aggregation NP-Hard for 3 permutations [DKNS01a, DKNS01b]?

• Is Consensus-Clustering NP-Hard for a constant number of clusters [Wak98, FS03]?

• Can we approximate weighted Correlation-Clustering with triangle inequalities, but no
probability constraints?
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