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Abstract

The established HP lattice 2D and 3D models have been useful abstractions in understanding
protein structure. In these models, a protein folds to maximize H-H contacts (minimize free
energy). We examine and compare integer programming models for the 2D lattice, whose
linear relaxations provide non-trivial upper bounds on the maximum number of contacts. These
bounds can be used in a branch-and-bound approach to solve the problem optimally, and are
of independent interest as well. In particular, we seek to beat the simple combinatorial bound
that arises from the lattice being bipartite.
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1 Introduction

We discuss discrete optimization approaches to the problem of protein folding in the Hydrophobic-
Hydrophilic (HP) model. The widely-studied HP model was introduced by Ken Dill [5, 6]. This
model abstracts the dominant force in protein folding: the hydrophobic interaction. The hydropho-
bicity of an amino acid measures its affinity for water, and the hydrophobic amino acid residues of
a protein form a tightly clustered core. In the HP model, each amino acid residue is classified as
an H (hydrophobic) or a P (hydrophilic). The model further simplifies the problem by restricting
the feasible foldings to the 2D or 3D square lattice. An optimal conformation for a string of amino
acid residues in this model is one that maximizes the number of H-H contacts, i.e. pairs of H’s that
occupy adjacent lattice points but are not adjacent on the string.

Figure 1: An optimal folding for the string 101010101001010101. 0’s and 1’s are denoted by unfilled
and filled dots, respectively. Contacts are denoted by the dashed lines.

The problem of protein folding in the HP model is combinatorially equivalent to folding a string
of 0’s and 1’s on the square lattice to form a self-avoiding walk that maximizes the number of pairs of
adjacent 1’s, i.e. with H=1 and P=0. For example, suppose we have the string 101010101001010101.
An optimal folding for this string on the 2D square lattice is shown in Figure 1. This folding has
eight contacts or pairs of 1’s that are placed on adjacent lattice points but are not neighbors in the
string.

Finding an optimal folding is NP-hard for both the 2D and 3D square lattices [4, 3]. Computing
an exact upper bound on the optimal number of contacts is therefore probably very difficult to do
efficiently, so we would like find the best efficiently computable upper bound. The better the upper
bound-the closer the upper bound is to the maximum number of contacts—the more information we
have about the actual optimal value. Despite the fact that the best-known efficiently computable
upper bound is quite straightforward and was introduced at least a decade ago, it has yet to be
improved upon.

To explain this upper bound, we introduce some notation that we will use throughout the paper.
Let S = s1s2... s, be a binary string in {0, 1}". We refer to each 1 in an odd position on the string
as an odd-1 and each 1 in an even position on the string as an even-1. Let O[S] represent the
number of odd-1’s in S and let £[S] represent the number of even-1’s in S. Since both the 2D and
3D square lattices are bipartite graphs, each odd-1 can have contacts with only even-1’s. Similarly,
each even-1 can have contacts with only odd-1’s. Thus, a simple upper bound for the 2D problem



1s:

2 - min{&[S], O[S]} + 2. (1)

For the 3D problem, an analogous argument leads to an upper bound of 4 - min{ E[S], O[S]} + 2.

These simple upper bounds can be used to obtain algorithms with approximation guarantees
of 1/4 [8] and 1/3 [10] for the 2D problem and 3/8 [8] for the 3D problem. The approximation
guarantee for each of these algorithms is based on the observation that it yields a folding with at
least 1/4, 1/3, and 3/8, respectively, as many contacts as permitted by the upper bound. Our
goal is to improve upon this upper bound, which could potentially lead to improved approximation
algorithms and more efficient exact algorithms (using for instance a branch and bound technique).

Overview In this paper, we investigate various integer programs that model the 2D problem
and examine the upper bounds given by their respective linear programming relaxations. Our
formulations are similar to those studied previously in [7], which appears to contain the only other
description of this problem as an integer program. In Section 2, we give some background on linear
programming and its applications to finding upper bounds for hard combinatorial maximization
problems. In Section 2.1 and Section 2.2, we define some notation and explain how we we use
variables in our integer programs. In Section 2.3, we give a basic integer program for our problem
and explain why there is a one-to-one correspondence between integer solutions and actual foldings
of strings on the 2D square lattice. In Section 2.4, we introduce a slightly modified approach to
our formulations that uses aggregate variables. In Section 2.5, we show how to obtain a linear
programming relaxation from the IP in Section 2.3 and discuss ways to measure the quality of the
upper bound provided by a linear programming relaxation. We show that the upper bound given
by this relaxation is actually quite poor and needs to be strengthened. In Section 3.1, we present
improved linear models and prove that they are at least as good as the best-known upper bound. In
Section 3.2, we give an example of a string for which the linear programming relaxation is off by a
factor of 2 and in Section 4 we make some suggestions for how to further strengthen the relaxation.
Finally, in Section 5, we give some experimental results which show that the upper bound provided
by the linear programming relaxation can beat the simple upper bound.

2 Integer Program Formulations

Linear Programming is often used to find upper bounds on the cost of optimal solutions to hard
combinatorial (maximization) problems. The method is to (i) find an integer program that describes
the problem, (ii) relax the integrality constraints to obtain a linear programming relaxation for
the problem, (iii) solve the linear program to compute a bound on an optimal integral solution.
Although solving an integer program can be computationally difficult, we can solve linear programs
efficiently. Thus, this is one approach to finding efficiently computable upper bounds. We counsider
a simple integer program for our problem. First, we introduce some necessary notation.



2.1 Notation

Let I be the set of indices in a given binary string S of length n, i.e. I ={1,...n}. We break down
I as follows:

€ is the set of indices of elements in even positions.
O is the set of indices of elements in odd positions.

We break down £ and O further as follows:

Hp is the set of indices of odd-1’s in S,
Hg is the set of indices of even-1’s in S,
Py is the set of indices of odd-0’s in S,
P¢ is the set of indices of even-0’s in S.

Thus, HeUPs =, HoUPn =0 and E U0 = 1.

Let V represent the set of feasible vertices in the lattice, i.e. a vertex occurs at each intersection
of a horizontal and vertical line in the lattice. We assume that one of the points (e.g. the odd
point closest to the middle) on the string is assigned to a particular lattice point, which defines the
feasible region of vertices in the lattice. In other words, once this middle element is fixed, there are
only a finite number of lattice points to which we can assign the other elements of the string. We
classify the points in V' as follows:

Ve is the set of even lattice points in V/,
Vo is the set of odd lattice points in V.

Let 0(v) denote the set of feasible vertices adjacent to v, which, in 2D, consists of at most four
lattice points. The set of feasible edges in the lattice is denoted by FE, which is the set of (v, w)
such that v € Vp and w € Vg, w € 6(v).

2.2 Variables for IP and LP Formulations

Now we define and explain the function of the variables that we use in our various integer programs.
By convention, we always use ¢ and v to refer to indices for odd elements on the string and odd
lattice points, respectively. Similarly, we always use j and w to refer to indices for even elements
on the string and even lattice points, respectively.

The variable h(;,)(j,) indicates whether or not there is a contact between hydrophobic elements
i and j on edge (v, w). For example, if there is a contact between i and j across edge (v, w) then
h(iv)(jw) 18 1, and if there is no contact between 7 and j on edge (v, w), then h;,) () is 0.

The variable h, ;) represents the total number of contacts formed across edge (v,w). In an
integer solution, if there is a contact between i € Hp and j € Hg on edge (v, w), such that ¢ # j+1,
then the value of h,,) is 1. If there are no contacts across edge (v,w), then the value of A, is
0. Note that there is a relationship hold between the variables h(;y)(jw) and hiyy):



how) = Y D M) (2)

icHp jeHg,j#itl

The variable x;, indicates whether or not the element ¢ is placed on vertex point v. In an integer
solution, z;, is set to 1 if element ¢ is placed on lattice point v and 0 otherwise. Since the square
lattice is bipartite, without loss of generality, we can assume that odd elements are placed only on
odd lattice points and even elements are placed only on even lattice points. Thus, we distinguish
between these two cases and create variables x;, for the odd case and zj, for the even case. Note
that any string folding corresponds to a 0-1 assignment of the variables {z;,, %, }. However, note
that not every 0-1 assignment to the variables {x;,, z,} corresponds to a folding, which is why we
need to further constrain these variables.

2.3 A Simple Integer Program

The integer program IP; is a simple formulation for the 2D folding problem. Lemma 1 states that
there is a one-to-one correspondence between foldings and integer solutions to the following integer
program.

IP1:
max ), ), ) hio) )
(v,w)€E i€Ho jeHg,jAitl
subject to : Z Ty = 1, Viel (3)
veEV
> wi < 1, YweV (4)
iel
Z Tit 1w > Ty, YVielI\{n}l,veV (5)
wed(v)
Z h(iv)(jw) < Ty, Vi€ Hp,(v,w)€E (6)
JEHe j#ixl
> hiniw < Tjw, Vje€Hg, (v,w)eFE (7)
i€Ho ,i#j+1
h(iv)(jw): Tiy, Ty € {0, 1}, Vi€ Ho,j € Hg, (v,w) € E. (8)

Lemma 1 There is a one-to-one correspondence between foldings and integer solutions for IP;.

Proof: First, we show that every folding corresponds to an integer solution. In a valid folding,
each element is placed on a unique lattice point and every lattice point has at most one element,
so constraints (3) and (4) are satisfied. Consecutive elements on the string are placed on adjacent
lattice points, so constraint (5) is satisfied.

Second, we show that an integer solution corresponds to a valid folding. For each element ¢,
there is exactly one v such that z;, = 1 (constraint (3)). Moreover, each lattice point v contains at



most one element (constraint (4)). Constraint (5) guarantees that each consecutive element on the
string is placed on an adjacent lattice point to its neighbor on the string. Thus, we have a valid
folding. O

Constraints (6) and (7) require that there must be an even-1 and odd-1 on adjacent lattice
points if there is a contact on that edge. Note that since only the {x;,,%;,} variables are needed
to describe a valid folding, these last two constraints are only used to limit the number of contacts
given in the objective function. Constraint (8) enforces the integrality of all the variables. It is
possible that we only need to force the = variables to be integer and this will automatically enforce
the h variables to be integer.

2.4 Aggregate Constraints

We can obtain another integer program and its corresponding linear programming relaxation by
replacing constraints (6) and (7) in IP; and LP; with the aggregate constraints (9) and (10).

> Y e <Yz Y(ow) €E (9)

i€Ho jEHg,j#itl i€EHo
> X hwew £ D ww Vw)EE (10)
jEHg i€Hp,i#jxl jEHg

We can use the variables h(,,, to simplify these constraints. Thus, if we use constraints (9) and (10)
to replace constraints (6) and (7), then LP; would contain fewer h variables. Recall the definition
of h(yw) from Equation (2).

2.5 A Linear Programming Relaxation
We obtain a linear programming relaxation by relaxing constraint (8) in IP; to the following:
0 S Tivy Tjw S 1. (11)

A linear programming formulation provides an upper bound on a maximum integral solution and
can be solved much more efficiently than an integer program. One way to measure the quality of
an integer program for a maximization problem is to determine the upper bound guaranteed by its
linear relaxation. In general, the tighter (better) the bound provided by the linear relaxation, the
higher the quality of the integer programming formulation.

There are other ways to formulate the problem as an integer program. For example, in IP;, we
could replace constraint (5) with constraint (12), which is shown below.

Y misiw > mw VieI\{1}veV. (12)
wed(v)

This would also result in an integer programming formulation. Alternatively, we can include both
constraints (12) and (5). Including both these constraints leads to a tighter linear program than
including only one of these constraints. This is stated in Lemma 2, which is proved in the Appendix.
We add constraint (12) to IP; and refer to its corresponding linear programming relaxation as LP;.



Lemma 2 Including both constraints (5) and constraint (12) results in a tighter linear program
(i.e. can provide a better upper bound) than including only one constraint.

Unfortunately, the relaxation discussed so far may not provide fractional solutions that are very
close to integral solutions. As noted in Section 1, the upper bound on the number of contacts in
a string S is 2 - min{O|[S], £[S]} + 2. These relaxations can yield a fractional answer that is twice
as large as this upper bound. In this section, we show that the integrality gap of IP; is poor. The
integrality gap of a relaxation is the worst case ratio of the fractional and integral optimal solution
values over all possible non-negative cost functions. Lemma 3 is proved in the Appendix.

Lemma 3 The objective value of LP; is each at least 4 - min(O[S], E[S])(1 — ﬁ) for any string S
of length n.

Thus, the integrality gap for both formulations is arbitrarily close to 4 since there are strings
for which the optimal folding achieves only (1 + o(1)) min{O[S], £[S]} contacts [10].

3 Improved Linear Models

In order to obtain a linear programming relaxation that provides a tighter upper bound, we can add
more counstraints to strengthen our linear program. First, we want to find an example of when the
current linear program provides a poor bound and then we can try to find additional constraints
that addresses this weakness.

3.1 Additional Constraints

Figure 2 depicts a situation in which adding new constraints may help. In Figure 2, the variables
Tiws Tj1,0s Tit1,w and Tj, each have value % If1,j+1 € Hp and j,i + 1 € Hg, then h;,)(j,) and

h(j41,0)(i+1,w) can each be assigned a value as high as %

However, in an integral solution, if element ¢ were placed on lattice point v and element ¢ + 1
were placed on lattice point w, then the edge (v, w) could not be used for any contacts since it is
occupied by the actual string. Even in a fractional solution, the value of the contacts that occur
across edge (v, w) should not be 1, since at least a fraction of the string is occupying the edge.

In order to make the optimal LP value closer to the optimal integer value of a folding, we add
constraints that we refer to as backbone constraints. We use the following variables: the variable
Eiv)(i+1,0) set to 1 means that element ¢ is on lattice position v and element 7 + 1 is on lattice
element w. Since these variables are only for consecutive elements on the string, we can abbreviate
them as follows:

B3y = Eio)(i+1,0); Eipy = Eig)im1,0)-

Then we can add the six sets of valid inequalities (13) and (14) to obtain a new linear program,
which we refer to as LPs.



LP2:

max Z h(vw)

(v,w)EE
subject to : Z Tiw = 1, Vi€ Hp
veVo
Z Tjw = 1, VjeHg
veVe
Z Tiw < 1, Y€ Vp
i€Hp
Z Tjw < 1, YweVg
JjE€He
> By, = ww, Vi€HoueVo (13)
wed(v)
Z Esz = 1y, Yi€E Hp,veVp
wed(v)
Z j+1vw = Tjw, VjEHgwele
ved(w)
Z lvw = Tjw, VjEHgwele
vES(w)
S Eput > ELythew <Y i, VeV (14)
i€cHo i€Ho i€Ho
Z j-‘rl vw Z —1,vw (v,w) S Z Tjw, Vv € VE
JEHe JjE€He jEHg
0 < EZ,. %, Tjw hw <1, Vi€ Ho,j€ He,(v,w)€ E.
%") (H)
g 12X U2 X
X Xi+1 Ximlh o !
W L
Xj+1 Xj v2X  12Xiy1 12X,

(H) H)

Figure 2: The figure on the left shows an example in which backbone constraints can be added
to the linear programming formulation to give a better bound on an optimal folding. In this
example, both element ¢+ and elements ¢ and j + 1 are each partially assigned to lattice point v,
Le. Ty = Tjp10 = %, and elements ¢ + 1 and j are each partially assigned to lattice point w, i.e.
Tjw = Ti+l,w = %

Figure 3: The figure on the right depicts a situation in which the variable h(, ., can have value at
least % in LPy. In LPj3, the contribution of edge (v, w) would be 0 since the variable v (i+1,w) 18
not defined, i.e. it is implicitly 0.



Note the connectivity constraints, (12) and (5), are missing from LP;. As stated in Lemma 4,
which is proved in the Appendix, these constraints are implied by constraints (13) and (14).

Lemma 4 Backbone constraints imply the connectivity constraints, i.e. constraints (13) imply
constraints (12) and (5).

We can now show that LPy provides an upper bound that is at least as good as the upper bound
(1) explained in Section 1. Lemma 5 is proved in the Appendix.

Lemma 5 The optimal solution for LP, is at most 2 - min{OI[S],E[S]} + 2.

LPy does not always give a solution whose objective value is at least 2 - min{O[S],E[S]} + 2. It
may give a solution whose objective value is strictly better. For example, if we consider the string
of 20 consecutive 1’s, from the simple combinatorial upper bound, we know an optimal folding
can have no more than 21 contacts. However, an optimal folding can actually have no more than
14.5 contacts according to our AMPL implementation of LP3. (See Section 5 for An alternate
formulation for the linear program above would entail using the four index h variables h(jy)(jw)
instead of the two index h variables h(,,,).

Ei;w + E;{;w + Z h(iv)(jw) < =z Vi€ Ho, (U,’w) ek, (15)
JeHg
B pwt E;‘ll,uw + Z hiivyjw)y < Tjw VJ € He,(v,w) € E.
1€Hp

We can substitute constraints (15) for constraints (14). We refer to the resulting integer and linear
program as IP3 and LP3, respectively.

Lemma 6 Suppose the string S contains no consecutive 1’s. Then the upper bound provided by LP3
is no tighter than the upper bound provided by LPs, i.e. substituting constraints (15) for constraints
(14) does not lead to a tighter relazation.

If the string S contains consecutive 1’s, then the proof of Lemma 6 does not go through.

Furthermore, we can construct an example in which LP9 and LP3 have different objective values.
Figure 3 gives an example in which LP5 has a higher objective function than that of LPs.
The only difference between LP and LPj3 is that LP3 does not allow “contacts” between adjacent
elements on the string. Let f(S) represent the number of pairs of consecutive 1’s in S, e.g. the
string S = 01110 has two pairs of consecutive 1’s, so f(S) = 2. Then the relationship between the
values of LPy and LPj3 for a string S is stated in Lemma 7, which is proved in the Appendix.

Lemma 7 LP; - f(S) < LPs < LPy; < 2-min{O[S],E[S]} + 2.

3.2 Integrality Gaps

We can show that the integrality gap for LPy and LP3 is 2 — € for any € > 0. We use the string
S = {0}9{01}*{0}24{1000}*{0}q. We let k denote a positive integer and ¢ = 4k%. In [10], it is
shown that no folding of S has more than (14 0(1))O[S] contacts. However, we can easily construct
a fractional solution for LPy for which the objective function is 20[S].
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Figure 4: Let S; = {01}* and let Sy = {0001}*. The string splits in half at points y and z, which
allows the string to cross itself, something not allowed in an integral solution.

4 Six Index Constraints

Another idea for strengthening the linear program is to add siz-index constraints. One reason to
use such constraints is that they would invalidate the solution given in Figure 4, thus strengthening
the linear program. Suppose we let the variable h(;,)(jw)ru) be a 1 if there is a contact between 1
and j on edge (v, w) and between j and k on edge (w,u). Then we can have the following constraint
for collinear v, w,u. Recall that n denotes the length of the input string.

. i—kly . .
hiiv)Gw)(ku) =0 Vi, J, k (T|)2mm{n —3,J — 1}

The idea behind this constraint is as follows: Suppose ¢ and k are distance d apart on the string and
both form a contact with j. Suppose i, 7,k are placed on lattice points v, w, u, respectively, where
v, w,u are collinear. Since the string cannot cross itself, the distance from j to the last point on
the string n (or the nearest endpoint) must be less than distance d?/4, since this is the maximum
number of lattice points that can be in the region bounded by the substring connecting i to k.
We cannot simply add this constraint to LFP, or LP3 because we are not optimizing over the
six-index h-variables or double constraints. However, this constraint might still be used to obtain
information about the optimal folding of a string, because if a string has more than O[S] contacts,
then it must have double contacts. We define a double contact as two contacts that are adjacent to
each other, i.e. contacts formed on edges (v, w) and (w,u) where v, w,u are either collinear or form
a right angle. In other words, if a folding has more than O[S] contacts, then some 1’s must have
more than 1 contact. Thus, we could add the following constraints to LPs for all adjacent v, w, u:

vy (jw) (k) < Piav) (jw)
i) (w) (k) < PGuw) (ku)-



And we could replace the objective function with the following:

max Z Z Z P(iv)Gw) (ku) + Z Z Z hiv) (jw) (k)

i,keHp jeHE adjacent v,w,u i,k€eHg j€eHp adjacent v,w,u

If the solution for LPy or LPy with this objective functions were 0, then we would know that an
optimal folding contains only max{O[S], £[S]} contacts.

5 Experimental Results

In this section, we present experimental results for LPy. We ran LP9 on some of the benchmarks for
the problem in the 2D HP model. These were taken from: www.cs.sandia.gov/tech_reports/compbio/tortilla-
hp-benchmarks.html. We ran LP5 on the following strings:

1. hphpphhphpphphhpphph
2. hhpphpphpphpphpphpphpphh
3. pphpphhpppphhpppphhpppphh
4. ppphhpphhppppphhhhhhhpphhpppphhpphpp
5. pphpphhpphhppppphhhhhhhhhhpppppphhpphhpphpphhhhh
6. hhhpphphphpphphphpph
String length upper bound LPj3 Opt
1 20 11 10.67529996 9
2 24 11 11 9
3 25 8 8 8
4 36 16 14.89908257 14
b) 48 25 24.88770748 22
6 20 11 10.76264643 10

6 Discussion

The challenge that we introduce here is to compute better upper bounds for the 2D folding problem
using linear programming or otherwise. Our integer and linear programming models provide a
promising direction for solving the 2D folding problem to optimality using branch-and-bound.
However, because of the large size of the linear program (i.e. number of variables), we likely need
tighter linear programming bounds to make these techniques practical. One way to address these
scalability issues would be to use branch-and-bound on some special subset of the variables. For
example, we have empirically observed that if we use branch-and-bound to enforce the integrality
constraints on the odd variables, i.e. the {z;,} variables, then even variables, i.e. the {z;,}
variables, are also integral in the resulting solution. Thus, we conjecture that if we have an optimal
solution for LPy such that all the {z;,} variables are integral, then we can use this solution (e.g.
round this solution) to obtain a fully integral solution with the same objective value. If this
conjecture is true, we can restrict branching to the set of odd variables, thus cutting down the time
necessary to compute an exact solution.
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Another possible application of our integer and linear programming formulations is to find
actual foldings that are better than those obtained in approximation algorithms but perhaps not
provably optimal. Backofen has used exact methods from constraint logic programming to obtain
compact conformations, i.e. solutions, for these folding problems [2]. If we can further constrain
our integer programs to the solution space of compact foldings, then we may be able to reduce the
time needed to find a solution.
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8 Appendix

Proof of Lemma 2: We show that constraint (12) does not imply constraint (5) or vice-versa.
To do this we give a feasible LP solution for a string of length 9 such that constraint (5) is obeyed
but constraint (12) is violated.

JJ3?<4 U3X

U3 Xy U3Xy w3X, : :
B L R R
L e
e O 23K
SOy
S U N S -
Y3Xy 13X, y3X, u3X, UNs ‘
OO O OO UBX

| 8
oW :
1 : : SR T/ S
1/3:X1 ]JSXZ ]j3:X3 y3x4 1/3?% | ‘
SR U O S VN S

Figure 5: Constraint (12) is violated for ¢ = 6, v = q. However, note that no other constraints (e.g.
constraint (5)) are violated.

Such a feasible solution is shown in Figure 5. The values shown in Figure 5 are the fractions of
each z; that are placed at the labeled lattice points, i.e. the x;, values. Let i = 6, v = ¢q. Note that
constraint (12) is violated for zg, since zg; = 2/3 and Zw@(q) ZTsw = 1/3. Note that constraint
(5) is not violated for any of the z;, variables. We can repeat this argument for the string labeled
in the reverse order and we would obtain an example in which constraint (12) is not violated but
constraint (5) is violated. Thus neither constraint is implied by the other. 0

Proof of Lemma 3: To show this, we give a solution for LP; that is valid for any string S and
that has an objective value of 4 - min{O[S], £[S]}. We let n represent the number of elements in S,
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i.e. the length of S. Without loss of generality, assume O[S] < £[S] and let m be the number of
lattice points, i.e. |Vo| = [Ve| = §. We also assume n < m, i.e. the string can actually be folded
onto the lattice. We let z;, = % for all i € Ho,v € Vp and zj, = % for all j € Hg,w € Vg. Then
we let h(iv)(jw) = W forallv € Hp,j € Hg,v € Vo,w € Vg.

Note that constraint (3) is satisfied since for each ¢, there are % possible v € V' with the same
parity. Constraint (4) will be satisfied because we have:

Z$iv: ZxWS%%S1

el 1€Hp

Constraints (12) and (5) will be satisfied as long as each lattice point v has at least one neighbor.
Constraint (6) is satisfied since for i € Hp, we have W - O[S] < 2 and for even i, we have

W -€[S] = 2. The number of h(iv)(jw) Variables is E[S]- O[S]-4(% ); there are E[S]- OS] pairs

of 1’s such that odd-1’s are paired with even-1’s. There are odd lattice points each with 4
neighbors, i.e. the m lattice points form a convex region, so each odd lattice point, except those

mMm—+/Mm

on the border, serves as an endpoint for 4 edges, so we have a total of 4(m—2\/ﬁ) edges. Thus, the
objective value is:

EPVDID I IR TS (©15] - 2)- 18] "V 4 i =

1€Hp jEHg veEVD w€6
1
40(5] - 8)(1 — —).
(10[s] - 8)(1 - —=)
Since m > n, this implies the lemma. So the value of the objective function is arbitrarily close to
4 - min{O[S], £[S]} for sufficiently large n, i.e. sufficiently long enough strings. O

Proof of Lemma 4: From the backbone constraints, we have:

ZE*

wed(v

For each variable z;_1 ,,, we also have:

Li—1,w = E : lwu

ued(w

since v € §(w). Note that E;"

This last constraint implies that z;_1, > EFf 1w

i—1wv?

=F,,. For
each of terms in the first constraint in this proof, we can obtain the inequality z; 1, > E;,, . Thus,
we have the desired inequality:

13



Tip < § LTi—1,w-

wed(v)

We can repeat this argument to derive constraint (5). O

Proof of Lemma 5: The optimal solution for the linear program is Z (v w)EE (). Without
loss of generality, we assume O[S] < £[S]. Recall that constraint (14) is in the linear program. We
rewrite this constraint as follows:

howy € D 7w = 3 By = 3 B
1€EHp 1€EHp 1€EHp

Summing over all the edges, we have:

PRI EED DD DR TR DR D ) S Y

(v,w)eEE (v,w)eE 1€Hp (v,w)EE1€EHo (v,w)eE€Ho

The first sum is upper bounded by 40[S]. To show this, first we note that:

If we sum over all edges, as opposed to all odd vertices, note that each odd vertex v € Vp is an
endpoint in at most 4 edges. Thus, we have:

DI YD I IR IRED

(v,w)eEE veEVo wed(v) wed(v) vEVD wed(v
Z Z Ty = Z Z Ty < Z 4= 40[5]
(v,w)EE i€Hp 1€Ho (v,w)eEE 1€Hp

Now we analyze the following sum:
2. > Buw= > ) B
(v,w)EEi€Hp,i#l i€Hp i#l (v,w)EE

Each variable E;  is associated with a unique odd vertex, i.e. the odd vertex v. We have the

following constraints for each odd vertex:

> E,,=xw Vi€ Ho,veVo.
wed(v)
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Thus, we can rewrite the sum as follows:

Yoo Baw= D D > Eaw= XL Dowe= )

1€Hp,i#l (vw)er 1€Hp,i#l veVo wed(v) 1€Hp i£1l vEVD 1€Hp ,i#l
Note that:
Y. Bw= Y. Bl
(v,w)eE (v,w)eE
Thus,
Z Z Ei;w = Z Z ww - S] - L

1€Ho i#] (v,w)EE 1€Hp i#n (v,w)EE
Therefore, we have:

> hw) <40[S] - (0[8] - 1) = (O[S] - 1) < 20[S] +2.

(v,w)EE

So the maximum value of the objective function is 2 - min{O[S], £[S]} + 2.

= 0[8] - 1.

a

Proof of Lemma 6: We assume that there are no consecutive 1’s in the string S. We show that
given a set of {h(,,)} that satisfy all the constraints in LPy for the string S, we can find a set
h(iv)(jw) sSuch that {h(y)w)} satisfy all the constraints in LP3 for the string S. We define Ay,
as in Equation (2). From any solution for LP3, we can obtain a solution for LPy with the same
objective value. Conversely, we need to show that for any solution {h(yy)} for LP2, we can find a

solution {hj,)(jw)} for LP3 with the same objective value.
We use the variables f;;, and fj,, which we define below:

fivw = '_E'_ —- E}

ww’
. — - +
f]’U’LU - - Lk j+10w E] Lovw*

If we sum the f;,,, variables over all « € Hp and the f;,, variables over all j € Hg, then we have:

Z Jiow = Z (Tiw — Eiw — Ez’+vw)?

1€EHp t€EHp
§ . — E . - _ @t
fva - (:U]w Ej-i—l vw Ej—l,vw)'
JEHg JEHe

Consider the following table for an arbitrary edge (v,w) € E. Assume there are k i’s in Hp

labeled i; ...7; and assume there are m j’s in Hg labeled 71 ... 7,,.
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_]:
7 hiw)rw)  Piso)Gro)  Plso)Gro) -+ Pl Gro) < fiow
J2 hiro)jow)  Pliso)(ow)  Pliso)Gow) -+ Pigo)(aw) < fiow
J3 hio)sw)  Pliso)Gsw)  Plso)Gsw) -+ Pligo)(sw) < Jisow
Jm hiro)gmw)  Pliso)imw)  Plisv)mw) - Pao)mw) S Fimow
< < < o <
fiww fisz fing v fikvw

Note that if there are no consecutive 1’s in S, then there will be no h;,)(j,,) variables in the above
table in which j =4+ 1 or j = ¢ — 1. If there were such variables, then they must be assigned 0.
But since there are no consecutive 1’s in S, all the h;,)(j,) variables in the table can be non-zero.

Without loss of generality, for some 4,j,v,w, assume ), Hp Jivw < Zje g, fivw- We want
to distribute the value h(, ) among the h(;,).,) variables. We can set the variable h(;, )(j,w)
to min{ fi yw, fjvw}.- Then we can set the variable h(iyv)(jow) tO be as large as possible so that
Biyo)(rw) T Pliro)Gaw) < Sirw, €te.

We assign values to the h(;,)(j,,) variables in the first column so that the sum of the variables
in the first column is equal to f1,,,. We can do this by setting h(; ,)(j,w) t0 be as large as possible
such that it is at most fay,, and at most fiy,. Then we set h(; ) (j;w) to be as large as possible so
that the sum of the three variables is no more than f; , and h; ) (j;w) 18 10 greater than f(;,yw)-
We repeat this for the rest of the h(;, ;) variables for j € He. When we are done, we have the
following;:

Z hiyo)(w) = Sirvw-

JEHe

Then we repeat for f;,,,, etc. Recall that the sum of the f;,,,’s is no more than the sum of the
Jjvw’s. Thus, we can always find an assignment for the h(;,)(jy)’s such that none of the constraints
are violated. If for some fjy,, we could not find a set of h(;,) ) variables to assign the value
(because doing so would violate constraint (14)) then we would have a contradiction, since this
would mean that the sum of the fj,,’s is less than the sum of the f,,’s. O

Proof of Lemma 7: The last inequality was proved in Lemma 5. The second inequality follows
from the observation that given any solution for LP3, we can obtain a solution for LPs with the
same objective value just by setting the h(,,) variables as in Equation (2). The first inequality
follows from Lemma 6 and the slight modification of it’s proof in which we allow variables h(;,)(juw)
for j =i £ 1. Then we simply let all such variables equal 0, decreasing the objective function by at
most f(.5). O
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