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Abstract

We consider three well-studied polyhedral relaxations for the maximum cut problem: the
metric polytope of the complete graph, the metric polytope of a general graph, and the relaxation
of the bipartite subgraph polytope. The metric polytope of the complete graph can be described
with a polynomial number of inequalities, while the latter two may require exponentially many
constraints. We give an alternate proof of a theorem of Barahona that states that the metric
polytope of a general graph is a projection of the metric polytope of the complete graph. We
then give an alternate proof of a theorem of Poljak that states that for any non-negative cost
function, the optimal objective value over the relaxation of the bipartite subgraph polytope
equals the optimal objective value over the metric polytope. Both proofs are based on the same
technique: the separation oracle for the metric polytope of a general graph due to Barahona
and Mahjoub. These proofs yield a simple, combinatorial method for proving that three well-
studied polyhedral upper bounds on the value of the maximum cut are the same for graphs with
non-negative edge weights.

1 Introduction

Given an undirected, weighted graph, the maximum cut problem is to find a bipartition of the
vertices that maximizes the weight of the edges crossing the partition, i.e. a maximum bipartite
subgraph. We consider three well-known polyhedral relaxations for the maximum cut problem.
Theorems due to Barahona [Bar93] and Poljak [Pol92] imply that optimization over these three
polytopes gives the same upper bound on the value of a maximum cut for graphs with non-negative
edge weights. In this paper, we give new proofs for both of these theorems that are based on the
same technique: the separation algorithm for the metric polytope. These proofs are similar to the
proofs that two well-studied linear programming relaxations for the maximum acyclic subgraph
problem provide the same upper bound for graphs with non-negative edge weights [NV01].

2 The Metric Polytope of a General Graph

The first polytope we address is the metric polytope of a general graph. This polytope was intro-
duced by Barahona and Mahjoub [Bar83, BM86]. Following the notation that Poljak and Tuza
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use in their survey on the maximum cut problem [PT95], we refer to the polytope defined by the
following inequalities for a specified graph G = (V,E) as Pmet(G).

∑

e∈F

xe −
∑

e∈C\F

xe ≤ |F | − 1 ∀ cycles C, F ⊆ C, |F | odd (1)

0 ≤ xe ≤ 1 ∀e ∈ E.

Constraint (1) can be re-written as:

∑

e∈F

(1 − xe) +
∑

e∈C\F

xe ≥ 1 ∀ cycles C, F ⊆ C, |F | odd. (2)

Barahona and Mahjoub showed that there is a polynomial-time separation oracle for this poly-
tope [BM86]. Given a graph G = (V,E) and a point x = {xe}, they gave the following efficient
algorithm for checking if x belongs to Pmet(G).

First, create a new weighted bipartite graph B(G). The vertex set of B(G) is V ∪ V ′: for each
vertex i ∈ V , we have i ∈ V and i′ ∈ V ′. For each edge e = (i, j) ∈ E, add the edges (i, j) and
(i′, j′), each with weight xe, and edges (i, j′) and (j, i′), each with weight 1− xe. This construction
is illustrated in Figure 1.
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Figure 1: The edges (i, j), (i′, j′), (i, j′), and (i′, j) in B(G) that correspond to the edge (i, j) in G.

Now we can check to see if the point x satisfies constraint (2) by finding the shortest path from
i to i′ for each vertex i ∈ V . Note that the path from i to i′ in B(G) corresponds to a cycle in G
and this path contains an odd number of edges that are included with edge weight 1 − xe. Thus,
for each cycle C in G containing vertex i, if there is a subset F ⊆ C of the edges such that |F | is
odd and constraint (2) is violated, then the shortest path from i to i′ will be strictly less than one.
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3 The Metric Polytope of a Complete Graph

The metric polytope of a complete graph has a variable for every pair of vertices i, j ∈ V . This
polytope has constraints for each cycle C in the complete graph such that |C| = 3 and for each
subset F ⊆ C, where |F | = 1, 3. Following the notation of Poljak and Tuza [PT95], we refer to the
polytope defined by the following inequalities as Pmet

n , where n indicates the number of vertices in
a specified graph G.

xij + xjh + xhi ≤ 2 ∀h, i, j ∈ V (3)

xij + xjh − xhi ≥ 0 (4)

xij − xjh + xhi ≥ 0 (5)

−xij + xjh + xhi ≥ 0 (6)

xij ≥ 0 ∀i, j ∈ V.

Given a point x = {xij}, it is clear that we can efficiently check if x belongs to Pmet
n since we

need only check a polynomial number of constraints.

Theorem 1 [Barahona [Bar93], [PT95]]

Let G = (V,E) be a graph on n vertices. Then Pmet(G) is a projection of Pmet
n to the subspace

R|E| ⊆ R(n
2
).

For one direction of our proof of Theorem 1, we will use Remark 6.2 from [Bar93]. We restate
this remark and its proof here for the sake of completeness.

Lemma 1 [Barahona [Bar93], Remark 6.2]

If a cycle C has a chord e, then any inequality of Pmet associated with C is a sum of two other

inequalities associated with the two new cycles obtained by adding edge e to C. This proves that the

inequalities associated with C are redundant.

Proof: Consider

x(F ) − x(C \ F ) ≤ |F | − 1, F ⊆ C, |F | odd. (7)

Let C1 and C2 be the new cycles obtained by adding the chord e to C. Let Fi = Ci∩F, i = 1, 2.
Suppose that |F1| is odd, then constraint (7) is the sum of the next two constraints:

x(F1) − x(C1 \ F1) ≤ |F1| − 1,

xe + x(F2) − x(C2 \ [F2 ∪ {e}]) ≤ |F2|.

2

Proof of Theorem 1: If a point x = {xij | i, j ∈ V } belongs to Pmet
n , then y = {xij | ij ∈ E}

belongs to Pmet(G). This follows from Lemma 1.
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Now we show that if a point y = {xij | ij ∈ E} belongs to Pmet(G), then there exists a set of
values {xij | ij /∈ E} such that x = {xij | i, j ∈ V } belongs to Pmet

n . Consider an edge (h, k) /∈ E.
We will determine a value for xhk such that the point (y, xhk) belongs to Pmet(G + {(h, k)}). By
successively adding edges, we will find a point x = (y, {xij | ij /∈ E}) such that x belongs to
Pmet(Kn) implying that x belongs to Pmet

n .

To find the value for xhk, we construct a bipartite graph B(G) using the method shown in Section
2. Find the shortest path from h to k in B(G). Denote this value as α and assign xhk = min{1, α}.
We can show that in the graph with edge set E+{(h, k)}, no constraints (2) from Pmet(G+{(h, k)})
are violated. Suppose there is a violated constraint. By induction all paths in B(G + {(h, k}) from
i to i′ that do not contain an edge from the set {(h, k), (h′ , k′), (h′, k), (h, k′)} do not correspond
to violated constraints. So the path associated with the violated constraint must contain an edge
from this set.

Without loss of generality, we can assume the violated constraint corresponds to a path from
h to h′. This is because, we can assume the violated constraint corresponds to a path from some
i to i′. (Recall that a violated constraint corresponds to a path from i to i′ in B(G) with cost less
than 1.) Then it must contain a path from i to h and from h to i′. But there is a path in B(G)
from i′ to h′ that has the same cost as the path from i to h. Thus, we can consider the path from
h to i′ and from i′ to h′ as the path corresponding to the violated constraint. We will refer to this
path as p.

Suppose the path p contains edge (h, k′) or edge (h′, k). Without loss of generality, we assume
it contains edge (h, k′). Then it also contains the shortest path from k′ to h′, which is equal to
the shortest path from h to k. This path has the value min{1, α}. Since edge (h, k′) has value
1 − min{1, α}, the value of path p is at least one.

Suppose the path p contains edge (h, k) or edge (h′, k′). Each of these edges could be replaced
by the edges that comprise the shortest path from h to k or from h′ to k′ in B(G). If xhk had value
less than one, then the resulting path from h to h′ in B(G) either has cost equal to the cost of p,
which by assumption is less than one. Thus, a path in B(G) corresponds to a violated constraint
in Pmet(G), which contradicts the inductive hypothesis. So the point (y, xhk) does not violate any
constraint in Pmet(G + {(h, k)}). 2

4 The Bipartite Subgraph Polytope

The bipartite subgraph polytope is another polytope associated with the maximum cut problem that
was introduced by Barahona, Grötschel and Mahjoub [BGM85]. For a given graph G, this polytope
contains a constraint for every odd-cycle. Following the notation of Poljak and Tuza [PT95], we
refer to the relaxation of the bipartite subgraph polytope as Q(G):

∑

e∈C

xe ≤ |C| − 1 ∀ odd cycles C (8)

0 ≤ xe ≤ 1 ∀ij ∈ E.
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For a non-negative cost function c, we use the following definitions.

Define ω1 to be the maximum value of c · x over x ∈ Pmet
n .

Define ω2 to be the maximum value of c · x over x ∈ Pmet(G).

Define ω3 to be the maximum value of c · x over x ∈ Q(G).

Theorem 2 [Poljak [Pol92], Theorem 4]

For a graph G = (V,E) with non-negative edge weights, the upper bounds on the value of the

maximum cut of G provided by ω1, ω2 and ω3 are all equal.

Proof: By Theorem 1, ω1 and ω2 are equal. We will prove that ω2 and ω3 are equal, which proves
the theorem. Consider a point x in Pmet(G) that has an objective value c · x. It is also a feasible
point in Q(G) since the constraints in Q(G) are a subset of the constraints that define Pmet(G).
Thus, there is a point in Q(G) with the same objective value.

Consider a point x in Q(G) that has optimal value c∗ for some non-negative cost function. For
each edge e ∈ E such that ce = 0, we increase the value of xe so that it is as large as possible and
does not violate any of the odd-cycle constraints. We can greedily increase the value of every such
edge xe until these values are maximal. Note that the resulting point x also belongs to Q(G) and
still has objective value c∗.

Suppose that there is some constraint in Pmet(G) that is violated by the solution x. Then for
some vertex i ∈ V , there is some path in B(G) from i to i′ such that the value of the path in B(G)
is strictly less than one. Consider such a path. We say an edge in B(G) is a cross edge if it goes
from V to V ′. If all the edges in the path corresponding to the violated constraint are cross edges
in B(G), then they must have value at least one in G, since a path in B(G) comprised entirely of
cross edges corresponds to the sum

∑
e∈C(1 − xe) where C is an odd cycle in G.

So it must be the case that some edge in the path p from i to i′ in B(G) is not a cross edge.
We will denote this edge as f = (h, k). Since the solution x is optimal for Q(G), there must be
some odd cycle Cf containing edge f that is tight, i.e. has value |Cf | − 1 (otherwise we could have
increased xf ). Thus, the sum of the complementary values of edges in Cf must be exactly one, i.e.∑

e∈Cf
(1 − xe) = 1. This implies that

∑
e∈Cf\{f}

(1 − xe) = xf . So we replace edge f in the path

p with the (even-length) path from h to k of the cross edges. Note that this preserves the value of
the shortest path from i to i′ in B(G). We do this for all non-cross edges in the path p. When we
are done, we have a path from i to i′ in B(G) containing only cross edges that has the same value
as the shortest path from i to i′ in B(G). Since this path corresponds to an odd cycle in G, these
cross edges or complimentary edges must sum to at least one. 2
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