
Bounding A Protein's Free Energy In Latti
e Models ViaLinear ProgrammingRobert Carr � William E. Hart � Alantha Newman yApril 14, 2004Abstra
tThe established HP latti
e 2D and 3D models have been useful abstra
tions in understandingprotein stru
ture. In these models, a protein folds to maximize H-H
onta
ts (minimize freeenergy). We examine and
ompare integer programming models for the 2D latti
e, whoselinear relaxations provide non-trivial upper bounds on the maximum number of
onta
ts. Thesebounds
an be used in a bran
h-and-bound approa
h to solve the problem optimally, and areof independent interest as well. In parti
ular, we seek to beat the simple
ombinatorial boundthat arises from the latti
e being bipartite.

�Dis
rete Algorithms and Math Department, Sandia National Laboratories, Albuquerque, NM. email:rd
arr,wehart�sandia.gov.yLaboratory for Computer S
ien
e, MIT, Cambridge, MA. email: alantha�theory.l
s.mit.edu.

1 Introdu
tionWe dis
uss dis
rete optimization approa
hes to the problem of protein folding in the Hydrophobi
-Hydrophili
 (HP) model. The widely-studied HP model was introdu
ed by Ken Dill [5, 6℄. Thismodel abstra
ts the dominant for
e in protein folding: the hydrophobi
 intera
tion. The hydropho-bi
ity of an amino a
id measures its aÆnity for water, and the hydrophobi
 amino a
id residues ofa protein form a tightly
lustered
ore. In the HP model, ea
h amino a
id residue is
lassi�ed asan H (hydrophobi
) or a P (hydrophili
). The model further simpli�es the problem by restri
tingthe feasible foldings to the 2D or 3D square latti
e. An optimal
onformation for a string of aminoa
id residues in this model is one that maximizes the number of H-H
onta
ts, i.e. pairs of H's thato

upy adja
ent latti
e points but are not adja
ent on the string.
Figure 1: An optimal folding for the string 101010101001010101. 0's and 1's are denoted by un�lledand �lled dots, respe
tively. Conta
ts are denoted by the dashed lines.The problem of protein folding in the HP model is
ombinatorially equivalent to folding a stringof 0's and 1's on the square latti
e to form a self-avoiding walk that maximizes the number of pairs ofadja
ent 1's, i.e. with H=1 and P=0. For example, suppose we have the string 101010101001010101.An optimal folding for this string on the 2D square latti
e is shown in Figure 1. This folding haseight
onta
ts or pairs of 1's that are pla
ed on adja
ent latti
e points but are not neighbors in thestring.Finding an optimal folding is NP-hard for both the 2D and 3D square latti
es [4, 3℄. Computingan exa
t upper bound on the optimal number of
onta
ts is therefore probably very diÆ
ult to doeÆ
iently, so we would like �nd the best eÆ
iently
omputable upper bound. The better the upperbound{the
loser the upper bound is to the maximum number of
onta
ts{the more information wehave about the a
tual optimal value. Despite the fa
t that the best-known eÆ
iently
omputableupper bound is quite straightforward and was introdu
ed at least a de
ade ago, it has yet to beimproved upon.To explain this upper bound, we introdu
e some notation that we will use throughout the paper.Let S = s1s2 : : : sn be a binary string in f0; 1gn. We refer to ea
h 1 in an odd position on the stringas an odd-1 and ea
h 1 in an even position on the string as an even-1. Let O[S℄ represent thenumber of odd-1's in S and let E [S℄ represent the number of even-1's in S. Sin
e both the 2D and3D square latti
es are bipartite graphs, ea
h odd-1
an have
onta
ts with only even-1's. Similarly,ea
h even-1
an have
onta
ts with only odd-1's. Thus, a simple upper bound for the 2D problem1

is: 2 �minfE [S℄;O[S℄g+ 2: (1)For the 3D problem, an analogous argument leads to an upper bound of 4 �minfE[S℄;O[S℄g + 2.These simple upper bounds
an be used to obtain algorithms with approximation guaranteesof 1/4 [8℄ and 1/3 [10℄ for the 2D problem and 3/8 [8℄ for the 3D problem. The approximationguarantee for ea
h of these algorithms is based on the observation that it yields a folding with atleast 1/4, 1/3, and 3/8, respe
tively, as many
onta
ts as permitted by the upper bound. Ourgoal is to improve upon this upper bound, whi
h
ould potentially lead to improved approximationalgorithms and more eÆ
ient exa
t algorithms (using for instan
e a bran
h and bound te
hnique).Overview In this paper, we investigate various integer programs that model the 2D problemand examine the upper bounds given by their respe
tive linear programming relaxations. Ourformulations are similar to those studied previously in [7℄, whi
h appears to
ontain the only otherdes
ription of this problem as an integer program. In Se
tion 2, we give some ba
kground on linearprogramming and its appli
ations to �nding upper bounds for hard
ombinatorial maximizationproblems. In Se
tion 2.1 and Se
tion 2.2, we de�ne some notation and explain how we we usevariables in our integer programs. In Se
tion 2.3, we give a basi
 integer program for our problemand explain why there is a one-to-one
orresponden
e between integer solutions and a
tual foldingsof strings on the 2D square latti
e. In Se
tion 2.4, we introdu
e a slightly modi�ed approa
h toour formulations that uses aggregate variables. In Se
tion 2.5, we show how to obtain a linearprogramming relaxation from the IP in Se
tion 2.3 and dis
uss ways to measure the quality of theupper bound provided by a linear programming relaxation. We show that the upper bound givenby this relaxation is a
tually quite poor and needs to be strengthened. In Se
tion 3.1, we presentimproved linear models and prove that they are at least as good as the best-known upper bound. InSe
tion 3.2, we give an example of a string for whi
h the linear programming relaxation is o� by afa
tor of 2 and in Se
tion 4 we make some suggestions for how to further strengthen the relaxation.Finally, in Se
tion 5, we give some experimental results whi
h show that the upper bound providedby the linear programming relaxation
an beat the simple upper bound.2 Integer Program FormulationsLinear Programming is often used to �nd upper bounds on the
ost of optimal solutions to hard
ombinatorial (maximization) problems. The method is to (i) �nd an integer program that des
ribesthe problem, (ii) relax the integrality
onstraints to obtain a linear programming relaxation forthe problem, (iii) solve the linear program to
ompute a bound on an optimal integral solution.Although solving an integer program
an be
omputationally diÆ
ult, we
an solve linear programseÆ
iently. Thus, this is one approa
h to �nding eÆ
iently
omputable upper bounds. We
onsidera simple integer program for our problem. First, we introdu
e some ne
essary notation.
2

2.1 NotationLet I be the set of indi
es in a given binary string S of length n, i.e. I = f1; : : : ng. We break downI as follows:E is the set of indi
es of elements in even positions.O is the set of indi
es of elements in odd positions.We break down E and O further as follows:HO is the set of indi
es of odd-1's in S,HE is the set of indi
es of even-1's in S,PO is the set of indi
es of odd-0's in S,PE is the set of indi
es of even-0's in S.Thus, HE [PE = E ,HO [PO = O and E [O = I.Let V represent the set of feasible verti
es in the latti
e, i.e. a vertex o

urs at ea
h interse
tionof a horizontal and verti
al line in the latti
e. We assume that one of the points (e.g. the oddpoint
losest to the middle) on the string is assigned to a parti
ular latti
e point, whi
h de�nes thefeasible region of verti
es in the latti
e. In other words, on
e this middle element is �xed, there areonly a �nite number of latti
e points to whi
h we
an assign the other elements of the string. We
lassify the points in V as follows:VE is the set of even latti
e points in V ,VO is the set of odd latti
e points in V .Let Æ(v) denote the set of feasible verti
es adja
ent to v, whi
h, in 2D,
onsists of at most fourlatti
e points. The set of feasible edges in the latti
e is denoted by E, whi
h is the set of (v; w)su
h that v 2 VO and w 2 VE ; w 2 Æ(v).2.2 Variables for IP and LP FormulationsNow we de�ne and explain the fun
tion of the variables that we use in our various integer programs.By
onvention, we always use i and v to refer to indi
es for odd elements on the string and oddlatti
e points, respe
tively. Similarly, we always use j and w to refer to indi
es for even elementson the string and even latti
e points, respe
tively.The variable h(iv)(jw) indi
ates whether or not there is a
onta
t between hydrophobi
 elementsi and j on edge (v; w). For example, if there is a
onta
t between i and j a
ross edge (v; w) thenh(iv)(jw) is 1, and if there is no
onta
t between i and j on edge (v; w), then h(iv)(jw) is 0.The variable h(v;w) represents the total number of
onta
ts formed a
ross edge (v; w). In aninteger solution, if there is a
onta
t between i 2 HO and j 2 HE on edge (v; w), su
h that i 6= j�1,then the value of h(vw) is 1. If there are no
onta
ts a
ross edge (v; w), then the value of h(vw) is0. Note that there is a relationship hold between the variables h(iv)(jw) and h(vw):3

h(v;w) = Xi2HO Xj2HE ;j 6=i�1h(iv)(jw): (2)The variable xiv indi
ates whether or not the element i is pla
ed on vertex point v. In an integersolution, xiv is set to 1 if element i is pla
ed on latti
e point v and 0 otherwise. Sin
e the squarelatti
e is bipartite, without loss of generality, we
an assume that odd elements are pla
ed only onodd latti
e points and even elements are pla
ed only on even latti
e points. Thus, we distinguishbetween these two
ases and
reate variables xiv for the odd
ase and xjw for the even
ase. Notethat any string folding
orresponds to a 0-1 assignment of the variables fxiv; xjwg. However, notethat not every 0-1 assignment to the variables fxiv ; xjwg
orresponds to a folding, whi
h is why weneed to further
onstrain these variables.2.3 A Simple Integer ProgramThe integer program IP1 is a simple formulation for the 2D folding problem. Lemma 1 states thatthere is a one-to-one
orresponden
e between foldings and integer solutions to the following integerprogram.IP1: max X(v;w)2E Xi2HO Xj2HE ;j 6=i�1 h(iv)(jw)subje
t to : Xv2V xiv = 1; 8i 2 I (3)Xi2I xiv � 1; 8v 2 V (4)Xw2Æ(v)xi+1;w � xiv ; 8i 2 I n fng; v 2 V (5)Xj2HE ;j 6=i�1h(iv)(jw) � xiv ; 8i 2 HO; (v; w) 2 E (6)Xi2HO ;i 6=j�1h(iv)(jw) � xjw ; 8j 2 HE ; (v; w) 2 E (7)h(iv)(jw); xiv ; xjw 2 f0; 1g; 8i 2 HO; j 2 HE ; (v; w) 2 E: (8)Lemma 1 There is a one-to-one
orresponden
e between foldings and integer solutions for IP1.Proof: First, we show that every folding
orresponds to an integer solution. In a valid folding,ea
h element is pla
ed on a unique latti
e point and every latti
e point has at most one element,so
onstraints (3) and (4) are satis�ed. Conse
utive elements on the string are pla
ed on adja
entlatti
e points, so
onstraint (5) is satis�ed.Se
ond, we show that an integer solution
orresponds to a valid folding. For ea
h element i,there is exa
tly one v su
h that xiv = 1 (
onstraint (3)). Moreover, ea
h latti
e point v
ontains at4

most one element (
onstraint (4)). Constraint (5) guarantees that ea
h
onse
utive element on thestring is pla
ed on an adja
ent latti
e point to its neighbor on the string. Thus, we have a validfolding. 2Constraints (6) and (7) require that there must be an even-1 and odd-1 on adja
ent latti
epoints if there is a
onta
t on that edge. Note that sin
e only the fxiv; xjwg variables are neededto des
ribe a valid folding, these last two
onstraints are only used to limit the number of
onta
tsgiven in the obje
tive fun
tion. Constraint (8) enfor
es the integrality of all the variables. It ispossible that we only need to for
e the x variables to be integer and this will automati
ally enfor
ethe h variables to be integer.2.4 Aggregate ConstraintsWe
an obtain another integer program and its
orresponding linear programming relaxation byrepla
ing
onstraints (6) and (7) in IP1 and LP1 with the aggregate
onstraints (9) and (10).Xi2HO Xj2HE ;j 6=i�1 h(iv)(jw) � Xi2HO xiv 8(v; w) 2 E (9)Xj2HE Xi2HO ;i 6=j�1 h(iv)(jw) � Xj2HE xjw 8(v; w) 2 E (10)We
an use the variables h(vw) to simplify these
onstraints. Thus, if we use
onstraints (9) and (10)to repla
e
onstraints (6) and (7), then LP1 would
ontain fewer h variables. Re
all the de�nitionof h(vw) from Equation (2).2.5 A Linear Programming RelaxationWe obtain a linear programming relaxation by relaxing
onstraint (8) in IP1 to the following:0 � xiv; xjw � 1: (11)A linear programming formulation provides an upper bound on a maximum integral solution and
an be solved mu
h more eÆ
iently than an integer program. One way to measure the quality ofan integer program for a maximization problem is to determine the upper bound guaranteed by itslinear relaxation. In general, the tighter (better) the bound provided by the linear relaxation, thehigher the quality of the integer programming formulation.There are other ways to formulate the problem as an integer program. For example, in IP1, we
ould repla
e
onstraint (5) with
onstraint (12), whi
h is shown below.Xw2Æ(v) xi�1;w � xiv 8i 2 I n f1g; v 2 V: (12)This would also result in an integer programming formulation. Alternatively, we
an in
lude both
onstraints (12) and (5). In
luding both these
onstraints leads to a tighter linear program thanin
luding only one of these
onstraints. This is stated in Lemma 2, whi
h is proved in the Appendix.We add
onstraint (12) to IP1 and refer to its
orresponding linear programming relaxation as LP1.5

Lemma 2 In
luding both
onstraints (5) and
onstraint (12) results in a tighter linear program(i.e.
an provide a better upper bound) than in
luding only one
onstraint.Unfortunately, the relaxation dis
ussed so far may not provide fra
tional solutions that are very
lose to integral solutions. As noted in Se
tion 1, the upper bound on the number of
onta
ts ina string S is 2 �minfO[S℄; E [S℄g + 2. These relaxations
an yield a fra
tional answer that is twi
eas large as this upper bound. In this se
tion, we show that the integrality gap of IP1 is poor. Theintegrality gap of a relaxation is the worst
ase ratio of the fra
tional and integral optimal solutionvalues over all possible non-negative
ost fun
tions. Lemma 3 is proved in the Appendix.Lemma 3 The obje
tive value of LP1 is ea
h at least 4 �min(O[S℄; E [S℄)(1� 1pn) for any string Sof length n.Thus, the integrality gap for both formulations is arbitrarily
lose to 4 sin
e there are stringsfor whi
h the optimal folding a
hieves only (1 + o(1))minfO[S℄; E [S℄g
onta
ts [10℄.3 Improved Linear ModelsIn order to obtain a linear programming relaxation that provides a tighter upper bound, we
an addmore
onstraints to strengthen our linear program. First, we want to �nd an example of when the
urrent linear program provides a poor bound and then we
an try to �nd additional
onstraintsthat addresses this weakness.3.1 Additional ConstraintsFigure 2 depi
ts a situation in whi
h adding new
onstraints may help. In Figure 2, the variablesxiv; xj+1;v; xi+1;w and xjw ea
h have value 12 . If i; j + 1 2 HO and j; i + 1 2 HE , then h(iv)(jw) andh(j+1;v)(i+1;w)
an ea
h be assigned a value as high as 12 .However, in an integral solution, if element i were pla
ed on latti
e point v and element i + 1were pla
ed on latti
e point w, then the edge (v; w)
ould not be used for any
onta
ts sin
e it iso

upied by the a
tual string. Even in a fra
tional solution, the value of the
onta
ts that o

ura
ross edge (v; w) should not be 1, sin
e at least a fra
tion of the string is o

upying the edge.In order to make the optimal LP value
loser to the optimal integer value of a folding, we add
onstraints that we refer to as ba
kbone
onstraints. We use the following variables: the variableE(iv)(i+1;w) set to 1 means that element i is on latti
e position v and element i + 1 is on latti
eelement w. Sin
e these variables are only for
onse
utive elements on the string, we
an abbreviatethem as follows: E+ivw = E(iv)(i+1;w); E�ivw = E(iv)(i�1;w):Then we
an add the six sets of valid inequalities (13) and (14) to obtain a new linear program,whi
h we refer to as LP2. 6

LP2: max X(v;w)2E h(vw)subje
t to : Xv2VO xiv = 1; 8i 2 HOXv2VE xjw = 1; 8j 2 HEXi2HO xiv � 1; 8v 2 VOXj2HE xjw � 1; 8w 2 VEXw2Æ(v)E�ivw = xiv ; 8i 2 HO; v 2 VO (13)Xw2Æ(v)E+ivw = xiv 8i 2 HO; v 2 VOXv2Æ(w)E�j+1;vw = xjw ; 8j 2 HE ; w 2 VEXv2Æ(w)E+j�1;vw = xjw ; 8j 2 HE ; w 2 VEXi2HO E�ivw + Xi2HO E+ivw + h(v;w) � Xi2HO xiv ; 8v 2 VO (14)Xj2HE E�j+1;vw + Xj2HE E+j�1;vw + h(v;w) � Xj2HE xjw ; 8v 2 VE0 � E�ivw; xiv ; xjw ; h(vw) � 1; 8i 2 HO; j 2 HE ; (v; w) 2 E:
v w

xi xi+1

xj+1 x j i+1i

i-1

(H) (H)

(H)(H)

1/2 1/2

1/2 1/2 x1/2 i+2

i

w

v
i+1x x x

x xFigure 2: The �gure on the left shows an example in whi
h ba
kbone
onstraints
an be addedto the linear programming formulation to give a better bound on an optimal folding. In thisexample, both element i and elements i and j + 1 are ea
h partially assigned to latti
e point v,i.e. xiv = xj+1;v = 12 , and elements i + 1 and j are ea
h partially assigned to latti
e point w, i.e.xjw = xi+1;w = 12 .Figure 3: The �gure on the right depi
ts a situation in whi
h the variable h(v;w)
an have value atleast 12 in LP2. In LP3, the
ontribution of edge (v; w) would be 0 sin
e the variable h(iv)(i+1;w) isnot de�ned, i.e. it is impli
itly 0. 7

Note the
onne
tivity
onstraints, (12) and (5), are missing from LP2. As stated in Lemma 4,whi
h is proved in the Appendix, these
onstraints are implied by
onstraints (13) and (14).Lemma 4 Ba
kbone
onstraints imply the
onne
tivity
onstraints, i.e.
onstraints (13) imply
onstraints (12) and (5).We
an now show that LP2 provides an upper bound that is at least as good as the upper bound(1) explained in Se
tion 1. Lemma 5 is proved in the Appendix.Lemma 5 The optimal solution for LP2 is at most 2 �minfO[S℄; E [S℄g + 2.LP2 does not always give a solution whose obje
tive value is at least 2 � minfO[S℄; E [S℄g + 2. Itmay give a solution whose obje
tive value is stri
tly better. For example, if we
onsider the stringof 20
onse
utive 1's, from the simple
ombinatorial upper bound, we know an optimal folding
an have no more than 21
onta
ts. However, an optimal folding
an a
tually have no more than14.5
onta
ts a

ording to our AMPL implementation of LP2. (See Se
tion 5 for An alternateformulation for the linear program above would entail using the four index h variables h(iv)(jw)instead of the two index h variables h(vw).E�ivw +E+ivw + Xj2HE h(iv)(jw) � xiv 8i 2 HO; (v; w) 2 E; (15)E�j+1;vw +E+j�1;vw + Xi2HO h(iv)(jw) � xjw 8j 2 HE ; (v; w) 2 E:We
an substitute
onstraints (15) for
onstraints (14). We refer to the resulting integer and linearprogram as IP3 and LP3, respe
tively.Lemma 6 Suppose the string S
ontains no
onse
utive 1's. Then the upper bound provided by LP3is no tighter than the upper bound provided by LP2, i.e. substituting
onstraints (15) for
onstraints(14) does not lead to a tighter relaxation.If the string S
ontains
onse
utive 1's, then the proof of Lemma 6 does not go through.Furthermore, we
an
onstru
t an example in whi
h LP2 and LP3 have di�erent obje
tive values.Figure 3 gives an example in whi
h LP2 has a higher obje
tive fun
tion than that of LP3.The only di�eren
e between LP2 and LP3 is that LP3 does not allow \
onta
ts" between adja
entelements on the string. Let f(S) represent the number of pairs of
onse
utive 1's in S, e.g. thestring S = 01110 has two pairs of
onse
utive 1's, so f(S) = 2. Then the relationship between thevalues of LP2 and LP3 for a string S is stated in Lemma 7, whi
h is proved in the Appendix.Lemma 7 LP2 - f(S) � LP3 � LP2 � 2 �minfO[S℄; E [S℄g + 2.3.2 Integrality GapsWe
an show that the integrality gap for LP2 and LP3 is 2 � � for any � > 0. We use the stringS = f0gqf01gkf0g2qf1000gkf0gq. We let k denote a positive integer and q = 4k2. In [10℄, it isshown that no folding of S has more than (1+o(1))O[S℄
onta
ts. However, we
an easily
onstru
ta fra
tional solution for LP2 for whi
h the obje
tive fun
tion is 2O[S℄.8

2

strings of 0’s

S

S

1

y

zFigure 4: Let S1 = f01gk and let S2 = f0001gk . The string splits in half at points y and z, whi
hallows the string to
ross itself, something not allowed in an integral solution.4 Six Index ConstraintsAnother idea for strengthening the linear program is to add six-index
onstraints. One reason touse su
h
onstraints is that they would invalidate the solution given in Figure 4, thus strengtheningthe linear program. Suppose we let the variable h(iv)(jw)(ku) be a 1 if there is a
onta
t between iand j on edge (v; w) and between j and k on edge (w; u). Then we
an have the following
onstraintfor
ollinear v; w; u. Re
all that n denotes the length of the input string.h(iv)(jw)(ku) = 0 8i; j; k : (ji � kj4)2minfn� j; j � 1g:The idea behind this
onstraint is as follows: Suppose i and k are distan
e d apart on the string andboth form a
onta
t with j. Suppose i; j; k are pla
ed on latti
e points v; w; u, respe
tively, wherev; w; u are
ollinear. Sin
e the string
annot
ross itself, the distan
e from j to the last point onthe string n (or the nearest endpoint) must be less than distan
e d2=4, sin
e this is the maximumnumber of latti
e points that
an be in the region bounded by the substring
onne
ting i to k.We
annot simply add this
onstraint to LP2 or LP3 be
ause we are not optimizing over thesix-index h-variables or double
onstraints. However, this
onstraint might still be used to obtaininformation about the optimal folding of a string, be
ause if a string has more than O[S℄
onta
ts,then it must have double
onta
ts. We de�ne a double
onta
t as two
onta
ts that are adja
ent toea
h other, i.e.
onta
ts formed on edges (v; w) and (w; u) where v; w; u are either
ollinear or forma right angle. In other words, if a folding has more than O[S℄
onta
ts, then some 1's must havemore than 1
onta
t. Thus, we
ould add the following
onstraints to LP2 for all adja
ent v; w; u:h(iv)(jw)(ku) � h(iv)(jw);h(iv)(jw)(ku) � h(jw)(ku):9

And we
ould repla
e the obje
tive fun
tion with the following:max Xi;k2HO Xj2HE Xadja
ent v;w;uh(iv)(jw)(ku) + Xi;k2HE Xj2HO Xadja
ent v;w;uh(iv)(jw)(ku):If the solution for LP2 or LP2 with this obje
tive fun
tions were 0, then we would know that anoptimal folding
ontains only maxfO[S℄; E [S℄g
onta
ts.5 Experimental ResultsIn this se
tion, we present experimental results for LP2. We ran LP2 on some of the ben
hmarks forthe problem in the 2D HPmodel. These were taken from: www.
s.sandia.gov/te
h reports/
ompbio/tortilla-hp-ben
hmarks.html. We ran LP2 on the following strings:1. hphpphhphpphphhpphph2. hhpphpphpphpphpphpphpphh3. pphpphhpppphhpppphhpppphh4. ppphhpphhppppphhhhhhhpphhpppphhpphpp5. pphpphhpphhppppphhhhhhhhhhpppppphhpphhpphpphhhhh6. hhhpphphphpphphphpphString length upper bound LP3 Opt1 20 11 10.67529996 92 24 11 11 93 25 8 8 84 36 16 14.89908257 145 48 25 24.88770748 226 20 11 10.76264643 106 Dis
ussionThe
hallenge that we introdu
e here is to
ompute better upper bounds for the 2D folding problemusing linear programming or otherwise. Our integer and linear programming models provide apromising dire
tion for solving the 2D folding problem to optimality using bran
h-and-bound.However, be
ause of the large size of the linear program (i.e. number of variables), we likely needtighter linear programming bounds to make these te
hniques pra
ti
al. One way to address theses
alability issues would be to use bran
h-and-bound on some spe
ial subset of the variables. Forexample, we have empiri
ally observed that if we use bran
h-and-bound to enfor
e the integrality
onstraints on the odd variables, i.e. the fxivg variables, then even variables, i.e. the fxjwgvariables, are also integral in the resulting solution. Thus, we
onje
ture that if we have an optimalsolution for LP2 su
h that all the fxivg variables are integral, then we
an use this solution (e.g.round this solution) to obtain a fully integral solution with the same obje
tive value. If this
onje
ture is true, we
an restri
t bran
hing to the set of odd variables, thus
utting down the timene
essary to
ompute an exa
t solution. 10

Another possible appli
ation of our integer and linear programming formulations is to �nda
tual foldings that are better than those obtained in approximation algorithms but perhaps notprovably optimal. Ba
kofen has used exa
t methods from
onstraint logi
 programming to obtain
ompa
t
onformations, i.e. solutions, for these folding problems [2℄. If we
an further
onstrainour integer programs to the solution spa
e of
ompa
t foldings, then we may be able to redu
e thetime needed to �nd a solution.7 A
knowledgmentsThis work was performed in part at Sandia National Laboratories. Sandia is a multipurposelaboratory operated by Sandia Corporation, a Lo
kheed-Martin Company, for the United StatesDepartment of Energy under
ontra
t DE-AC04-94AL85000. This work was partially funded by theUS Department of Energy's Genomes to Life program (www.doegenomestolife.org), under proje
t\Carbon Sequestration in Syne
ho
o

us Sp.: From Mole
ular Ma
hines to Hierar
hi
al Modeling,"(www.genomes-to-life.org).We would like to a
knowledge Harvey Greenberg, Cindy Phillips, Sorin Istrail, Jonathan E
k-stein and Naomi Cameron for their helpful dis
ussions on IP formulations for this problem.Referen
es[1℄ R. Agarwala, S. Batzoglou, V. Dan
ik, S. De
atur, M. Fara
h, S. Hannenhalli, S. Muthukrish-nan and S. Skiena, \Lo
al Rules for Protein Folding on a Triangular Latti
e and GeneralizedHydrophobi
ity in the HP Model", Journal of Computational Biology (1997) Vol. 4(2):275-296.[2℄ Rolf Ba
kofen, \Optimization Te
hniques for the Protein Stru
ture Predi
tion Problem",Ph.D. Thesis, Ludwig-Maximilians-Universit�at M�un
hen (2000).[3℄ Bonnie Berger and Tom Leighton, \Protein Folding in the Hydrophobi
-Hydrophili
 (HP)Model is NP-Complete", Pro
eedings of the 2nd Conferen
e on Computational Mole
ular Bi-ology (RECOMB '98).[4℄ P. Cres
enzi, D. Goldman, C. Papadimitiou, A. Pi

olboni, and M. Yannakakis, \On the Com-plexity of Protein Folding", Pro
eedings of the 2nd Conferen
e on Computational Mole
ularBiology (RECOMB '98).[5℄ K. A. Dill, \Theory for the Folding and Stability of Globular Proteins", Bio
hemistry (1985)Vol. 24:1501.[6℄ K. A. Dill, \Dominant For
es in Protein Folding, Bio
hemistry (1990) Vol. 29:7133-7155.[7℄ H. J. Greenberg, W. E. Hart, and G. Lan
ia, \Opportunities for Combinatorial Optimizationin Computational Biology", INFORMS Journal of Computing, To appear.[8℄ William Hart and Sorin Istrail, \Fast Protein Folding in the Hydrophobi
-Hydrophili
 Modelwithin Three-Eighths of Optimal", Journal of Computational Biology Vol. 3, No. 1, 1996:53-96.11

[9℄ Gian
arlo Mauri, Antonio Pi

olboni, and Giulio Pavesi, \Approximation Algorithms for Pro-tein Folding Predi
tion", Pro
eedings of the 10th ACM-SIAM Symposium on Dis
rete Algo-rithms (SODA '99).[10℄ Alantha Newman, \A New Algorithm for Protein Folding in the HP Model", Pro
eedings ofSODA, 2002, 876-884.8 AppendixProof of Lemma 2: We show that
onstraint (12) does not imply
onstraint (5) or vi
e-versa.To do this we give a feasible LP solution for a string of length 9 su
h that
onstraint (5) is obeyedbut
onstraint (12) is violated.

x x x x1

x x x x2 4

x x x x

1

1 2 43

2 3 4

1/31/3 1/3 1/3

1/3 1/3 1/3 1/3

1/3 1/3 1/3 1/3

1/3x5

q
2/3x 6

1/3x5

1/3x6

1/3x5

2/3

2/3

1/3

1/3

x

x

x

x

x

3

7

7

8

8

9

Figure 5: Constraint (12) is violated for i = 6; v = q. However, note that no other
onstraints (e.g.
onstraint (5)) are violated.Su
h a feasible solution is shown in Figure 5. The values shown in Figure 5 are the fra
tions ofea
h xi that are pla
ed at the labeled latti
e points, i.e. the xiv values. Let i = 6; v = q. Note that
onstraint (12) is violated for x6q sin
e x6q = 2=3 and Pw2Æ(q) x5w = 1=3. Note that
onstraint(5) is not violated for any of the xiv variables. We
an repeat this argument for the string labeledin the reverse order and we would obtain an example in whi
h
onstraint (12) is not violated but
onstraint (5) is violated. Thus neither
onstraint is implied by the other. 2Proof of Lemma 3: To show this, we give a solution for LP1 that is valid for any string S andthat has an obje
tive value of 4 �minfO[S℄; E [S℄g. We let n represent the number of elements in S,12

i.e. the length of S. Without loss of generality, assume O[S℄ � E [S℄ and let m be the number oflatti
e points, i.e. jVOj = jVE j = m2 . We also assume n � m, i.e. the string
an a
tually be foldedonto the latti
e. We let xiv = 2m for all i 2 HO; v 2 VO and xjw = 2m for all j 2 HE ; w 2 VE . Thenwe let h(iv)(jw) = 2(E [S℄)m for all i 2 HO; j 2 HE ; v 2 VO; w 2 VE .Note that
onstraint (3) is satis�ed sin
e for ea
h i, there are m2 possible v 2 V with the sameparity. Constraint (4) will be satis�ed be
ause we have:Xi2I xiv = Xi2HO xiv � m2 � 2m � 1:Constraints (12) and (5) will be satis�ed as long as ea
h latti
e point v has at least one neighbor.Constraint (6) is satis�ed sin
e for i 2 HO, we have 2(E [S℄)m � O[S℄ � 2m and for even i, we have2(E [S℄)m � E [S℄ = 2m . The number of h(iv)(jw) variables is E [S℄ � O[S℄ � 4(m2); there are E [S℄ � O[S℄ pairsof 1's su
h that odd-1's are paired with even-1's. There are m�pm2 odd latti
e points ea
h with 4neighbors, i.e. the m latti
e points form a
onvex region, so ea
h odd latti
e point, ex
ept thoseon the border, serves as an endpoint for 4 edges, so we have a total of 4(m�pm2) edges. Thus, theobje
tive value is:max Xi2HO Xj2HE Xv2VO Xw2Æ(v) h(iv)(jw) � (O[S℄� 2) � E [S℄ � m�pm2 � 4 � 2E [S℄m =(4O[S℄� 8)(1 � 1pm):Sin
e m � n, this implies the lemma. So the value of the obje
tive fun
tion is arbitrarily
lose to4 �minfO[S℄; E [S℄g for suÆ
iently large n, i.e. suÆ
iently long enough strings. 2Proof of Lemma 4: From the ba
kbone
onstraints, we have:xiv = Xw2Æ(v)E�ivw:For ea
h variable xi�1;w, we also have:xi�1;w = Xu2Æ(w)E+i�1;wu:This last
onstraint implies that xi�1;w � E+i�1;wv, sin
e v 2 Æ(w). Note that E+i�1;wv = E�ivw. Forea
h of terms in the �rst
onstraint in this proof, we
an obtain the inequality xi�1;w � E�ivw. Thus,we have the desired inequality: 13

xiv � Xw2Æ(v) xi�1;w:We
an repeat this argument to derive
onstraint (5). 2Proof of Lemma 5: The optimal solution for the linear program is P(v;w)2E h(vw). Withoutloss of generality, we assume O[S℄ � E [S℄. Re
all that
onstraint (14) is in the linear program. Werewrite this
onstraint as follows:h(vw) � Xi2HO xiv � Xi2HO E�ivw � Xi2HO E+ivw:Summing over all the edges, we have:X(v;w)2E h(vw) � X(v;w)2E Xi2HO xiv � X(v;w)2E Xi2HO E�ivw � X(v;w)2E Xi2HO E+ivw:The �rst sum is upper bounded by 4O[S℄. To show this, �rst we note that:Xv2VO xiv = 1:If we sum over all edges, as opposed to all odd verti
es, note that ea
h odd vertex v 2 VO is anendpoint in at most 4 edges. Thus, we have:X(v;w)2E xiv = Xv2VO Xw2Æ(v) xiv = Xw2Æ(v) Xv2VO xiv = Xw2Æ(v) 1 � 4;X(v;w)2E Xi2HO xiv = Xi2HO X(v;w)2E xiv � Xi2HO 4 = 4O[S℄:Now we analyze the following sum:X(v;w)2E Xi2HO ;i 6=1E�ivw = Xi2HO ;i 6=1 X(v;w)2EE�ivw:Ea
h variable E�ivw is asso
iated with a unique odd vertex, i.e. the odd vertex v. We have thefollowing
onstraints for ea
h odd vertex:Xw2Æ(v)E�ivw = xiv 8i 2 HO; v 2 VO:14

Thus, we
an rewrite the sum as follows:Xi2HO ;i 6=1 X(v;w)2EE�ivw = Xi2HO ;i 6=1 Xv2VO Xw2Æ(v)E�ivw = Xi2HO ;i 6=1 Xv2VO xiv = Xi2HO ;i 6=1 1 = O[S℄� 1:Note that: X(v;w)2EE�ivw = X(v;w)2EE+ivw:Thus, Xi2HO ;i 6=1 X(v;w)2EE�ivw = Xi2HO ;i 6=n X(v;w)2EE+ivw = O[S℄� 1:Therefore, we have:X(v;w)2E h(vw) � 4O[S℄� (O[S℄� 1)� (O[S℄� 1) � 2O[S℄ + 2:So the maximum value of the obje
tive fun
tion is 2 �minfO[S℄; E [S℄g + 2: 2Proof of Lemma 6: We assume that there are no
onse
utive 1's in the string S. We show thatgiven a set of fh(vw)g that satisfy all the
onstraints in LP2 for the string S, we
an �nd a seth(iv)(jw) su
h that fh(iv)(jw)g satisfy all the
onstraints in LP3 for the string S. We de�ne h(vw)as in Equation (2). From any solution for LP3, we
an obtain a solution for LP2 with the sameobje
tive value. Conversely, we need to show that for any solution fh(vw)g for LP2, we
an �nd asolution fh(iv)(jw)g for LP3 with the same obje
tive value.We use the variables fiv and fjw, whi
h we de�ne below:fivw = xiv �E�ivw �E+ivw;fjvw = xjw �E�j+1;vw �E+j�1;vw:If we sum the fivw variables over all i 2 HO and the fjvw variables over all j 2 HE , then we have:Xi2HO fivw = Xi2HO(xiv �E�ivw �E+ivw);Xj2HE fjvw = Xj2HE(xjw �E�j+1;vw �E+j�1;vw):Consider the following table for an arbitrary edge (v; w) 2 E. Assume there are k i's in HOlabeled i1 : : : ik and assume there are m j's in HE labeled j1 : : : jm.15

i: i1 i2 i3 . . . ikj :j1 h(i1v)(j1w) h(i2v)(j1w) h(i3v)(j1w) : : : h(ikv)(j1w) � fj1vwj2 h(i1v)(j2w) h(i2v)(j2w) h(i3v)(j2w) : : : h(ikv)(j2w) � fj2vwj3 h(i1v)(j3w) h(i2v)(j3w) h(i3v)(j3w) : : : h(ikv)(j3w) � fj3vw.jm h(i1v)(jmw) h(i2v)(jmw) h(i3v)(jmw) : : : h(ikv)(jmw) � fjmvw� � � : : : �fi1vw fi2vw fi3vw : : : fikvwNote that if there are no
onse
utive 1's in S, then there will be no h(iv)(jw) variables in the abovetable in whi
h j = i + 1 or j = i � 1. If there were su
h variables, then they must be assigned 0.But sin
e there are no
onse
utive 1's in S, all the h(iv)(jw) variables in the table
an be non-zero.Without loss of generality, for some i; j; v; w, assume Pi2HO fivw � Pj2HE fjvw. We wantto distribute the value h(v;w) among the h(iv)(jw) variables. We
an set the variable h(i1v)(j1w)to minffi1vw; fj1vwg. Then we
an set the variable h(i1v)(j2w) to be as large as possible so thath(i1v)(j1w) + h(i1v)(j2w) � fi1v, et
.We assign values to the h(iv)(jw) variables in the �rst
olumn so that the sum of the variablesin the �rst
olumn is equal to f1vw. We
an do this by setting h(i1v)(j2w) to be as large as possiblesu
h that it is at most f2vw and at most f1vw. Then we set h(i1v)(j3w) to be as large as possible sothat the sum of the three variables is no more than fi1vw and h(i1v)(j3w) is no greater than f(j3vw).We repeat this for the rest of the h(i1v)(jw) variables for j 2 HE . When we are done, we have thefollowing: Xj2HE h(i1v)(jw) = fi1vw:Then we repeat for fi2vw, et
. Re
all that the sum of the fivw's is no more than the sum of thefjvw's. Thus, we
an always �nd an assignment for the h(iv)(jw)'s su
h that none of the
onstraintsare violated. If for some fivw, we
ould not �nd a set of h(iv)(jw) variables to assign the value(be
ause doing so would violate
onstraint (14)) then we would have a
ontradi
tion, sin
e thiswould mean that the sum of the fjvw's is less than the sum of the fivw's. 2Proof of Lemma 7: The last inequality was proved in Lemma 5. The se
ond inequality followsfrom the observation that given any solution for LP3, we
an obtain a solution for LP2 with thesame obje
tive value just by setting the h(vw) variables as in Equation (2). The �rst inequalityfollows from Lemma 6 and the slight modi�
ation of it's proof in whi
h we allow variables h(iv)(jw)for j = i� 1. Then we simply let all su
h variables equal 0, de
reasing the obje
tive fun
tion by atmost f(S). 216

