The Maximum Acyclic Subgraph Problem and Degree-3 Graphs

Alantha Newman

Laboratory for Computer Science, MIT, Cambridge, Mass 02139
E-mail: alantha@theory.lcs.mit.edu

We study the problem of finding a maximum acyclic subgraph of a given
directed graph in which the maximum total degree (in plus out) is 3. For these
graphs, we present a simple combinatorial algorithm that achieves an 11/12-

approximation (the previous best factor was 2/3 [1]), (ii) a lower bound of %

on approximability. The problem of finding a better-than-half approximation
for general graphs is open.

1. INTRODUCTION

Given a directed graph G = (V, E), the maximum acyclic subgraph prob-
lem is to find a maximum cardinality subset E’ of E such that G' = (V, E')
is acyclic. The problem is NP-hard [3] and the best-known polynomial-time
computable approximation factor for general graphs is %

In this paper, we focus on graphs in which every vertex has total de-
gree (in-degree plus out-degree) at most 3. Throughout this paper, we
refer to these graphs as degree-3 graphs. The problem remains NP-hard
for these graphs [3]. In Section 2, we present an algorithm that finds an
%—approximation. This improves on the previous best guarantees of % for
graphs with maximum degree 3 and % for 3-regular graphs [1]. The algo-
rithm is purely combinatorial and relies heavily on exploiting the structure
of degree-3 graphs. As a corollary of a Theorem in [4, 5], we obtain an

approximation lower bound of 2302 in Section 3.

2. COMBINATORIAL APPROXIMATION ALGORITHMS

In [1], Berger and Shor present an algorithm that returns an acyclic sub-
graph of size at least @ for degree-3 graphs that do not contain 2-cycles.
For 3-regular graphs (note that the set of 3-regular graphs is a proper
subset of the set of degree-3 graphs) with no 2-cycles, an algorithm that

13|E]

returns an acyclic subgraph of size 3¢ is given in [1]. In this section, we

1

FIG. 1. FIG. 2.

show that the problem in degree-3 graphs (with or without 2-cycles) can
be approximated to within % of optimal using simple combinatorial meth-
ods. First we give an %—approxima‘cion algorithm to illustrate some basic
arguments. Then we extend these arguments to give an %—approximation
algorithm.

2.1. An %-Approximation

Given a degree-3 graph G = (V, E) for which we want to find an acyclic
subgraph S C E, we can make the following assumptions.

(i) All vertices in G have in-degree and out-degree at least 1 and total
degree exactly 3.
(ii) G contains no directed or undirected 2- or 3-cycles.

The explanation for assumption (i) is as follows. If G contains any ver-
tices with in- or out-degree 0, we can immediately add all edges adjacent
to these vertices to the acyclic subgraph S, since these edges are contained
in any maximal acyclic subgraph. Additionally, we can contract all ver-
tices in G that have in-degree 1 and out-degree 1. For example, say that
vertex j in G has in-degree 1 and out-degree 1 and G contains edges (7, j)
and (j,k). Then at least one of these two edges will be included in any
maximal acyclic subgraph of G. Thus, contracting vertex j is equivalent
to contracting edge (i, j) and adding it to the acyclic subgraph S.

Now we explain assumption (ii). We can contract multi-edges without
adding cycles to the graph, thus removing any undirected 2-cycles. This is
shown in Figure 1. The edges in the undirected 2-cycle are added to S since
they are included in any maximal acyclic subgraph. In Figures 1 and 2, the
dotted edges are added to S. Similarly, we can remove any undirected 3-
cycle by contracting it and adding its edges to S. This results in a degree-3
vertex as shown in Figure 2. Contracting an undirected 3-cycle will not
introduce any new cycles into the graph since each of the vertices in the
3-cycle has in-degree and out-degree at least 1 by (i).

In the case of directed 2- and 3-cycles, we can remove the minimum
number of edges from the graph while breaking all such cycles. For directed
2-cycles, consider the two adjacent non-cycle edges of a 2-cycle. If they are
both in edges, or both out edges, as in Figure 3A, then we can break the

2-cycle by removing an arbitrary edge. If one is out and the other is in, as
in Figure 3B, then only one of the edges in the 2-cycle is consistent with
the direction of a possible cycle containing both of edges that are not in
the 2-cycle. For example, in Figure 3B, we would remove edge (i,j). For
directed 3-cycles, consider Figure 4A. In this case, or in the analogous case
where three edges point towards the 3-cycle, we can remove any edge from
the 3-cycle. In the other case, we remove an edge from the 3-cycle, so that
the path from the single in edge or to the single out edge is broken. For
example, in Figure 4B, we would remove edge (j, k).

FIG. 3. FIG. 4.

We now consider two subclasses of degree-3 graphs. We will use the
following definition.

DEFINITION 2.1. An a-edge is an edge (i,j) such that vertex i has
in-degree 2 and out-degree 1 and vertex j has in-degree 1 and out-degree
2.

For example, edge (j,%) in Figure 4B is an a-edge. First, we consider
the case where GG contains no a-edges. If there are no a-edges, then we can
find the maximum acyclic subgraph in polynomial time. We will use the
following lemma.

LEMMA 2.1. If G is a 3-reqular graph and contains no a-edges, then all
cycles in G are edge disjoint.

Proof. Assume that there are two cycles in G that have an edge (or a
path) in common. First case: assume that these two cycles have a single
edge (i,7) in common, i.e. edge (i,7) belongs to both cycles, but edges
(a,i) and (j,b) each belong to only one of these cycles. Then vertex i
must have in-degree 2 and vertex j must have out-degree 2. Thus, edge
(i,7) is a a-edge, which is a contradiction. Second case: assume these
two cycles have a path {i,...,j} and that this path is maximal, i.e. edge
(a,i) and (j,b) each belong to only one of these cycles. Vertex i must
have in-degree 2 and vertex j must have out-degree 2. Therefore, at least

one of the edges on the path must be an a-edge, which is a contradiction. |

Since all the cycles in a graph with no a-edges are edge disjoint, we can
find the maximum acyclic subgraph of such a graph in polynomial time.
Given a graph G containing no a-edges, we simply find a cycle in G, throw
away any edge from this cycle, and add edges to the acyclic subgraph S by
contracting appropriate edges in G or removing appropriate edges from G
until G satisfies properties (i) and (ii). We repeat until there are no more
cycles in G.

I VAN

~ edgesadded toS

,,,,,,, =~ contracted edges

FIG. 5. An illustration of step 4.

If G contains a-edges, then the problem is NP-hard. For this case, we give
the following 3-approximation algorithm. Define C(e) as the connected
component containing edge e. Define E(e) as the set of edges adjacent
to edge e, i.e. the edges that share an endpoint with e. For example, if
e is edge (i,7) in the first picture in Figure 5, then E(e) contains edges
(d,i),(a,i),(j,c), and (j,b). S is the solution set. The first part of the
algorithm is the following procedure. An illustration of step 4 is shown in
Figure 5.

While G contains a-edges, do the following:

1. Make sure G is 3-regular and remove all 2- and 3-cycles from G (see
explanation of assumptions (i) and (ii)).

2. Find an a-edge e in G.

3. If |C(e)| = 9, solve this component exactly.

4. Else remove e from G. Add E(e) and any other edges with in- or
out-degree 0 to S. Contract any vertices with in-degree and out-degree
1.

When there are no more a-edges in GG, then we can solve for the maximum
acyclic subgraph in polynomial time as discussed previously. Then, we
uncontract every edge in S that corresponds to a path contracted in some

execution of step 1 or step 4. For every edge not in S that corresponds to
some contracted path, we throw away one edge from the path, and add the
remaining edges to S. Thus, every time we contract a vertex, we guarantee
that at least one more edge will be added to S.

THEOREM 2.1. The algorithm is an g—approm'mation for the mazimum
acyclic subgraph problem in degree-3 graphs.

Proof. We show that for every edge we remove, we contract or add to S
a total of at least 8 edges. Consider a a-edge (i,7) in G. There must be 4
distinct vertices within distance one from i and j (since there are no 2-cycles
or 3-cycles). Thus, there must be at least 9 edges in this neighborhood. If
there are exactly 9 edges, then we have a component with 9 edges and the
algorithm solves this component exactly. Otherwise, if there are more than
9 edges in the neighborhood of edge (7,7) (i.e. there could be as many as
twelve edges) then for each of the 4 distinct vertices that are exactly one
edge away from ¢ or j, we can either contract this vertex, or we can add
two more edges to S (which would let us add more than 8 edges to S in
this round). Note that E(e) contains 4 edges, which are added to S imme-

diately. Therefore at least 8 edges are added to S for each edge removed. |

2.2. An %-Approximation

We now show how to extend the previous algorithm to obtain an %—
approximation algorithm. In our g—approximation algorithm, we arbitrar-
ily choose a-edges to remove. There are degree-3 graphs such that if we
arbitrarily choose a-edges to remove, then we may obtain an acyclic sub-
graph with size only g of optimal. We will show that if we choose the
a-edges to remove carefully, then we can always ensure that the resulting
graph contains certain a-edges whose removal allows us to add at least 11
edges (rather than 8) to the solution set.

In order to analyze the steps of the algorithm more easily, we consider
a further modification of a given degree-3 graph. We contract any pair of
adjacent vertices in which each vertex has in-degree 1 or each vertex has
out-degree 1. An example of such a pair of adjacent vertices is shown in
Figure 6. Here, j,k is a pair of vertices both with in-degree 1 and f,¢ is
a pair of vertices both with out-degree 1, so we contract edges (f,7) and
(4, k). In order to account for the contracted edges, if a vertex has d out
edges or d in edges after an edge was contracted, then the wvalue of these
edges is 2d — 2, since this is the number of edges they represent in the
original graph. For example, in Figure 6, there are now three incoming
edges to vertex i. These three edges represent 4 edges in the original
degree-3 graph, so they have value 4. In other words, if the three edges

coming into vertex ¢ are added to the acyclic subgraph for the modified
graph, then this is equivalent to adding all 4 edges to the acyclic subgraph
for the original graph. After contracting the relevant edges, the resulting
graph will no longer be a degree-3 graph, but will correspond to a degree-3
graph. However, every edge still has in- or out-degree 1 and total degree at
least 3. Hence, we can still handle undirected and directed 2- and 3-cycles
as described in Section 2.1 and thus property (ii) holds. We now have the
additional assumption about the given graph G for which we want to find
an acyclic subgraph.

(iii) G contains no adjacent vertices such that both vertices have in-
degree 1 or both vertices have out-degree 1.

e,

FIG. 6. Edges (f,%) and (j, k) will be contracted.

When we remove an edge e from a graph G, the graph G — e will repre-
sent the graph that is obtained by removing edge e from G, removing all
edges adjacent to a vertex with in- or out-degree 0 in the resulting graph,
contracting all resulting vertices that have in-degree 1 and out-degree 1
and all edges (4,7) such that both 7 and j have in-degree or out-degree 1.
We will use the following definitions.

DerINiTION 2.2. Edge (i,7) is a profitable a-edge if either ¢ or j has
in-degree or out-degree at least 3.

DEFINITION 2.3. A super-profitable graph is a graph that contains either
a 4-cycle or an a-edge (i, j) in which the in-degree of i plus the out-degree
of j is at least 6.

Our algorithm will use the following lemmas.

LEMMA 2.2. If e is a profitable a-edge, then removing e from G allows
us to add 11 edges to the solution set S.

Proof. Consider a profitable a-edge e = (i, 7). When we remove edge e,
we can immediately add at least 6 edges to S since the total value of the
edges incoming to 7 and outgoing from j is at least 6. Since E(e) contains at
least 5 distinct vertices and since there are no 2- or 3-cycles, we can make at
least 5 contractions. Otherwise it is an isolated component and we can solve

it exactly. |

LEmMMA 2.3. If G is not super-profitable and G does not contain any
profitable a-edges, then G contains an edge e such that the graph G — e
contains a profitable a-edge.

Proof. For some a-edge e = (i, j), we let V(e) denote the set of vertices
adjacent to ¢ and j. For example, in Figure 7, V (4, 7) is the set {a,b,c, d}.
This is the set of vertices that would be contracted if we removed edge (7, j)
from G. The first case we consider is when there is at least one vertex in
V(e)-wlog say it is vertex a—such that there is no edge with one endpoint
a and the other endpoint in V(e). Vertex a must have in-degree 2 and
out-degree 1, as shown in Figure 7. Then besides edge (j,a), there are also
edges (f,a) and (a, g) for some vertices f and g. Vertex f must have out-
degree 2; if it had in-degree 2, then { f, a} would have been contracted. For
the same reason, vertex g must have out-degree 2. When we remove edge
(i,7), vertex a is contracted, but neither vertex f nor vertex g is affected,
since neither vertex is in the neighbor set of (i,7). Thus, the graph G —e
contains the edge {f, g} which will be contracted. If G contains one edge
with out degree greater than 2, then it contains a profitable a-edge.

The second case we consider is when for each vertex v in the set V' (e),
G contains an edge with one endpoint v and the other endpoint in the set
V(e). Note that we cannot have an edge from a or b to ¢ or d because G
contains no 4-cycles. G also contains no undirected 3-cycles. Therefore, in
this case, the only possible situation is the one depicted in Figure 8. Note
that vertices [and f must have out-degree 2 and vertices g and h must
have in-degree 2. Thus, if we remove the a-edge (a, f), we would contract
vertices ¢ and j, and the graph G — (a, f) would contain the profitable a-

edge (b,£). Note that vertex h is unaffected by the removal of edge (a, f). |

LEMMA 2.4. If G is not a super-profitable graph and G contains a prof-
itable a-edge, then there is some set {ey,...ex} of edges for some k €
{1,2,3} such that G — {ey,...er} contains a profitable a-edge and remov-
ing these k edges from G allows us to add at least 11k edges to the solution
set S.

FIG. 7. FIG. 8.

FIG. 9. FIG. 10.

Proof. G must contain a profitable a-edge e = (7, j) that has in-degree
2 and out-degree 3 or vice versa. The first case is when V' (i, j) contains at
least one vertex adjacent to ¢ and at least one vertex adjacent to 7 such
that neither of these vertices is adjacent to another vertex in V' (i, 7). See
Figure 9 for an example of this. Here, n and d form such a pair of vertices.
In this case, if we remove edge e, G — e will contain a profitable a-edge.
For example, in Figure 9, suppose n has in-degree 2. Then if we remove
edge (i,7), the edge incoming to vertex m will become a profitable a-edge.
If n has in-degree 3, note that we can remove the profitable a-edge (n,0)
and vertex ¢ will still have in-degree 3 in the resulting graph (since G is
not super-profitable, it does not contain 4-cycles, so there is no edge from
oto b, f ore).

The second case is when V' (i, j) contains two pairs of adjacent vertices as
shown in Figure 10. In this case, we can remove both a-edges from below,
which in this case would be edges (h,g) and (n,0). If either vertex d or h

has in-degree 3, then we can remove one of the profitable a-edges adjacent
to one of these vertices and the edge (i, j) will still be a profitable a-edge
in the resulting graph since vertex j will have out-degree 3. Otherwise if
both d and h have in-degree 2, then we have two subcases to consider. The
first is that there is an edge from o to k, i.e. edge (i,7) is contained in a
6-cycle. However, this is not a problematic case because if we remove edges
(h,g) and (n,0), all of the 5 other edges in the 6-cycle will be added to S.
Thus, in this case we can make much more than a profit of 11 edges per
discarded edge, since the optimal solution can also only get 5 edges from a
6-cycle.

In the last case, assume (i,7) is not in a 6-cycle. In this case, if we
remove edges (h,g) and (n,0) we can immediately add at least 18 edges
to S (i.e. we can add all of the edges shown in Figure 10 except for two
of the edges adjacent to f and in addition, we can add the two edges
coming into @ and two edges coming into k, which are not shown, for
a total of 18) and we can make at least 9 contractions. In the next
move we can remove an «-edge such that the resulting graph contains
a profitable a-edge by Lemma 2.3. Thus, we can remove 3 edges, add

at least 35 edges to S which is at least 11 edges per discarded edge. |

IS QD= G = (

FIG. 11.

LEMMA 2.5. If G is a super-profitable graph, then G contains some «-
edge whose removal allows us to add at least 14 edges to the solution set

S.

Proof. If G contains an a-edge with total in- and out-degree at least 6,
then we can add at least 14 edges to S (8 immediately plus 6 contractions).
If G contains a 4-cycle, then there are the following 4 cases shown in Figure
11. Each case is easy to handle optimally except for the last one. In the
first case, it doesn’t matter which edge we remove from the 4-cycle—any
one is optimal. In the second and third, we remove edge (j, k).

Now consider the last case. Note that edge (h,7) is an a-edge. Assume
the total in-degree of h plus out-degree of i is less than 6 (otherwise, we
have the case above). Without loss of generality, assume h has in-degree
only 2 in the modified graph, as shown in Figure 12. In this case, the
incoming edge to vertex m is an a-edge. If we remove this a-edge, we add

10

at least 8 edges to S. If vertices n and p are unique, then note that the
resulting graph contains a 3-cycle since edge (m,h) will be removed and
vertex h contracted as a result. Thus, on the next move we will get 8 extra
edges. Thus, by removing one edge, we can add at least 14 edges to S. If n
and p are not unique (i.e. there are two adjacent 4-cycles), and we remove
edge (p,m) (or (n,m)), we will contract vertices h and ¢, which results in
a 2-cycle. However, we can only add 5 edges to S by handling a 2-cycle
optimally (we add 3 immediately and make 2 contractions), which is not
enough to establish our lemma.

Therefore, we argue the following. If there is an edge from n to m and
from r to g, then we have 3 adjacent 2-cycles. It may be the case as shown in
the second picture in Figure 12, that these edges form a connected compo-
nent with 9 edges. However, in this case we can solve exactly and so we do
not discard any possibly unecessary edges. So we consider the case shown in
the last drawing in Figure 12. In this case, if there is not an edge from ¢ to
s, then we can use the original argument and obtain a graph with a 3-cycle
after removing the a-edge adjacent to t. If there is an edge from ¢ to s, then
notice that after we remove edge (m, n) and obtain the 2-cycle {j, k}, we will
obtain another 2-cycle after we handle the {j, k} 2-cycle optimally. Thus,

we will add at least 10 extra edges to S bringing the total to at least 14. |

FIG. 12.

We have now stated all the lemmas that we will use to show that we
can approximate our problem to within % The algorithm is similar to the
previous algorithm, except that the while loop is more complex. We will
give a high-level description of the new while loop.

11

The main idea is that during each iteration of the while loop, we want to
remove a profitable a-edge from the graph and simultaneously ensure that
the resulting graph also contains a profitable a-edge or is super-profitable.
We can assume that the given degree-3 graph G contains a profitable a-
edge. If it does not, we can use Lemma 2.3 to obtain a graph that does.
We will only discard one edge in the process and since G contains at least
one cycle (otherwise it is already acyclic), the number of edges in the new
graph is no less than the maximum acyclic subgraph of the original graph.
Then we have two cases. In the first case, if this graph is super-profitable,
by Lemma 2.5, we can remove an a-edge and add 14 edges to S. If after
removing this edge, we are not left with a graph that is super-profitable or
contains a profitable a-edge, then we can use Lemma 2.3 again to obtain
a graph that contains a profitable a-edge. Thus we will discard two edges
and add at least 22 edges to S. In the second case, if the graph is not
super-profitable, we can use Lemma 2.4 remove a set of k € {1,2,3} edges
and add a set of 11k edges to S so that the resulting graph contains a
profitable a-edge.

THEOREM 2.2. The algorithm is an %-appmmimation algorithm for the
mazimum acyclic subgraph problem in degree-3 graphs.

Proof. If G is a super-profitable graph, then by Lemma 2.5, there is
some q-edge whose removal allows us to add 14 edges to S. If we are not
left with a super-profitable graph or a graph containing a profitable a-edge,
then by Lemma 2.3 we can find an a-edge whose removal leaves us with a
graph containing a profitable a-edge. Thus, if we would discard at most
two edges and add at least 14+8=22 edges to S.

If G is not a super-profitable graph, then by Lemma, 2.4, we add at least
11 edges to S for each discarded edge and are left with a graph containing a

profitable a-edge. |

3. A LOWER BOUND

We can make a modification of the gadgets in [4, 5] to obtain the follow-
ing lower bound for degree-3 graphs. Specifically, we can add edges to the
gadgets so that the graphs obtained in the reduction are degree-3 graphs.
The original reduction in [4, 5] was from the problem of linear equations
mod 2 with exactly 3 variables per clause. In this paper, we use Theorem 1
from [2], which shows that the problem of linear equations mod 2 with ex-
actly 3 variables per clause and each variable occuring in at most 3 clauses,
i.e. (3-OCC-E3-LIN-2), is NP-hard to approximate to within better than
61/62 + € for any € > 0.

12

THEOREM 3.1. [t is NP-hard to approzimate the mazimum acyclic sub-

graph of a 3-reqular graph to within % + € for any € > 0.

Proof. We can convert the clause and variable gadgets depicted in
Figure 3 of [5] to clause and variable gadgets in which each vertex has
degree 3. In Figure 3 of [5], each clause gadget has 36 edges. For each
vertex labeled z»,...%5,¥y2,...95, 22,...25, we can add two edges so that
these 12 vertices are now each degree-3. An example of this is shown in
Figure 13. This adds 24 edges per clause gadget. Note that none of these
new edges are a-edges and only a-edges belong to a minimum feedback arc
set.

Now we can connect these clause gadgets so that the resulting graph is
degree-3. First, we can connect the clause gadgets to the vertices xg,z,
Yo, Y1, 20, 21 as shown in Figure 3 in [5]. Since each variable appears at most
3 times, these vertices have in-degree at most 3 and out-degree at most 3.
We can assume each variable appears exactly 3 times, since otherwise the
reduction graph will have fewer edges. We can transform these degree-6
vertices to degree-3 vertices as shown in Figure 14. Note that every edge
labeled z =1 in a clause gadget is in a cycle with every other edge labeled
x = 0 from this clause gadget or from other clause gadgets. This is how
consistency in an assignment is maintained.

Suppose we have an assignment of the variables for an instance of 3-
OCC-E3-Lin-2. We say an assignment corresponds to an acyclic subgraph
if all edges labeled z = 0 are removed if x is true in the assignment and
if all edges labeled © = 1 are removed if x is false in the assignment. If
a clause is satisfied, we only need to remove 3 edges from the respective
clause gadget and if the assignment for all clauses is consistent, then there
are no cycles between clauses. Note that since a variable can occur at most
3 times, at most one of the clauses it appears in can be false. Otherwise, we
would flip the value of that variable and obtain an assignment that satisfies
more clauses.

Thus, an optimal assignment that satisfies s clauses and does not satisfy
u clauses corresponds to an acyclic subgraph with 57s + 56u + 6m edges. It
is NP-hard to distinguish between a set of clauses in which all m clauses can
be satisfied and at most 61/62m clauses can be satisfied. Thus, if we can
approximate the problem to within more than %, we can distinguish be-
tween the case in which we have 57m+6m (which corresponds to all clauses
being satisfied) and the case in which we have 57(61/62)m + 56(1/62)m +

6m. |

13

AV >X<

v
¢

FIG. 13. FIG. 14.

4. COMMENTS

A preliminary version of this paper appeared in the proceedings of AP-
PROX 2001. The proof of Theorem 4.2 in the preliminary version is incor-
rect. This is due to an error in the proof of Lemma 4.1: the construction
used may not actually preserve the size of the feedback arc set, i.e. there
is a counter example. Additionally, the same error was made in Theorem
3.1 of the preliminary version, which has been amended and appears as
Theorem 3.1 in this version.

ACKNOWLEDGEMENTS

I thank Santosh Vempala for many discussions on the maximum acyclic
subgraph problem.

14

REFERENCES

. Bonnie Berger and Peter W. Shor. Tight Bounds on the Maximum Acyclic Subgraph

Problem, Journal of Algorithms, vol. 25, pp 1-18, 1997.

. Piotr Berman and Marek Karpinski. On Some Tighter Inapproximability Results,

Proceedings of ICALP, pp 200-109, 1999.

. Richard M Karp. Reducibility Among Combinatorial Problems, in R. Miller and J.

Thatcher eds., Complexity of Computer Computations, Plenum Press, pp 85-103,
1972.

. Alantha Newman. Approximating the Maximum Acyclic Subgraph, M.S. Thesis,

MIT, June 2000.

. Alantha Newman and Santosh Vempala. Fences Are Futile: On Relaxations for the

Linear Ordering Problem, Proceedings of IPCO 2001, Springer-Verlag.

