
The Maximum A
y
li
 Subgraph Problem and Degree-3 GraphsAlantha NewmanLaboratory for Computer S
ien
e, MIT, Cambridge, Mass 02139E-mail: alantha�theory.l
s.mit.eduWe study the problem of �nding a maximum a
y
li
 subgraph of a givendire
ted graph in whi
h the maximum total degree (in plus out) is 3. For thesegraphs, we present a simple 
ombinatorial algorithm that a
hieves an 11/12-approximation (the previous best fa
tor was 2/3 [1℄), (ii) a lower bound of 39053906on approximability. The problem of �nding a better-than-half approximationfor general graphs is open.1. INTRODUCTIONGiven a dire
ted graphG = (V;E), the maximum a
y
li
 subgraph prob-lem is to �nd a maximum 
ardinality subset E0 of E su
h that G0 = (V;E0)is a
y
li
. The problem is NP-hard [3℄ and the best-known polynomial-time
omputable approximation fa
tor for general graphs is 12 .In this paper, we fo
us on graphs in whi
h every vertex has total de-gree (in-degree plus out-degree) at most 3. Throughout this paper, werefer to these graphs as degree-3 graphs. The problem remains NP-hardfor these graphs [3℄. In Se
tion 2, we present an algorithm that �nds an1112 -approximation. This improves on the previous best guarantees of 23 forgraphs with maximum degree 3 and 1318 for 3-regular graphs [1℄. The algo-rithm is purely 
ombinatorial and relies heavily on exploiting the stru
tureof degree-3 graphs. As a 
orollary of a Theorem in [4, 5℄, we obtain anapproximation lower bound of 39053906 in Se
tion 3.2. COMBINATORIAL APPROXIMATION ALGORITHMSIn [1℄, Berger and Shor present an algorithm that returns an a
y
li
 sub-graph of size at least 2jEj3 for degree-3 graphs that do not 
ontain 2-
y
les.For 3-regular graphs (note that the set of 3-regular graphs is a propersubset of the set of degree-3 graphs) with no 2-
y
les, an algorithm thatreturns an a
y
li
 subgraph of size 13jEj18 is given in [1℄. In this se
tion, we1
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kFIG. 1. FIG. 2.show that the problem in degree-3 graphs (with or without 2-
y
les) 
anbe approximated to within 1112 of optimal using simple 
ombinatorial meth-ods. First we give an 89 -approximation algorithm to illustrate some basi
arguments. Then we extend these arguments to give an 1112 -approximationalgorithm. 2.1. An 89 -ApproximationGiven a degree-3 graph G = (V;E) for whi
h we want to �nd an a
y
li
subgraph S � E, we 
an make the following assumptions.(i) All verti
es in G have in-degree and out-degree at least 1 and totaldegree exa
tly 3.(ii) G 
ontains no dire
ted or undire
ted 2- or 3-
y
les.The explanation for assumption (i) is as follows. If G 
ontains any ver-ti
es with in- or out-degree 0, we 
an immediately add all edges adja
entto these verti
es to the a
y
li
 subgraph S, sin
e these edges are 
ontainedin any maximal a
y
li
 subgraph. Additionally, we 
an 
ontra
t all ver-ti
es in G that have in-degree 1 and out-degree 1. For example, say thatvertex j in G has in-degree 1 and out-degree 1 and G 
ontains edges (i; j)and (j; k). Then at least one of these two edges will be in
luded in anymaximal a
y
li
 subgraph of G. Thus, 
ontra
ting vertex j is equivalentto 
ontra
ting edge (i; j) and adding it to the a
y
li
 subgraph S.Now we explain assumption (ii). We 
an 
ontra
t multi-edges withoutadding 
y
les to the graph, thus removing any undire
ted 2-
y
les. This isshown in Figure 1. The edges in the undire
ted 2-
y
le are added to S sin
ethey are in
luded in any maximal a
y
li
 subgraph. In Figures 1 and 2, thedotted edges are added to S. Similarly, we 
an remove any undire
ted 3-
y
le by 
ontra
ting it and adding its edges to S. This results in a degree-3vertex as shown in Figure 2. Contra
ting an undire
ted 3-
y
le will notintrodu
e any new 
y
les into the graph sin
e ea
h of the verti
es in the3-
y
le has in-degree and out-degree at least 1 by (i).In the 
ase of dire
ted 2- and 3-
y
les, we 
an remove the minimumnumber of edges from the graph while breaking all su
h 
y
les. For dire
ted2-
y
les, 
onsider the two adja
ent non-
y
le edges of a 2-
y
le. If they areboth in edges, or both out edges, as in Figure 3A, then we 
an break the
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y
le by removing an arbitrary edge. If one is out and the other is in, asin Figure 3B, then only one of the edges in the 2-
y
le is 
onsistent withthe dire
tion of a possible 
y
le 
ontaining both of edges that are not inthe 2-
y
le. For example, in Figure 3B, we would remove edge (i; j). Fordire
ted 3-
y
les, 
onsider Figure 4A. In this 
ase, or in the analogous 
asewhere three edges point towards the 3-
y
le, we 
an remove any edge fromthe 3-
y
le. In the other 
ase, we remove an edge from the 3-
y
le, so thatthe path from the single in edge or to the single out edge is broken. Forexample, in Figure 4B, we would remove edge (j; k).
B.
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kFIG. 3. FIG. 4.We now 
onsider two sub
lasses of degree-3 graphs. We will use thefollowing de�nition.Definition 2.1. An �-edge is an edge (i; j) su
h that vertex i hasin-degree 2 and out-degree 1 and vertex j has in-degree 1 and out-degree2. For example, edge (j; k) in Figure 4B is an �-edge. First, we 
onsiderthe 
ase where G 
ontains no �-edges. If there are no �-edges, then we 
an�nd the maximum a
y
li
 subgraph in polynomial time. We will use thefollowing lemma.Lemma 2.1. If G is a 3-regular graph and 
ontains no �-edges, then all
y
les in G are edge disjoint.Proof. Assume that there are two 
y
les in G that have an edge (or apath) in 
ommon. First 
ase: assume that these two 
y
les have a singleedge (i; j) in 
ommon, i.e. edge (i; j) belongs to both 
y
les, but edges(a; i) and (j; b) ea
h belong to only one of these 
y
les. Then vertex imust have in-degree 2 and vertex j must have out-degree 2. Thus, edge(i; j) is a �-edge, whi
h is a 
ontradi
tion. Se
ond 
ase: assume thesetwo 
y
les have a path fi; : : : ; jg and that this path is maximal, i.e. edge(a; i) and (j; b) ea
h belong to only one of these 
y
les. Vertex i musthave in-degree 2 and vertex j must have out-degree 2. Therefore, at leastone of the edges on the path must be an �-edge, whi
h is a 
ontradi
tion.



4 Sin
e all the 
y
les in a graph with no �-edges are edge disjoint, we 
an�nd the maximum a
y
li
 subgraph of su
h a graph in polynomial time.Given a graph G 
ontaining no �-edges, we simply �nd a 
y
le in G, throwaway any edge from this 
y
le, and add edges to the a
y
li
 subgraph S by
ontra
ting appropriate edges in G or removing appropriate edges from Guntil G satis�es properties (i) and (ii). We repeat until there are no more
y
les in G.
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contracted edges

edges added to SFIG. 5. An illustration of step 4.If G 
ontains �-edges, then the problem is NP-hard. For this 
ase, we givethe following 89 -approximation algorithm. De�ne C(e) as the 
onne
ted
omponent 
ontaining edge e. De�ne E(e) as the set of edges adja
entto edge e, i.e. the edges that share an endpoint with e. For example, ife is edge (i; j) in the �rst pi
ture in Figure 5, then E(e) 
ontains edges(d; i); (a; i); (j; 
), and (j; b). S is the solution set. The �rst part of thealgorithm is the following pro
edure. An illustration of step 4 is shown inFigure 5.While G 
ontains �-edges, do the following:1. Make sure G is 3-regular and remove all 2- and 3-
y
les from G (seeexplanation of assumptions (i) and (ii)).2. Find an �-edge e in G.3. If jC(e)j = 9, solve this 
omponent exa
tly.4. Else remove e from G. Add E(e) and any other edges with in- orout-degree 0 to S. Contra
t any verti
es with in-degree and out-degree1.When there are no more �-edges inG, then we 
an solve for the maximuma
y
li
 subgraph in polynomial time as dis
ussed previously. Then, weun
ontra
t every edge in S that 
orresponds to a path 
ontra
ted in some



5exe
ution of step 1 or step 4. For every edge not in S that 
orresponds tosome 
ontra
ted path, we throw away one edge from the path, and add theremaining edges to S. Thus, every time we 
ontra
t a vertex, we guaranteethat at least one more edge will be added to S.Theorem 2.1. The algorithm is an 89 -approximation for the maximuma
y
li
 subgraph problem in degree-3 graphs.Proof. We show that for every edge we remove, we 
ontra
t or add to Sa total of at least 8 edges. Consider a �-edge (i; j) in G. There must be 4distin
t verti
es within distan
e one from i and j (sin
e there are no 2-
y
lesor 3-
y
les). Thus, there must be at least 9 edges in this neighborhood. Ifthere are exa
tly 9 edges, then we have a 
omponent with 9 edges and thealgorithm solves this 
omponent exa
tly. Otherwise, if there are more than9 edges in the neighborhood of edge (i; j) (i.e. there 
ould be as many astwelve edges) then for ea
h of the 4 distin
t verti
es that are exa
tly oneedge away from i or j, we 
an either 
ontra
t this vertex, or we 
an addtwo more edges to S (whi
h would let us add more than 8 edges to S inthis round). Note that E(e) 
ontains 4 edges, whi
h are added to S imme-diately. Therefore at least 8 edges are added to S for ea
h edge removed.2.2. An 1112 -ApproximationWe now show how to extend the previous algorithm to obtain an 1112 -approximation algorithm. In our 89 -approximation algorithm, we arbitrar-ily 
hoose �-edges to remove. There are degree-3 graphs su
h that if wearbitrarily 
hoose �-edges to remove, then we may obtain an a
y
li
 sub-graph with size only 89 of optimal. We will show that if we 
hoose the�-edges to remove 
arefully, then we 
an always ensure that the resultinggraph 
ontains 
ertain �-edges whose removal allows us to add at least 11edges (rather than 8) to the solution set.In order to analyze the steps of the algorithm more easily, we 
onsidera further modi�
ation of a given degree-3 graph. We 
ontra
t any pair ofadja
ent verti
es in whi
h ea
h vertex has in-degree 1 or ea
h vertex hasout-degree 1. An example of su
h a pair of adja
ent verti
es is shown inFigure 6. Here, j; k is a pair of verti
es both with in-degree 1 and f; i isa pair of verti
es both with out-degree 1, so we 
ontra
t edges (f; i) and(j; k). In order to a

ount for the 
ontra
ted edges, if a vertex has d outedges or d in edges after an edge was 
ontra
ted, then the value of theseedges is 2d � 2, sin
e this is the number of edges they represent in theoriginal graph. For example, in Figure 6, there are now three in
omingedges to vertex i. These three edges represent 4 edges in the originaldegree-3 graph, so they have value 4. In other words, if the three edges
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oming into vertex i are added to the a
y
li
 subgraph for the modi�edgraph, then this is equivalent to adding all 4 edges to the a
y
li
 subgraphfor the original graph. After 
ontra
ting the relevant edges, the resultinggraph will no longer be a degree-3 graph, but will 
orrespond to a degree-3graph. However, every edge still has in- or out-degree 1 and total degree atleast 3. Hen
e, we 
an still handle undire
ted and dire
ted 2- and 3-
y
lesas des
ribed in Se
tion 2.1 and thus property (ii) holds. We now have theadditional assumption about the given graph G for whi
h we want to �ndan a
y
li
 subgraph.(iii) G 
ontains no adja
ent verti
es su
h that both verti
es have in-degree 1 or both verti
es have out-degree 1.
i

j

d
f

k
g

d
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j

gFIG. 6. Edges (f; i) and (j; k) will be 
ontra
ted.When we remove an edge e from a graph G, the graph G� e will repre-sent the graph that is obtained by removing edge e from G, removing alledges adja
ent to a vertex with in- or out-degree 0 in the resulting graph,
ontra
ting all resulting verti
es that have in-degree 1 and out-degree 1and all edges (i; j) su
h that both i and j have in-degree or out-degree 1.We will use the following de�nitions.Definition 2.2. Edge (i; j) is a pro�table �-edge if either i or j hasin-degree or out-degree at least 3.Definition 2.3. A super-pro�table graph is a graph that 
ontains eithera 4-
y
le or an �-edge (i; j) in whi
h the in-degree of i plus the out-degreeof j is at least 6.Our algorithm will use the following lemmas.Lemma 2.2. If e is a pro�table �-edge, then removing e from G allowsus to add 11 edges to the solution set S.



7Proof. Consider a pro�table �-edge e = (i; j). When we remove edge e,we 
an immediately add at least 6 edges to S sin
e the total value of theedges in
oming to i and outgoing from j is at least 6. Sin
e E(e) 
ontains atleast 5 distin
t verti
es and sin
e there are no 2- or 3-
y
les, we 
an make atleast 5 
ontra
tions. Otherwise it is an isolated 
omponent and we 
an solveit exa
tly.Lemma 2.3. If G is not super-pro�table and G does not 
ontain anypro�table �-edges, then G 
ontains an edge e su
h that the graph G � e
ontains a pro�table �-edge.Proof. For some �-edge e = (i; j), we let V (e) denote the set of verti
esadja
ent to i and j. For example, in Figure 7, V (i; j) is the set fa; b; 
; dg.This is the set of verti
es that would be 
ontra
ted if we removed edge (i; j)from G. The �rst 
ase we 
onsider is when there is at least one vertex inV (e){wlog say it is vertex a{su
h that there is no edge with one endpointa and the other endpoint in V (e). Vertex a must have in-degree 2 andout-degree 1, as shown in Figure 7. Then besides edge (j; a), there are alsoedges (f; a) and (a; g) for some verti
es f and g. Vertex f must have out-degree 2; if it had in-degree 2, then ff; ag would have been 
ontra
ted. Forthe same reason, vertex g must have out-degree 2. When we remove edge(i; j), vertex a is 
ontra
ted, but neither vertex f nor vertex g is a�e
ted,sin
e neither vertex is in the neighbor set of (i; j). Thus, the graph G � e
ontains the edge ff; gg whi
h will be 
ontra
ted. If G 
ontains one edgewith out degree greater than 2, then it 
ontains a pro�table �-edge.The se
ond 
ase we 
onsider is when for ea
h vertex v in the set V (e),G 
ontains an edge with one endpoint v and the other endpoint in the setV (e). Note that we 
annot have an edge from a or b to 
 or d be
ause G
ontains no 4-
y
les. G also 
ontains no undire
ted 3-
y
les. Therefore, inthis 
ase, the only possible situation is the one depi
ted in Figure 8. Notethat verti
es l and f must have out-degree 2 and verti
es g and h musthave in-degree 2. Thus, if we remove the �-edge (a; f), we would 
ontra
tverti
es 
 and j, and the graph G � (a; f) would 
ontain the pro�table �-edge (b; `). Note that vertex h is una�e
ted by the removal of edge (a; f).Lemma 2.4. If G is not a super-pro�table graph and G 
ontains a prof-itable �-edge, then there is some set fe1; : : : ekg of edges for some k 2f1; 2; 3g su
h that G� fe1; : : : ekg 
ontains a pro�table �-edge and remov-ing these k edges from G allows us to add at least 11k edges to the solutionset S.
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FIG. 9. FIG. 10.Proof. G must 
ontain a pro�table �-edge e = (i; j) that has in-degree2 and out-degree 3 or vi
e versa. The �rst 
ase is when V (i; j) 
ontains atleast one vertex adja
ent to i and at least one vertex adja
ent to j su
hthat neither of these verti
es is adja
ent to another vertex in V (i; j). SeeFigure 9 for an example of this. Here, n and d form su
h a pair of verti
es.In this 
ase, if we remove edge e, G � e will 
ontain a pro�table �-edge.For example, in Figure 9, suppose n has in-degree 2. Then if we removeedge (i; j), the edge in
oming to vertex m will be
ome a pro�table �-edge.If n has in-degree 3, note that we 
an remove the pro�table �-edge (n; o)and vertex i will still have in-degree 3 in the resulting graph (sin
e G isnot super-pro�table, it does not 
ontain 4-
y
les, so there is no edge fromo to b; f or e).The se
ond 
ase is when V (i; j) 
ontains two pairs of adja
ent verti
es asshown in Figure 10. In this 
ase, we 
an remove both �-edges from below,whi
h in this 
ase would be edges (h; g) and (n; o). If either vertex d or h



9has in-degree 3, then we 
an remove one of the pro�table �-edges adja
entto one of these verti
es and the edge (i; j) will still be a pro�table �-edgein the resulting graph sin
e vertex j will have out-degree 3. Otherwise ifboth d and h have in-degree 2, then we have two sub
ases to 
onsider. The�rst is that there is an edge from o to k, i.e. edge (i; j) is 
ontained in a6-
y
le. However, this is not a problemati
 
ase be
ause if we remove edges(h; g) and (n; o), all of the 5 other edges in the 6-
y
le will be added to S.Thus, in this 
ase we 
an make mu
h more than a pro�t of 11 edges perdis
arded edge, sin
e the optimal solution 
an also only get 5 edges from a6-
y
le.In the last 
ase, assume (i; j) is not in a 6-
y
le. In this 
ase, if weremove edges (h; g) and (n; o) we 
an immediately add at least 18 edgesto S (i.e. we 
an add all of the edges shown in Figure 10 ex
ept for twoof the edges adja
ent to f and in addition, we 
an add the two edges
oming into a and two edges 
oming into k, whi
h are not shown, fora total of 18) and we 
an make at least 9 
ontra
tions. In the nextmove we 
an remove an �-edge su
h that the resulting graph 
ontainsa pro�table �-edge by Lemma 2.3. Thus, we 
an remove 3 edges, addat least 35 edges to S whi
h is at least 11 edges per dis
arded edge.
h i

jk

h i

jk

h i

jk

h i

jkFIG. 11.Lemma 2.5. If G is a super-pro�table graph, then G 
ontains some �-edge whose removal allows us to add at least 14 edges to the solution setS.Proof. If G 
ontains an �-edge with total in- and out-degree at least 6,then we 
an add at least 14 edges to S (8 immediately plus 6 
ontra
tions).If G 
ontains a 4-
y
le, then there are the following 4 
ases shown in Figure11. Ea
h 
ase is easy to handle optimally ex
ept for the last one. In the�rst 
ase, it doesn't matter whi
h edge we remove from the 4-
y
le{anyone is optimal. In the se
ond and third, we remove edge (j; k).Now 
onsider the last 
ase. Note that edge (h; i) is an �-edge. Assumethe total in-degree of h plus out-degree of i is less than 6 (otherwise, wehave the 
ase above). Without loss of generality, assume h has in-degreeonly 2 in the modi�ed graph, as shown in Figure 12. In this 
ase, thein
oming edge to vertex m is an �-edge. If we remove this �-edge, we add



10at least 8 edges to S. If verti
es n and p are unique, then note that theresulting graph 
ontains a 3-
y
le sin
e edge (m;h) will be removed andvertex h 
ontra
ted as a result. Thus, on the next move we will get 8 extraedges. Thus, by removing one edge, we 
an add at least 14 edges to S. If nand p are not unique (i.e. there are two adja
ent 4-
y
les), and we removeedge (p;m) (or (n;m)), we will 
ontra
t verti
es h and i, whi
h results ina 2-
y
le. However, we 
an only add 5 edges to S by handling a 2-
y
leoptimally (we add 3 immediately and make 2 
ontra
tions), whi
h is notenough to establish our lemma.Therefore, we argue the following. If there is an edge from n to m andfrom r to q, then we have 3 adja
ent 2-
y
les. It may be the 
ase as shown inthe se
ond pi
ture in Figure 12, that these edges form a 
onne
ted 
ompo-nent with 9 edges. However, in this 
ase we 
an solve exa
tly and so we donot dis
ard any possibly une
essary edges. So we 
onsider the 
ase shown inthe last drawing in Figure 12. In this 
ase, if there is not an edge from t tos, then we 
an use the original argument and obtain a graph with a 3-
y
leafter removing the �-edge adja
ent to t. If there is an edge from t to s, thennoti
e that after we remove edge (m;n) and obtain the 2-
y
le fj; kg, we willobtain another 2-
y
le after we handle the fj; kg 2-
y
le optimally. Thus,we will add at least 10 extra edges to S bringing the total to at least 14.
h i

jk

m n

r
q

p m n

h i

jk

m n

r q

s t

h i

jkFIG. 12.We have now stated all the lemmas that we will use to show that we
an approximate our problem to within 1112 . The algorithm is similar to theprevious algorithm, ex
ept that the while loop is more 
omplex. We willgive a high-level des
ription of the new while loop.



11The main idea is that during ea
h iteration of the while loop, we want toremove a pro�table �-edge from the graph and simultaneously ensure thatthe resulting graph also 
ontains a pro�table �-edge or is super-pro�table.We 
an assume that the given degree-3 graph G 
ontains a pro�table �-edge. If it does not, we 
an use Lemma 2.3 to obtain a graph that does.We will only dis
ard one edge in the pro
ess and sin
e G 
ontains at leastone 
y
le (otherwise it is already a
y
li
), the number of edges in the newgraph is no less than the maximum a
y
li
 subgraph of the original graph.Then we have two 
ases. In the �rst 
ase, if this graph is super-pro�table,by Lemma 2.5, we 
an remove an �-edge and add 14 edges to S. If afterremoving this edge, we are not left with a graph that is super-pro�table or
ontains a pro�table �-edge, then we 
an use Lemma 2.3 again to obtaina graph that 
ontains a pro�table �-edge. Thus we will dis
ard two edgesand add at least 22 edges to S. In the se
ond 
ase, if the graph is notsuper-pro�table, we 
an use Lemma 2.4 remove a set of k 2 f1; 2; 3g edgesand add a set of 11k edges to S so that the resulting graph 
ontains apro�table �-edge.Theorem 2.2. The algorithm is an 1112 -approximation algorithm for themaximum a
y
li
 subgraph problem in degree-3 graphs.Proof. If G is a super-pro�table graph, then by Lemma 2.5, there issome �-edge whose removal allows us to add 14 edges to S. If we are notleft with a super-pro�table graph or a graph 
ontaining a pro�table �-edge,then by Lemma 2.3 we 
an �nd an �-edge whose removal leaves us with agraph 
ontaining a pro�table �-edge. Thus, if we would dis
ard at mosttwo edges and add at least 14+8=22 edges to S.If G is not a super-pro�table graph, then by Lemma 2.4, we add at least11 edges to S for ea
h dis
arded edge and are left with a graph 
ontaining apro�table �-edge. 3. A LOWER BOUNDWe 
an make a modi�
ation of the gadgets in [4, 5℄ to obtain the follow-ing lower bound for degree-3 graphs. Spe
i�
ally, we 
an add edges to thegadgets so that the graphs obtained in the redu
tion are degree-3 graphs.The original redu
tion in [4, 5℄ was from the problem of linear equationsmod 2 with exa
tly 3 variables per 
lause. In this paper, we use Theorem 1from [2℄, whi
h shows that the problem of linear equations mod 2 with ex-a
tly 3 variables per 
lause and ea
h variable o

uring in at most 3 
lauses,i.e. (3-OCC-E3-LIN-2), is NP-hard to approximate to within better than61=62+ � for any � > 0.



12Theorem 3.1. It is NP-hard to approximate the maximum a
y
li
 sub-graph of a 3-regular graph to within 39053906 + � for any � > 0.Proof. We 
an 
onvert the 
lause and variable gadgets depi
ted inFigure 3 of [5℄ to 
lause and variable gadgets in whi
h ea
h vertex hasdegree 3. In Figure 3 of [5℄, ea
h 
lause gadget has 36 edges. For ea
hvertex labeled x2; : : : x5; y2; : : : y5; z2; : : : z5, we 
an add two edges so thatthese 12 verti
es are now ea
h degree-3. An example of this is shown inFigure 13. This adds 24 edges per 
lause gadget. Note that none of thesenew edges are �-edges and only �-edges belong to a minimum feedba
k ar
set.Now we 
an 
onne
t these 
lause gadgets so that the resulting graph isdegree-3. First, we 
an 
onne
t the 
lause gadgets to the verti
es x0; x1;y0; y1; z0; z1 as shown in Figure 3 in [5℄. Sin
e ea
h variable appears at most3 times, these verti
es have in-degree at most 3 and out-degree at most 3.We 
an assume ea
h variable appears exa
tly 3 times, sin
e otherwise theredu
tion graph will have fewer edges. We 
an transform these degree-6verti
es to degree-3 verti
es as shown in Figure 14. Note that every edgelabeled x = 1 in a 
lause gadget is in a 
y
le with every other edge labeledx = 0 from this 
lause gadget or from other 
lause gadgets. This is how
onsisten
y in an assignment is maintained.Suppose we have an assignment of the variables for an instan
e of 3-OCC-E3-Lin-2. We say an assignment 
orresponds to an a
y
li
 subgraphif all edges labeled x = 0 are removed if x is true in the assignment andif all edges labeled x = 1 are removed if x is false in the assignment. Ifa 
lause is satis�ed, we only need to remove 3 edges from the respe
tive
lause gadget and if the assignment for all 
lauses is 
onsistent, then thereare no 
y
les between 
lauses. Note that sin
e a variable 
an o

ur at most3 times, at most one of the 
lauses it appears in 
an be false. Otherwise, wewould 
ip the value of that variable and obtain an assignment that satis�esmore 
lauses.Thus, an optimal assignment that satis�es s 
lauses and does not satisfyu 
lauses 
orresponds to an a
y
li
 subgraph with 57s+56u+6m edges. Itis NP-hard to distinguish between a set of 
lauses in whi
h allm 
lauses 
anbe satis�ed and at most 61=62m 
lauses 
an be satis�ed. Thus, if we 
anapproximate the problem to within more than 39053906 , we 
an distinguish be-tween the 
ase in whi
h we have 57m+6m (whi
h 
orresponds to all 
lausesbeing satis�ed) and the 
ase in whi
h we have 57(61=62)m+56(1=62)m+6m.
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FIG. 13. FIG. 14.4. COMMENTSA preliminary version of this paper appeared in the pro
eedings of AP-PROX 2001. The proof of Theorem 4.2 in the preliminary version is in
or-re
t. This is due to an error in the proof of Lemma 4.1: the 
onstru
tionused may not a
tually preserve the size of the feedba
k ar
 set, i.e. thereis a 
ounter example. Additionally, the same error was made in Theorem3.1 of the preliminary version, whi
h has been amended and appears asTheorem 3.1 in this version.ACKNOWLEDGEMENTSI thank Santosh Vempala for many dis
ussions on the maximum a
y
li
subgraph problem.
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