
Cuts and Orderings:On semide�nite relaxations for the linearordering problemAlantha Newman?MIT CSAIL, Cambridge, MA 02139alantha�theory.sail.mit.eduAbstrat. The linear ordering problem is easy to state: Given a om-plete weighted direted graph, �nd an ordering of the verties that maxi-mizes the weight of the forward edges. Although the problem is NP-hard,it is easy to estimate the optimum to within a fator of 1/2. It is notknown whether the maximum an be estimated to a better fator us-ing a polynomial-time algorithm. Reently it was shown [NV01℄ thatwidely-studied polyhedral relaxations for this problem annot be used toapproximate the problem to within a fator better than 1/2. This wasshown by demonstrating that the integrality gap of these relaxations is2 on random graphs with uniform edge probability p = 2plogn=n. In thispaper, we present a new semide�nite programming relaxation for the lin-ear ordering problem. We then show that if we hoose a random graphwith uniform edge probability p = dn , where d = !(1), then with highprobability the gap between our semide�nite relaxation and the integraloptimal is at most 1.64.1 IntrodutionVertex ordering problems omprise a fundamental lass of ombinatorial op-timization problems that, on the whole, is not well understood. For the pastthirty years, ombinatorial methods and linear programming tehniques havefailed to yield improved approximation guarantees for many well-studied ver-tex ordering problems suh as the linear ordering problem and the travelingsalesman problem. Semide�nite programming has proved to be a powerful toolfor solving a variety of ut problems, as �rst exhibited for the maximum utproblem [GW95℄. Sine then, semide�nite programming has been suessfullyapplied to many other problems that an be ategorized as ut problems suhas oloring k-olorable graphs [KMS98℄, maximum-3-ut [GW04℄, maximum k-ut [FJ97℄, maximum bisetion and maximum unut [HZ01℄, and orrelationlustering [CGW03℄, to name a few. In ontrast, there is no suh omparablygeneral approah for approximating vertex ordering problems.In this paper, we fous on a well-studied and notoriously diÆult ombi-natorial optimization problem known as the linear ordering problem. Given a? Supported in part by NSF Grant CCR0307536.



2 Alantha Newmanomplete weighted direted graph, the goal of the linear ordering problem is to�nd an ordering of the verties that maximizes the weight of the forward edges.Although the problem is NP-hard [Kar72℄, it is easy to estimate the optimumto within a fator of 12 : In any ordering of the verties, either the set of forwardedges or the set of bakward edges aounts for at least half of the total edgeweight. It is not known whether the maximum an be estimated to a betterfator using a polynomial-time algorithm. Approximating the problem to withinbetter than 6566 is NP-hard [NV01℄.The linear ordering problem is also known as the maximum ayli subgraphproblem. Given a weighted direted graph, the maximum ayli subgraph prob-lem is that of �nding the maximum weight subgraph that ontains no yles.The forward edges in any linear ordering omprise an ayli subgraph and atopologial sort of an ayli subgraph yields a linear ordering of the verties inwhih all edges in the ayli subgraph are forward edges.Reently it was shown that several widely-studied polyhedral relaxations forthe linear ordering problem eah have an integrality gap of 2, showing that it isunlikely these relaxations an be used to approximate the problem to within afator greater than 12 [NV01,New00℄. The graphs used to demonstrate these inte-grality gaps are random graphs with uniform edge probability of approximately2plogn=n, where n is the number of verties. For suÆiently large n, suh a ran-dom graph has a maximum ayli subgraph lose to half the edges with highprobability. However, eah of the polyhedral relaxations studied provide an up-per bound for these graphs that is asymptotially lose to all the edges, whihis o� from the optimal by a fator of 2.In this paper, we �rst present a new semide�nite programming relaxationfor the linear ordering problem. A vertex ordering for a graph G = (V;E) withn verties an be fully desribed by a series of n � 1 uts. We use this simpleobservation to relate uts and orderings. We derive a semide�nite program forthe linear ordering problem that is related to the semide�nite program usedin the Goemans-Williamson algorithm to approximate the maximum ut prob-lem [GW95℄. We note that by using di�erent objetive funtions, our semide�niteprogramming relaxation an be used to obtain semide�nite relaxations for manyother vertex ordering problems.Seond, we show that for suÆiently large n, if we hoose a random diretedgraph on n verties with uniform edge probability p = dn (i.e. every edge inthe omplete direted graph on n verties is hosen with probability p), whered = !(1), our semide�nite relaxation will have an integrality gap of no morethan 1.64 with high probability. In partiular, the graphs used in [NV01℄ todemonstrate integrality gaps of 2 for the widely-studied polyhedral relaxationsfall into this ategory of random graphs. The main idea is that our semide�niterelaxation provides a \good" bound on the value of an optimal linear orderingfor a graph if it has no small roughly balaned bisetion. With high probability,a random graph with uniform edge probability ontains no suh small balanedbisetion.



Cuts and Orderings 32 Relating Cuts and OrderingsGiven an undireted weighted graph G = (V;E), the maximum ut (maxut)problem is to �nd a bipartition of the verties that maximizes the weight of theedges rossing the partition. In 1993, Goemans and Williamson used a semide�-nite programming relaxation to obtain a :87856-approximation algorithm for thisfundamental graph optimization problem [GW95℄. The goal of the Goemans-Williamson algorithm for the maxut problem is to assign eah vertex i 2 V avetor vi 2 f1;�1g so as to maximize the weight of the edges (i; j) suh thatvi 6= vj .A losely related graph optimization problem is the maximum direted ut(diut) problem. Given a direted weighted graph G = (V;A), the diut problemis to �nd a bipartition of the verties|all these disjoint sets V1 and V2|thatmaximizes the weight of the direted edges (i; j) suh that vertex i is in set V1and vertex j is in set V2. Note that the edges in a direted ut form an aylisubgraph. We an generalize the diut problem to that of dividing the vertiesinto k labeled sets V1; V2; : : : ; Vk so as to maximize the weight of the edges (i; j)suh that vertex i is in set Vk and vertex j is in set Vh and k < h. We all thisthe k-ayli diut problem. The linear ordering problem is equivalent to then-ayli diut problem.2.1 A Relaxation for the Linear Ordering ProblemWe an generalize the semide�nite programming relaxation for the diut prob-lem [FG95,GW95℄ to obtain a new semide�nite programming relaxation for thelinear ordering problem. The basi idea behind this formulation is a partiulardesription of a vertex ordering that uses n+1 unit vetors for eah vertex. Eahvertex i 2 V has n+ 1 (n = jV j) assoiated unit vetors: v0i ; v1i ; v2i ; : : : vni . In anintegral solution, we enfore that v0i = �1, vni = 1 and that vhi and vh+1i di�erfor only one value of h; 0 � h < n. Constraint (1) enfores that in an integralsolution, vhi and vh+1i di�er for only one suh value of h. This position h denotesvertex i's position in the ordering. For example, suppose we have a graph G thathas four verties, arbitrarily labeled 1 through 4. Consider the vertex orderingin whih vertex i is in position i. An integral desription of this vertex orderingis: fv01 ; v11 ; v21 ; v31 ; v41g = f�1; 1; 1; 1; 1g;fv02 ; v12 ; v22 ; v32 ; v42g = f�1;�1; 1; 1; 1g;fv03 ; v13 ; v23 ; v33 ; v43g = f�1;�1;�1; 1; 1g;fv04 ; v14 ; v24 ; v34 ; v44g = f�1;�1;�1;�1; 1g:Let G = (V;A) be a direted graph. The following is an integer quadratiprogram for the linear ordering problem. For the sake of onveniene, we assumethat n is odd sine this simpli�es onstraint (2). By P (G), we denote the optimalvalue of the integer quadrati program P on the graph G.



4 Alantha Newman(P)maxXij2A X1�h<`�nwij(vhi � vj̀ + vh�1i � v`�1j � vhi � v`�1j � vh�1i � vj̀) (1)vhi � vj̀ + vh�1i � v`�1j � vhi � v`�1j � vh�1i � vj̀ � 0 8i; j 2 V; h; ` 2 [n℄vhi � vhi = 1 8i 2 V; h 2 [n℄v0i � v0 = �1 8i 2 Vvni � v0 = 1 8i 2 VXi;j2V v n2i � v n2j = 0 (2)vhi 2 f1;�1g 8i; h 2 [n℄: (3)We obtain a semide�nite programming relaxation for the linear ordering problemby relaxing onstraint (3) to: vhi 2 Rn; 8i; h: We denote the optimal value ofthe relaxation of P on the graph G as PR(G).2.2 Cuts and UnutsSuppose we have a direted graph G = (V;A) and we are given a set of unitvetors fvig 2 Rn; 0 � i � n. We will de�ne the forward value of this setof vetors as the value obtained if we ompute the value of the diut semide�-nite programming relaxation [GW95,FG95℄ using these vetors. Spei�ally, theforward value for this set of vetors is:maxXij2A 14(1� vi � vj � v0 � vi + v0 � vj): (4)In an integral solution for the diut problem, there will be edges that ross theut in the bakward diretion, i.e. they are not inluded in the diut. For aspei�ed set of unit vetors, we an view the diut semide�nite programmingrelaxation as having forward and bakward value. We de�ne the bakward valueof the set of vetors fvig as:maxXij2A 14(1� vi � vj � v0 � vj + v0 � vi): (5)The di�erene between the forward and bakward value of a set of vetors fvigis: Xij2A 12(vj � v0 � vi � v0): (6)Lemma 1. If a direted graph G = (V;A) has a maximum ayli subgraph of( 12 + Æ)jAj edges, then there is no set of vetors fvig suh that the di�erenebetween the forward and bakward value of this set of vetors exeeds 2ÆjAj.



Cuts and Orderings 5Proof. We will show that given a vetor solution fvig to the semide�nite programin whih the objetive funtion is (6) and all the vi vetors are unit vetors, wean �nd an integral (i.e. an atual ut) solution in whih the di�erene of theforward and bakward edges rossing the ut is exatly equal to the objetivevalue. If the di�erene of an atual ut exeeds 2ÆjAj, e.g. suppose it is (2Æ+�)jAj,then we an �nd an ordering with ( 12 + Æ + �=2)jAj forward edges, whih is aontradition. This ordering is found by taking the ut that yields (2Æ + �)jAjmore forward than bakward edges and ordering the verties in eah of the twosets greedily so as to obtain at least half of the remaining edges.Suppose we have a set of unit vetors fvig suh that the value of equation(6) is at least (2Æ + �)jAj = �jAj. We will show that we an �nd an atual utsuh that the di�erene between the forward and the bakward edges is at least�jAj. Note that v0 � vi is a salar quantity sine v0 is a unit vetor that withoutloss of generality is (1; 0; 0; : : : ). Thus, our objetive funtion an be written asPij2A 12 (zj � zi) where 1 � zi � �1. We transform the zi variables into xivariables that range between 0 and 1 by letting zi = 2xi� 1. Then we have thatPij2A 12 (zj � zi) =Pij2A(xj � xi). This results in a linear program. We laimthat an optimal solution to the following linear program is integral.Xij2A(xj � xi) (7)0 � xi � 1; 8i 2 V:To show this, onsider rounding the variables by letting i be 1 with proba-bility xi and 0 otherwise. Then the expeted value of the solution is exatly theobjetive value. However, note that the value of the solution annot be less thanthe expeted value, sine then there must exist a solution with value greaterthan the expeted value, whih ontradits the optimality of the expeted value.Thus, the integral solution obtained must have di�erene of forward and bak-ward edges that is equal to the objetive value (7). utWe will also �nd a disussion of the following problem useful. Consider theproblem of �nding a balaned partition of the verties of a given graph (i.e. eahpartition has size n2 ) that maximizes the weight of the edges that do not rossthe ut. This problem is referred to as the max-n2 -unut problem by Halperinand Zwik [HZ01℄. Below is a integer quadrati program for the max-n2 -unutproblem.(T) maxXij2A 1 + vi � vj2Xi;j2V vi � vj = 0vi � vi = 1 8i 2 Vvi 2 f1;�1g 8i 2 V: (8)



6 Alantha NewmanWe obtain a semide�nite programming relaxation for the max-n2 -unut problemby relaxing onstraint (8) to: vi 2 Rn; 8i:We denote the value of the relaxationof T on the graph G as TR(G).Lemma 2. Let G = (V;A) and �; Æ be positive onstants. Suppose the maximumayli subgraph of G is ( 12 + Æ)jAj. If PR(G) � (1 � �)jAj, then TR(G) �(1� 2�� 2Æ)jAj.Proof. For eah edge ij 2 A, we have:Xh<` vhi � vj̀ + vh�1i � v`�1j � vhi � v`�1j � vh�1i � vj̀ = (9)Xh<`(vhi � vh�1i ) � (vj̀ � v`�1j ) �Xh�n2 ;`�n2 (vhi � vh�1i ) � (vj̀ � v`�1j ) + (10)Xh>n2 ;`>n2 (vhi � vh�1i ) � (vj̀ � v`�1j ) + (11)Xh�n2 ;`>n2 (vhi � vh�1i ) � (vj̀ � v`�1j ): (12)For eah edge, we refer to the quantity (9) as the forward value for that edgewith respet to PR(G). The same term summed instead over h > ` is referred toas the bakward value of the edge with respet to PR(G). We an simplify theterms above. Let vi = v n2i .Xh�n2 ;`�n2 (vhi � vh�1i ) � (vj̀ � v`�1j ) = 14(vi + v0) � (vj + v0);Xh>n2 ;`>n2 (vhi � vh�1i ) � (vj̀ � v`�1j ) = 14(v0 � vi) � (v0 � vj);Xh�n2 ;`>n2 (vhi � vh�1i ) � (vj̀ � v`�1j ) = 14(vi + v0) � (v0 � vj):Sine PR(G) � (1� �)jAj, we have:Xij2A Xh>n2 ;`�n2 (vhi � vh�1i ) � (vj̀ � v`�1j ) = Xij2A 14(v0 � vi) � (v0 + vj) � �jAj:The above inequality says that the bakward value of the vetors fvig (i.e. quan-tity (5)) is at most the bakward value of PR(G). By Lemma 1, the di�ereneof the edges rossing the ut in the forward diretion and the edges rossing theut in the bakward diretion is at most 2ÆjAj.



Cuts and Orderings 7Xij2A 14(vi + v0) � (v0 � vj) � Xij2A 14(v0 � vi) � (v0 + vj) =Xij2A 12(vi � v0 � vj � v0) � 2ÆjAj:This implies that the forward value annot exeed the bakward value by morethan 2ÆjAj. Thus, we an bound the forward value as follows:Xij2A Xh�n2 ;`>n2 (vhi � vh�1i ) � (vj̀ � v`�1j ) = Xij2A 14(v0 � vi) � (v0 + vj) � (�+ 2Æ)jAj:This implies that if we sum the quantities (10) and (11) over all edges in A, thenthe total value of this sum is at least (1� 2�� 2Æ)jAj. The sum of (10) and (11)taken over all the edges is: Xij2A 1 + vi � vj2 : (13)ut3 Balaned Bisetions of Random GraphsA bisetion of a graph is a partition of the verties into two equal (or withardinality di�ering by one if n is odd) sets. We use a related de�nition in thissetion.De�nition 1. A -bisetion of a graph for  � 12 is the set of edges that rossa ut in whih eah set of verties has size at least n.Suppose we hoose an undireted random graph on n verties in whih everyedge is present with probability p = 2dn . The expeted degree of eah vertex is2d and the expeted number of edges is dn. We will all suh a lass of graphsGp.Lemma 3. For any �xed positive onstants �; , if we hoose a graph G 2 Gp onn verties for a suÆiently large n with p = 2dn and d = !(1), then the minimum-bisetion ontains at least (1� �)(1� )2nd edges with high probability.Proof. We will use the priniple of deferred deisions. First, we will hoose an; (1� )n partition of the verties. Thus (1� )n2 edges from the ompletegraph on n verties ross this ut. Then we an hoose the random graph G bypiking eah edge with probability p = 2dn . The expeted number of edges fromG rossing the ut is � = ((1� )n2)( 2dn ) = (1� )2dn. For eah edge in theomplete graph that rosses the ut, we have the indiator random variable Xi



8 Alantha Newmansuh that Xi = 1 if the edge rosses the ut and Xi = 0 if the edge does notross the ut. Let X = PXi, i.e. X is the random variable for the number ofedges that ross the ut. By Cherno� Bound, we have:Pr[X < (1� �)(1� )2dn)℄ < e� �2(1�)2dn2 :We an union bound over all the possible -bisetions. There are less than 2nways to divide the verties so that at least n are in eah set. Thus, the prob-ability that the minimum -bisetion of G is less than a (1 � �) fration of itsexpetation is:Pr[min -bisetion(G) < (1� �)(1� )2nd℄ < 2ne �2(1�)2dn2 :Let d = !(1). Then for any �xed positive onstants ; �, this probability will bearbitrarily small for suÆiently large n. ut4 A Contraditory CutIn this setion, we will prove our main theorem. Suppose we hoose a diretedrandom graph on n verties in whih every edge in the omplete direted on nverties is inluded with probability p. Let p = dn and let d = !(1). We will allthis lass of graphs ~Gp. Note that if we randomly hoose a graph from ~Gp, theunderlying undireted graph is randomly hosen from Gp.Theorem 1. For suÆiently large n, d = !(1), and p = dn , if we randomlyhoose a graph ~G 2 ~Gp, then with high probability, the ratio PR(~G)=P (~G) � 1:64.Let E represent the edges in the omplete undireted graphKn for some �xedn. Let A � E represent the edges in an undireted graph G hosen at randomfrom Gp. Let �1 be a small positive onstant whose value an be arbitrarily smallfor suÆiently large n. We weight the edges in E as follows:wij = � n(1� �1)2d if ij 2 A;wij = 1 if ij 2 E �A:We will refer to this weighted graph as G0.Lemma 4. The minimum -bisetion of G0 has negative value with high proba-bility.Proof. By Lemma 3 with high probability the minimum -bisetion of G has atleast (1� �1)(1� )2nd edges. Thus, with high probability the total weight ofthe edges in the minimum -bisetion of G0 is at most:



Cuts and Orderings 9(1� )n2 � (1� �1)(1� )2nd+ (1� �1)(1� )2nd(� n(1� �1)2d ) =(1� )�n2 � (1� �1)2nd+ (1� �1)2nd(� n(1� �1)2d )� =(1� ) (�(1� �1)2nd) < 0: utLemma 5. Let fvig; i 2 V be a set of unit vetors that satisfy the followingonstraints: Xi;j2V vi � vj = 0 (14)Xij2A 1 + vi � vj2 � (1� �2)jAj: (15)If �2 < :36, then we an �nd a -bisetion of G0 with a stritly positive value.To prove Lemma 5, we will use the following theorem from [GW95℄.Theorem 2.7 [GW℄ Let W� =Pi<j w�ij , where x� = min(0; x). ThenfE[W ℄�W�g � �8<:12Xi<j wij(1� vi � vj)�W�9=; :Proof of Lemma 5: We will use Goemans-Williamson's random hyperplanealgorithm to show that we an �nd a ut that is roughly balaned and has astritly positive value. Let W represent the total weight of the edges that rossthe ut obtained from a random hyperplane. Let W� denote the sum of thenegative edges weights, i.e. W� = A. Applying Theorem 2.7 from [GW℄, wehave:E[W ℄ � �8<:12Xi<j wij(1� vi � vj)�W�9=;+W�� �8<: Xi<j:wij>0wij 1� vi � vj2 + Xi<j:wij<0 jwij j1 + vi � vj2 9=;+W�:We want to alulate the value ofPi<j:wij>0 1�vi�vj2 . By ondition (14), we havethat Pi;j2V vi � vj = 0 and therefore Pi<j 1�vi�vj2 = n2�2n4 .



10 Alantha NewmanXi<j:wij>0 1� vi � vj2 =Xi<j 1� vi � vj2 � Xi<j:wij<0 1� vi � vj2=Xi<j 1� vi � vj2 � nd2 + Xi<j:wij<0 vi � vj2�Xi<j 1� vi � vj2 � nd2 + (1� 2�2)nd2= n2 � 2n4 � �2nd:Now we have:E[W ℄ � ��(n2 � 2n4 � �2nd) + n(1� �1)2d (1� �2)nd�� n(1� �1)2dnd:For large enough n, we an hoose �1 to be arbitrarily small. So E[W ℄ an bebounded from below by a value arbitrarily lose to the following:(�4 + �2 � 12 � ��22 )n2 � o(n2) � (:1585� ��22 )n2 � o(n2): (16)If the value of �2 is suh that the quantity on line (16) is stritly greater than �n2for some positive onstant �, then we will have a ontradition for suÆientlylarge n. Note that if this value is at least �n2, then eah side of the ut ontainsat least p�n verties, so it is a p�-bisetion. This value will be stritly positiveas long as �2 < :36. Thus, it must be the ase that �2 > :36. utProof of Theorem 1: We �x positive onstants ; �1. Suppose we hoose arandom direted graph ~G as presribed and let the graph G = (V;A) be theundireted graph orresponding to the underlying undireted graph of ~G. Wethen weight the edges in the graph Kn as disussed previously and obtain G0.By Lemma 4, the minimum -bisetion of G0 is negative with high probability.Thus, with high probability equation (15) hold only when �2 > :36.Suppose the maximum ayli subgraph of ~G, i.e. P (~G) is ( 12 + Æ)jAj forsome positive onstant Æ. Then the value of PR(~G) is upper bounded by themaximum value for some set of unit vetors fvig of (10), (11), and (12) summedover all edges in A. Note that this is equivalent to the quantity in (13) (whihis no more than :64jAj) plus the quantity in (4). By Lemma 1, the di�erenebetween (4) and (5) must be no more than 2ÆjAj. Thus, we an upper boundthe value of PR(~G) by :64jAj+ (2Æ + 12 (:36� 2Æ))jAj = (:82 + Æ)jAj. Thus, withhigh probability, we have:PR(~G)P (~G) � :82 + Æ:5 + Æ � :82:5 = 1:64: ut



Cuts and Orderings 115 DisussionIn this paper, we make a onnetion between uts and vertex ordering of graphsin order to obtain a new semide�nite programming relaxation for the linearordering problem. We show that the relaxation is \good" on random graphshosen with uniform edge probability, i.e. the integrality gap is stritly less than2 for most of these graphs. We note that we an extend this theorem to showthat this relaxation is \good" on graphs that have no small -bisetions for someonstant  > 0.In [HZ01℄, Halperin and Zwik give a :8118-approximation for a related prob-lem that they all the max n2 -direted-unut problem. Given a direted graph,the goal of this problem is to �nd a bisetion of the verties that maximizes theweight of the edges that ross the ut in the forward diretion plus the weight ofthe edges that do not ross the ut. We note that a weaker version of Theorem 1follows from their .8118-approximation algorithm. This is beause their semidef-inite program for the max n2 -direted unut problem is the sum over all edgesof terms (10), (11), and (12). If for some direted graph G = (V;A), PR(G) hasvalue at least (1� �)jAj, then the value of their semide�nite programmming re-laxation also has at least this value. Thus, if � is arbitrarily small, we an obtaina direted unut of value lose to :8118 of the edges, whih is a ontradition fora random graph with uniform edge probability. In this paper, our goal was togive a self-ontained proof of this theorem.We would like to omment on the similarity of this work to the work of Pol-jak and Delorme [DP93℄ and Poljak and Rendl [PR95℄ on the maxut problem.Poljak showed that the lass of random graphs with uniform edge probabilityould be used to demonstrate an integrality gap of 2 for several well-studiedpolyhedral relaxations for the maxut problem [Pol92℄. These same graphs anbe used to demonstrate an integrality gap of 2 for several widely-studied polyhe-dral relaxations for the linear ordering problem [NV01℄. The similarity of theseresults stems from the fat that the polyhedral relaxations for the maxut prob-lem are based on odd-yle inequalities and the polyhedral relaxations for thelinear ordering problem are based on yle inequalities. Poljak and Delormesubsequently studied an eigenvalue bound for the maxut problem that is equiv-alent to the bound provided by the semide�nite programming relaxation usedin the Goemans-Williamson algorithm [GW95℄. Despite the fat that randomgraphs with uniform edge probability exhibit worst-ase behaviour for severalpolyhedral relaxations for the maxut problem, Delorme and Poljak [DP93℄ andPoljak and Rendl [PR95℄ experimentally showed that the eigenvalue bound pro-vides a \good" bound on the value of the maxut for these graphs. This exper-imental evidene was the basis for their onjeture that the 5-yle exhibiteda worst-ase integrality gap of 0:88445 : : : for the maxut semide�nite relax-ation [DP93,Pol92℄. The gap demonstrated for the 5-yle turned out to be verylose to the true integrality gap of :87856 : : : [FS℄.
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