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Abstract. We study polyhedral relaxations for the linear ordering prob-
lem. The integrality gap for the standard linear programming relaxation
is 2. Our main result is that the integrality gap remains 2 even when the
standard relaxations are augmented with k-fence constraints for any k,
and with k-Mdébius ladder constraints for k up to 7; when augmented with
k-Mobius ladder constraints for general k, the gap is at least % ~ 1.94.
Our proof is non-constructive-we obtain an extremal example via the
probabilistic method. Finally, we show that no relaxation that is solv-
able in polynomial time can have an integrality gap less than % unless
P=NP.

1 Introduction

Given a complete weighted directed graph, the linear ordering problem is to find
a linear ordering of the vertices that maximizes the weight of the forward edges
(edge (4,j) is a forward edge if ¢ precedes j in the ordering). This problem is
equivalent to finding a maximum acyclic subgraph of a given graph.

The linear ordering problem is NP-hard [8], motivating the question of poly-
nomial time approximation algorithms. It is in fact easy to find a solution with
weight at least half the optimum: take any linear ordering of the vertices; par-
tition the edges into two sets, those going forward in the ordering and those
going backward. Both sets are acyclic; one of these sets has weight at least half
the total weight of all the edges in the graph (and hence at least half the opti-
mum). This simple algorithm gives the best-known polynomial-time computable
approximation factor for the problem (namely 1).

In this paper, we study the quality of polyhedral relaxations for this optimiza-
tion problem [4, 5]. The quality of a relaxation can be measured by the integrality
gap, the maximum possible ratio between the linear programming optimum and
the true integral optimum. A well-known linear programming relaxation for the
problem is based on the simple idea of requiring that from every directed cycle
C, a solution contains at most |C|—1 edges. The corresponding linear constraints
are exponential in number (one for each cycle), but can be solved in polynomial
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time via an efficient separation oracle. This and another well-known relaxation
are described in Section 2. How good are the relaxations? The integrality gap
for both of these standard relaxations turns out to be at least 2 — € for any € > 0.
Thus, the estimate they provide on the optimum is no better (in the worst-case)
than the trivial upper bound of the total edge weight.

A natural next step is to strengthen these standard relaxations by adding
constraints. To this end, a promising set of constraints are the k-fence constraints
[4,5]. Although these constraints are NP-complete to separate in general [9], they
can be separated in polynomial time for any fixed k. Another set of constraints
that have been proposed are the k-Mdbius ladder constraints [4,5]. These are
known to be separable in polynomial time [1,12]. In Section 3, we present our
main result: the integrality gap is 2 even with k-fence constraints for any k& and
with k-Mobius ladder constraints for & < 7; when augmented with k-Mdbius
ladder constraints for arbitrary k, the gap is at least % ~ 1.94. Our proofs
of the integrality gap start with a probabilistic construction which is molded
to have the desired structure (thus we demonstrate the existence of extremal
graphs without explicitly describing them).

Finally, we establish a concrete lower bound on approximability: it is NP-
hard to approximate the optimum to within a factor better than 82, i.e. no

662
polynomial-time solvable relaxation can have an integrality gap less than %.
The reduction, described in Section 4, is from the problem of finding a maximum

satisfiable subset of a given set of linear equations modulo 2.

2 Standard LP Relaxations

In this section, we describe two standard linear programming relaxations, prove
that they have the same optimal value for any graph, and show that both relax-
ations can be arbitrarily close to twice the value of the optimum in the worst
case.

2.1 LP:

The maximum acyclic subgraph problem can be viewed as maximizing the num-
ber of edges subject to a constraint for every cycle. Grétschel, Jiinger, and Reinelt
refer to these constraints as dicycle inequalities [4]. We will call them cycle con-
straints. The constraints specify that the sum of the edge variables on any cycle
C is at most |C| — 1.

maximize Z(z’,j)eE W;ijTi

subject to:
Yijec T <|C|-1 VC
T € {0,1} Vij e E

The solutions to this integer program are acyclic subgraphs. It is NP-hard to
solve this integer program. However, we can relax the requirement that the z;;
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are in {0,1} and replace it with the requirement that 0 < z;; < 1. We refer to
this linear programming relaxation as LP;. We can solve LP; in polynomial time
using the Ellipsoid Algorithm [6] via the following polynomial-time separation
oracle. Given an assignment for the variables z;;, we consider the graph with
each edge (i,j) assigned a weight of 1 — z;;. In this graph, we find the minimum
weight cycle. If there is any cycle with weight less than 1, then the corresponding
cycle of length C' actually has weight more than C'—1, which highlights a violated
constraint.

2.2 LP,

Another integer program is based on the linear ordering problem. It has a variable
for every pair of vertices i,j € V. In this program, there are only constraints for
2- and 3-cycles. This set of constraints is discussed by Groétschel, Jinger, and
Reinelt [5].

maximize Zz’j W;ijTij

subject to:
Tij + X4 =1 Vi,jeV
Tij + Tjk + Ty <2 Vi,j,k ev
Tij € {0,1} Vi,jeV

Solutions for this integer program correspond to linear orderings. Again, it is
NP-hard to solve this integer program. We refer to the corresponding relaxation
as LP,. Although LP, only contains constraints for 2- and 3-cycles, we can show
that a valid solution for LP> does not violate any cycle constraints.

Lemma 1. A solution for LP> does not violate any cycle constraints.

Proof. We will prove by induction on k that a solution for LPy does not violate
any k-cycle constraints. Clearly, a valid solution for LPs does not violate any 2-
or 3-cycle constraints. Assume all k-cycle constraints are satisfied. Then we will
show that all (k+ 1)-cycle constraints are satisfied. Consider a cycle C of length
k+ 1. Choose two non-adjacent vertices 7, j in C. Now consider the following two
edge-disjoint cycles: C; is composed of edge (7, j) and the path from j to 4 in C
and Cy is composed of edge (4,7) and the path from 4 to j in C. By induction,
we have Y ..o Te + D ,co, Te < |C1| =1+ |C2| =1 < |C] and x5 + 35 = 1.

Thus, Y occ Te = Deeo, Te T Deco, Te — Tij — Tji < |C| = 1. g

A maximum acyclic subgraph has the same weight as a maximum linear or-
dering, i.e. the optimal integral solutions for the two integer programs above are
equal. We now prove that the optimal solutions for the two linear programming
relaxations are equal. For some graph G = (V, E) with edge weights w = {w;;},
let OPT(LP;) denote an optimal solution for LP; and |OPT(LP;)| denote its
objective value. Define OPT(LP;) similarly with w;; = 0 for all (¢,5) ¢ E.

Theorem 1. |OPT(LP;)| = |OPT(LP,)|.
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Proof. First, we will show that |OPT (LP;)| > |OPT(LP)|, i.e. given an optimal
solution for LP,, we can find a solution for LP; with the same value. We simply
let the solution for LP; be the subset of {;;} such that (i,j) € E. By Lemma
1, this solution does not violate any cycle constraints and is therefore a valid
solution for LPy.

Second, we will show that |OPT(LP,)| > |OPT(LP,)|, i.e. given an optimal
solution for LP;, we can construct a solution for LP, with the same objective
value. Assign all edges in E value x;; where z;; is taken from the given solution
for LP;. Since this is a valid solution for LP;, no cycle constraints have been
violated thus far. Now consider an arbitrary order for the pairs (j,4) such that
(i,j) € E and (j,i) ¢ E and assign z;; = 1 — z;; in that order. Let (j,i) be
the first edge causing a violated cycle constraint. Then there is some path p;; of
length ¢ from ¢ to j such that the total value of the edges in p;; is more than
£—zj;. Since (i, j) € E, and the solution for the edges in E is optimal, it must be
the case that there is some path pj; of length ¢’ such that the value of the edges
in pj; equals to £'—z;;, i.e. a cycle constraint for some cycle containing edge (4, j)
must be tight, otherwise we could increase the value of z;;. Thus, p;; and pj;
form a cycle of length £+¢' of value more than £+¢' — (z;; +x;;) = £+ —1.So it
is a contradiction that this edge is the first to cause a violated cycle constraint.
Also note that all 2-cycles in E have total value exactly 1. Otherwise, for some
zij + xj; < 1, we can find a cycle composed of the paths p;; and p;; which
violates a cycle constraint. Simply let p;; be the path in the cycle with z;; for
which a cycle constraint is tight, and define p;; similarly.

Let G = (V, E) be the graph with edge set £ = {(i,5)} such that (i,j) € E
or (j,i) € E. By the argument above, all 2-cycles in G have value exactly 1 and
no cycle constraints are violated. Now we will assign values z;; to all edges (4, j)
such that i,j € V and neither (i,j) nor (j,i) are in E. We define the shortest
path between 4 and j to be the path with the least total value, where z;; is the
value of an edge. Let a;; be the length of the shortest directed path from ¢ to j
in G. Define aj; similarly. For any i, j the shortest paths from i to j and from
J to i form a cycle in the current graph. Therefore, a;; + aj; > 1. Without loss
of generality, assume a;; < aj;. Then let z;; = min{$, a;;} and zj; = 1 — 5.
Thus, every cycle that includes edge (i, ) or edge (j,¢) will have value at least
1, which implies that every cycle C will have value at most |C| — 1. This implies
that all 3-cycle constraints are satisfied and all 2-cycles have value exactly 1. 0O

2.3 Integrality Gap

The integrality gap of a linear program is the worst case ratio between the value
of an optimal fractional solution and the value of an optimal integral solution
over all weight functions w = {w;; }. Formally, the integrality gap is defined as,

__loPT(LP)|
wso |[OPT(IP)|

In this section, we show that the integrality gap for both LP; and LPy is 2 — ¢
for any € > 0. As the basis of the construction, we use the fact that there exists a
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class of undirected graphs with girth g and ©(n'+1/9) edges. This result is due to
Erdos and Sachs [2]. Graphs from this class have been used to prove integrality
gaps for the maximum cut problem [11]. Based on these graphs, we define G(n)
to be a family of graphs with the following properties. A graph G € G(n) has
n vertices, girth g = @(%g‘)ﬁ)g—n), and n'*t1/9 edges. Then we have the following
lemma.

Lemma 2. For any € > 0, there exists an n > f(€) such that at least one
directed orientation of G = (V,E) € G(n) has the following property: for any
ordering of the vertices, the number of forward edges is at most (1 + €)|E|/2.

A proof of Lemma 2 can be found in [10]. We now define G(e) to be the
family of directed graphs on n > f(e) vertices whose underlying undirected
graphs belong to G(n) and which have maximum acyclic subgraphs of size at
most (1 + €)|E|/2. All edges in G € G(e) have weight w;; = 1. We use G(e) to
prove the following theorem.

Theorem 2. The integrality gap of LP; is at least 2 — € for any € > 0.

Proof. For a graph G = (V,E) € G(e), we assign z;; = 1 — 1/g for every edge
in G, where g is the girth of G. This is a feasible solution for LP; since there
are no cycles of length less than g. Thus, the optimal solution of LP; has size
at least |E|(1 —1/g). The ratio of the optimal fractional solution to the optimal
integral solution is at least (1 —1/g)/(3(1 +€)). Since g = @(l—olgol?oi—n), then for

any € > 0, we can choose € and n so that 2(1—1/g)/(1+¢€) >2—¢€'. m|
Theorem 3 follows from Theorem 2 and Theorem 1.

Theorem 3. The integrality gap of LPs is at least 2 — € for any € > 0.

3 Augmented LP Relaxations

In the previous section, we saw that a rather non-trivial LP has an integrality
gap arbitrarily close to 2, thus providing an upper bound that is no better than
the total weight of the edges in the worst case. How can we get a better upper
bound? One way would be to add new constraints to this LP. Some well-known
constraints for this problem are the so-called fence constraints and Mdébius ladder
constraints presented by Grotschel, Jiinger, and Reinelt [4, 5]. In this section, we
will show that that if we augment LP, with k-fence constraints for any k& and
with k-Mdbius ladder constraints for k& = 3, then the integrality gap remains 2.
This is also true for 5, 7-ladders, but the proofs are omitted here. For k > 9, the
integrality gap of LP, augmented with k-Mobius ladder constraints is at least %
(Note that the integrality gap of LP; augmented with these constraints trivially
remains 2: a graph belonging to G(¢) has girth greater than 4 for sufficiently
small € and therefore does not contain any k-fences or k-Mobius ladders.)

Throughout this section, it will be convenient to have the following defini-
tions. An edge (7, ) is the complementary edge to edge (j,i). The value of a set
S of edges is defined to be z(S) = }_(; ;s ®ij- We define the shortest path from
1 to j in a graph G as a path from 4 to j with the least total value.
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3.1 The Bad Example Graph

We will now describe the bad example graph—the graph which we use to prove
our lower bound on the integrality gap of the augmented LP relaxation. We
use the family of graphs G(e) defined in Section 2.3. We begin with a graph
G = (V,E) € G(¢). (We used this graph to prove Theorem 2. However, now we
need to assign a value to every edge in the complete graph.) For every (i, j) ¢ E,
assign w;; = 0. For every edge (i,j) € E, we assign x;; value 1 — 1/g and z;;
value 1/g, where g is the girth of G. For all 4, j such that neither (4, j) nor (j,1)
are in E, we assign a value to z;; using the rule given in the proof of Theorem
1. We will restate this rule here for the sake of convenience. Define G to be the
graph consisting of the edges in £ and their complementary edges. Let a;; be the
shortest path from i to j in G. Define a;; similarly. Without loss of generality,
assume oy; < aj;. Then assign z;; and x;; using the following rule.

Edge Assignment Rule: z;; = min{},;;}, =z =1— 1

The following corollary holds for the complete directed graph G in which every
edge has been assigned a value.

Corollary 1. If the shortest path from i to j in G is a < %, then the value of
the shortest path between i and j in G is o If the value of the shortest path from
i toj in G is at least %, then the value of the shortest path from i to j in G is
at least %

Recall that the optimal objective value of LPy for G is at least |E|(1 —
1/g). Therefore, if we can show that the edges of G also satisfy other specified
constraints, then we can show that the integrality gap of LP2 augmented with
these constraints remains the same as LP,.

3.2 Mbobius Ladders

A Mobius ladder for an odd integer k (a k-ladder) is defined to be a set of 2k
vertices {a1,b1,- - ,ak, br} and 3k edges such that each vertex a; has a directed
edge to bj41 and b; 1,1 < i < k. (We define bg = by, and b1 = by.) There
is also an edge from b; to a;. A 5-ladder is shown in Figure 1. (A 3-ladder is
isomorphic to a 3-fence, which will be defined later on.)

An acyclic subgraph of a 5-Mo6bius ladder includes at most 12 of the 15 edges.
However, there is a fractional solution of 12% that satisfies LPy: each edge from
b; to a; is assigned a value of % and all other edges are assigned value 1. In
general, an acyclic subgraph of a k-ladder includes at most 3k — (&%) of the
edges. However, we can always find a fractional solution with value 2%1@ that
satisfies every cycle constraint. So we add the following constraint to LPy for
every subset of edges that forms a k-ladder.

> ay<sk- (A1) (1)

(i,j)€k—ladder
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a a, ag by a8 by 8 by

by b, bg

Fig. 1. A 3-ladder (or 3-fence) and a 5-ladder.

Recall that LP» yields an assignment for the complete graph. Therefore, in
order to show that the total value of the edges in any k-ladder is at most 3k— ’“51 ,
it suffices to show that the total value of the edges in any k-ladder is at least
'“2i1. This is because the set of edges complementary to a k-ladder also form a
k-ladder and the sum of the values of both k-ladders is exactly 3k.

Now we will show that constraint (1) is satisfied for all 3-ladders in G, which
we defined in Section 3.1. Let M be the set of 3k edges in a k-ladder and let C
be the subset of edges (a;, bj+1) and (a;,b;—1) for i € {1,...k}. The edges in C
make up an undirected cycle of value 2k. For example, in the 5-ladder shown in
Figure 1, C' is the set of all edges expect for the 5 vertical edges. Furthermore,
define T to be the set of edges in G (each graph G has a corresponding G, which
is also defined in Section 3.1) that belong to the shortest paths for each pair of
vertices 4,4 such that edge (4,7) € C. If there are multiple shortest paths for
some pair, only one of these paths is included in 7. The edges in T will play a
key role in our proof.

We say that T contains an undirected cycle if the underlying undirected graph
contains a cycle. There are two cases to consider: T' can either be a tree or contain
an undirected or directed cycle. In the case that T" contains a cycle, we will show
that constraint (1) is satisfied, and when T is a tree, we will show that constraint
(1) is satisfied for k = 3. Constraint (1) is also satisfied for ¥ = 5,7, but the
proofs are omitted. However, this constraint is not necessarily satisfied when
k = 9. In other words, our edge assignment rules could violate some k-ladder
constraints for & > 9.

Case 1: T Contains a Cycle. We consider two subcases based on the values
of the 2k paths in T from a; to b;11 and from a; to b;_4 for i € {1,...k}. For
each of these cases, we will show that the total value of the edges in M is at
least % In the proof, we will use the following lemma.

Lemma 3. If the value of C is at least 1, then the total value of the edges in M
is at least k2i1

Proof. If the total value of C is 1 + € for some € > 0, then we will show that the
total value of the other k edges in M is at least % This would imply that
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the total value of the edges in M is (1 + €) + (E=4=¢) = EELEe a5 required. We
just need to show that z(M \ C) is at least =1=<. Consider the equations for
each of the directed 4-cycles in M. There are k such 4-cycles, which by Lemma
1 each have value at least 1. Note that each edge in C' appears in exactly one
equation, and each edge of M \ C appears in exactly two equations. Adding
these k equations, we have: £(C) +2z(M \ C) > k. By assumption, z(C) = 1+e.
Therefore, we have: z(M \ C) > £=1=¢. O

Lemma 4. If T contains a cycle, then the total value of M is at least k%l

Proof. Note that if two or more of the 2k paths in C have value at least %, then
by Corollary 1 and Lemma 3, the total value of M is at least k%l Now we will
consider two remaining cases.

(i) All 2k paths in T have value strictly less than §. By Claim 1, all edges in
C have value equal to the value of their respective paths in 7'. Since some subset
of the edges in T form a cycle, the total value of the edges in T is at least 1.
Since every edge in T', by definition, belongs to at least one of the 2k shortest
paths, the total value of C' is at least the total value of T', which is at least 1.
By Lemma 3, the total value of M is at least 2.

(il) Only one of the 2k paths in T has value at least % We can assume the
total value of the other 2k — 1 edges in C is less than % In this case, note that
T does not contain a directed cycle. If it did, the total value of the edges in C
would be at least 1. Thus, if we removed the edge with value at least %, the
remaining edges would sum to at least %

Without loss of generality, assume that edge (a1,b2) in C is the edge with
value at least % Consider the 4-cycle {a1,bs, az, b1} in M that contains this edge.
Since T contains a path from as to b; and a path from a; to bs, it cannot contain
a path from b; to a; and from by to as, since then it would contain a directed
cycle. Without loss of generality, assume T does not contain a path from b; to
a1. Let T' be the set of edges in G that correspond to the shortest paths for
all edges in C except (aj,b2). Then T” contains a directed or undirected path
from a; to by. Since the total value of the edges in T is less than %, there is
a directed or undirected path from a; to b; in G with value less than % Thus
the shortest path in G from b; to a; must have value at least % Consider the
’“2;1 edge-disjoint 4-cycles in M that remain when we remove edges with either
endpoint in the set {a1,b1}. Then, since edges (by,a1) and (a1,b2) each have
value at least % and the 4-cycle has value at least kgl, then the total value of
the edges in M is at least k%l O

Corollary 2. For a 3-fence in which the corresponding T contains a cycle, ei-
ther x(C) is at least 1, or C' contains an edge of value at least %.

Case 2: T is a Tree. We will consider two subcases based on the total value
of the edges in T'. For these subcases, we will use the following two lemmas.

Lemma 5. If T is a tree, then every edge in T is included in the shortest paths
corresponding to ot least two edges in C.
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Proof. Assume there is an edge e in T that belongs to only one shortest path
corresponding to an edge in C. Consider the set of edges that corresponds to the
2k—1 shortest paths corresponding to the other 2k—1 edges in C'. By assumption,
this set of edges does not include edge e. This set forms a connected graph, since
the 2k — 1 corresponding edges form a connected graph. It also contains all 2k
vertices in M. Thus, if we add edge e to this graph, it will contain a cycle,
implying that T contains a cycle, which is a contradiction. O

Lemma 6. If T is a tree corresponding to a 3-ladder, then for some i € {1,2,3},
T contains o directed path from a; to b; and from a; 11 to biy1.

Proof. First we will show there is a path from a; to b; for some i. Let p(j, k)
denote the set of edges in the directed path from j to k in 7. Since T is a tree,
if p(j, k) exists, it is unique. Assume there is not a path from a; to b; for any
i. We will show that this leads to a contradiction. Consider the paths p(a1, b2)
and p(a, bs). The first case is that, without loss of generality, b- is in p(a1, bs).
Since there must be a directed path from as to by and there is a directed path
from bs to b3, there is a directed path from as to bs. The second case is that bo
is not in p(ay,bs) and b3 is not in p(ay, bs). Let v be the vertex that belongs to
both p(ay,bs) and p(a,bs) and is farthest from ay, as shown in Figure 2.

There must also be a path from as to b3 but not from as to bs. Thus, there must
be a path from as to some vertex w # v in the path p(v,b3). Similarly, since
there is no path from a; to by, there must be a path from some vertex x # w in
p(az,w) to by. There is also a path from a3 to a vertex y # v in p(v, by), since
there is a path from az to by but not from as to bs. Thus, 7' contains a simple
undirected path from a3 to b;. But T also contains a directed path from as to
b1. So T contains a cycle, which is a contradiction.

Now, without loss of generality, assume there is path from a4 to by in 7" and
assume all the vertices on this path are numbered in increasing order. Consider
the vertex v; and vy where paths from as and to b, respectively, intersect the
path from ay to by. If vy is less than v, then p(as,b;) and p(as, be) intersect and



10 Alantha Newman and Santosh Vempala

we are done. So assume v; is greater than v,. But then the path from as must
intersect p(a1,b1) at a point before vo and the path to bz must intersect p(as, by)
at a point after vy, so the paths p(a1,b;) and p(as, bs) intersect. O

Lemma 7. The total value of a 3-ladder is at least 2.

Proof. By Lemma 4, this is true for the case when T contains a cycle. If T' is a
tree such that the total value of the edges in T is at least %, then by Lemma 5
every edge in T belongs to the corresponding path for at least two edges in C.
Thus, the total value of C is at least 1. By Lemma 3 the total value of M is at
least k%l

If the total value of the edges in T is less than %, then by Lemma 6 and
without loss of generality, assume 7' contains a directed path from a4 to b; and
from as to by. Let s be the value of the directed path from aq to by in T, i.e.
8= D ijep(ar,py) Tij- Note that s < 1 since the total value of the edges in T is
less than % The value of zp, 4, is at least 1 — s and each edge in the path from a;
to by is on a path from a; to by or from as to by, so the sum of 24,5, and z4,5, is
at least s. Therefore, the total value of the edges (b1, a1), (a1,b2), and (as,by) is
at least 1. The 4 edges in M that have neither endpoint in the set {a1, b; } make
up a directed 4-cycle, so they have total value at least 1. Thus any 3-ladder has
value at least 2.

O

For k = 5,7, it is also the case that the total value of the edges in M is at
least k%l These proofs are omitted here. For k = 9, it is not necessarily the case
that the total sum of the edges in a Mdbius ladder is at least 5. We conclude
this section with a bound for the general case.

Theorem 4. The integrality gap of LP> augmented by Mobius ladder constraints
is at least % — € for any € > 0.

Proof. When k is at least 9, then T is a tree with at least 18 unique vertices and
at least 17 edges. If every edge original edge in G is assigned value g—i and every
complementary edge is assigned value 3%1, then the total value of the edges in
T is at least % Thus, the objective value of the LP relaxation augmented with
constraint (1) for all k£ will be at least 33| E|/34. Since the optimal integral value
is arbitrarily close to |E|/2 for sufficiently large n, the integrality gap of LPs

extended by Mobius ladder constraints is at least % — € for any € > 0. O

3.3 Fence Constraints

A k-fence is obtained by directing the edges of a complete undirected bipartite
graph on 2k vertices as follows: the 2k vertices are divided into two sets, A and
B, of k vertices each. Each vertex from set A is paired with a vertex from set B
and each of these pairs is connected with a up edge. All other edges are directed
down. A 3-fence is shown in Figure 1.

An acyclic subgraph of a 3-fence includes at most 7 of the 9 edges. However,
there is a fractional solution of 7 % that satisfies LP5: each down edge is assigned
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a value of 1 and each up edge is assigned % In general, an acyclic subgraph of a
k-fence includes at most k2 — k + 1 of the edges. However, we can always find a
fractional solution with value k% — % that satisfies every cycle constraint. Thus,
if we add fence constraints to the LP relaxation, we may get a fractional solution
that is a better approximation of the integral solution. Fence constraints state
that the total value of the edges in any k-fence cannot exceed k2 — k + 1.

Y omi <k —k+1 (2)
(i,7)Ek—fence

We will show that despite the fact that LP is strengthened by adding con-
straint (2), the integrality gap of this augmented LP relaxation remains 2. To
show this, we will again use the graph G discussed in Section 3.1. Since a 3-
ladder is also a 3-fence, we know that the total value of any 3-fence is at most
7 in this solution. Thus, we can show that the total value of any k-fence is at
most k2 — k + 1.

Lemma 8. The total value of any k-fence is at most k> — k + 1.

Proof. The set of complementary edges of a k-fence also form a k-fence and
hence (2) is equivalent to the condition that the total value of edges in a k-fence
is at least k— 1. In Lemma 7, we showed that the lemma is true for k¥ = 3, which
will be the base case for our inductive proof. We will assume that the total value
of any (k — 1)-fence is at least k — 2 and show that the total value of any k-fence
is at least k — 1.

A k-fence contains (’;) distinct 3-ladders (or 3-fences) as subgraphs. For some
3-ladder contained in a k-fence, if the corresponding T is a tree (T" and C corre-
sponding to a 3-ladder are defined in Section 3.2) with value less than %, then by
Lemma 6 for some i € {1,2,3}, there is a directed path from a; to b; and from
ajy1 to biy1. Thus, the total value of the edges (b;,a;), (ai, biy1), and (aiy1,b;)
is at least 1. When we remove all edges that have one endpoint in {a;,b;} from
the k-fence, we are left with a (k — 1)-fence. By induction, this fence has value
at least k — 2. Thus, the total value of the k-fence is at least k — 1.

If it is the case that for none of the 3-ladders contained in the k-fence, the
corresponding 7' is a tree with value less than %, then we will show that the total
value of the edges directed from A to B in the k-fence is at least 1. Consider
a particular 3-ladder that is a subgraph of the k-fence. If the corresponding T
is a tree with value at least %, then this is true by Lemma 5. If T' contains a
cycle, then by Corollary 2, the set of edges C' corresponding to this 3-ladder has
value at least 1 or contains an edge e with at least % In the latter case, consider
another 3-ladder subgraph that does not contain edge e. Using Corollary 2 again,
one of the edges in C' corresponding to this 3-ladder must also contain an edge
with value at least % Thus, the total value of the edges directed from A to B is
at least 1.

Let Y be the set of edges from b; to a; and let X be the set of edges from
a; to b;. If we consider the k possible (k — 1)-fences that are subgraphs of the
k-fence, we see that each edge in Y is used in k£ — 1 of these (k — 1)-fences,
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and each edge in X is used in k — 2 of these (k — 1)-fences. By the induction
hypothesis, each (k — 1)-fence has value at least k — 2 by induction. Combining
these k equations, we have: (k — 1)z(Y) + (k — 2)z(X) > k(k — 2). We know
that z(X) is at least 1. The minimum value of z(X) + z(Y) that satisfies the
equation is (X)) + z(Y) =k — 1, ie. z(X) = 1,z(Y) = k — 2. Thus, the total
value of the edges in a k-fence is at least k — 1, which implies that it is also at
most k2 — k + 1. O

Theorem 5. The integrality gap of LPy augmented with fence constraints is
2 — € for any € > 0.

4 Lower Bounds on Approximation

In this section, we describe a reduction from the problem of finding a maximum
satisfiable subset of a given set of linear equations modulo 2 with three vari-
ables per equation to the maximum acyclic subgraph problem. For this problem,
Hastad proved the following tight bound.

Theorem 6 (Hastad [7]). For every € > 0, it is NP-hard to tell if a given set
of linear equations modulo 2 with three variables is satisfiable or at most m(% +e)
of its clauses are satisfiable.

We use Theorem 6 and the reduction described below to obtain the following
lower bound on the maximum acyclic subgraph problem (and hence the linear
ordering problem).

Theorem 7. It is NP-hard to approzimate the maximum acyclic subgraph to
within % + € for any € > 0.

Given a set of m linear equations on n variables, we construct a graph G
using the following rules: (we assume all equations have the right hand side zero
by negating one literal if necessary.)

1. For each variable x € F', we create two vertices and two edges. The vertices
are o and z; and the edges are (zg,z1) and (x1,x0). These vertices and
edges will form the wvariable gadget for x.

2. For each clause C; € F', we construct a clause gadget. Each clause has the
form = + y + z = 0 where z,y and z are literals. For a literal z in the clause
we create a 4-cycle {za, z3, x4, z5}. We label edge (x5, z2) as = 1 and edge
(z3,74) as x = 0. We also do this for the literals y and z. Then we add the
following 12 edges as shown in Figure 3: (22,25), (22,¥3), (24,93), (24,23),
(T2,23), (T2,¥5), (T4,25), (T1,Y5), (Y2, 23), (Y2,25), (Ya,73), (Y4, T5).

3. Each clause gadget is linked to the appropriate variable gadgets as follows.

- For a literal z, we connect the corresponding 4-cycle in the clause gadget
to the variable gadget by adding edges (z2, z1), (x1,23), (0, T5), (T4, To)-
- For a literal Z, we connect the corresponding 4-cycle in the clause gadget
to the variable gadget by adding edges (2, zo), (0, x3), (1, T5), (T4, Z1)-
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The resulting graph G has 36m + 2n edges, 36 edges for each clause gadget
and two edges for each variable gadget. In order to relate variable assignments
to acyclic subgraphs of G, we say that removing edge (x1,z0) (labeled z = 1
in Figure 3) corresponds to setting the variable z to true, and removing edge
(z0,71) (labeled x = 0 in Figure 3) corresponds to setting variable z to false.
Throughout the proof, we will refer to edges labeled x = 0 or x = 1 in a
clause gadget for a literal z (i.e edges (z5,22) and (z3,24)) and the edges in
the variable gadgets as labeled edges. The proof of Theorem 7 uses the lemmas
below. A feedback arc set of a graph is defined as a set of edges whose removal
results in an acyclic graph.

x=0 x=1
Xo
Y1

y=0 y=1
Yo
w21

=0 =1

Fig. 3. The clause and variable gadgets for x + y + 2z = 0.

Lemma 9. A minimal feedback arc set is acyclic.

Proof. For any acyclic graph, there is an ordering of the vertices such that all
edges in the graph are forward edges, i.e. for an edge (4, 5), ¢ precedes j in the
ordering. Given a feedback arc set, consider such an ordering for the acyclic
graph that is obtained by deleting the feedback arc set. If any edges in the
feedback arc set are forward edges, then the feedback arc set is not minimal,
since such edges can be added to the acyclic graph without creating any cycles.
Thus, the feedback arc set must consist only of backward edges and hence is
itself acyclic. O
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Lemma 10. There is a minimum feedback arc set of G consisting of only labeled
edges.

Proof. Note that every cycle in G contains labeled edges. This is because for
every non-labeled edge (7, j) in G, 7 is a vertex such that the only incoming edge
is a labeled edge, and j is a vertex such that the only outgoing edges is a labeled
edge. Thus, given a feedback arc set F' containing a non-labeled edge in a clause
gadget, we can find another feedback arc set F' with |F'| < |F| by replacing
each non-labeled edge with either of its adjacent labeled edges. O

Lemma 11. The minimum feedback arc set for the graph G contains n+3m+u
edges, where u is the minimum number of unsatisfied equations.

Proof. By Lemma, 9, exactly one edge from every variable gadget is in the min-
imum feedback arc set. In addition, we show the following things:

(i) For a clause, z+y+ 2z = 0, and an assignment that satisfies this clause, we
need to remove only three edges from the corresponding clause gadget so that
the subgraph consisting of the clause gadget and its three corresponding variable
gadgets is acyclic. By Lemma 10, we only need to remove labeled edges from the
clause gadget. There are four satisfying assignments for the variables z,y, z in
this clause. They are: {{0,0,0}, {0,1,1}, {1,1,0}, {1,0,1}}. For each of these
four assignments, we remove the three edges with the opposite assignment from
the clause gadget. For example, for the assignment z = y = z = 0, we remove
the edges labeled x =1,y =1,z = 1.

(ii) For a clause, z + y + z = 0, and any assignment that does not satisfy
this clause, we need to remove four edges from the corresponding clause gadget
so that the subgraph consisting of the clause gadget and its three corresponding
variable gadgets is acyclic. There are four assignments to the variables z,y, z
that do not satisfy this clause. They are: {{1,1,1}, {0,0,1}, {1,0,0}, {0,1,0}}.
For each of these four assignments, if we remove the labeled edges corresponding
to the opposite assignment, then the clause gadget will still contain a cycle.
For example, for the assignment x = y = z = 1, we remove edges labeled
z = 0,y = 0,2z = 0. However, the edges labeled x = 1,y = 1,z = 1 remain
and form a cycle. So we must remove one more of these edges for the resulting
subgraph of the clause gadget to be acyclic.

(iii) For each variable gadget, if we remove one of the edges in the correspond-
ing 2-cycle and the corresponding edge from the clause gadgets representing
clauses that contain this variable, then the resulting graph does not contain any
cycle composed of edges from multiple clause gadgets. For the clause z+y+2 = 0,
consider the edge (z2,x1). If a cycle contains this edge, it must also contain the
only incoming edge to vertex z»2, which is the edge labeled x = 1. If these edges
are contained in a cycle with edges from another clause gadget, then at vertex
z1, we can move to another gadget. However, we arrive at a vertex such that
the only out edge corresponds to the edge that remains iff z has been set to 0,
which is not the case if the edge labeled x = 1 was present. So there cannot be
any cycles that use edges from more than one clause gadget.
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It follows from (i),(ii), and (iii) that the minimum feedback arc set has size
n+3m+ u. 0

Corollary 3. The Maximum Acyclic Subgraph for G is of size n + 33s + 32u
where s and u represent the number of satisfied and unsatisfied clauses, respec-
tively, for an assignment that satisfies the mazximum number of clauses.

Proof of Theorem 7. By Corollary 3 and by Theorem 6 it is NP-hard to dis-
tinguish between a graph that has a maximum acyclic subgraph of size n +
33(3 + €)m + 32(3 — €)m and a graph that has a maximum acyclic subgraph of
size n 4 33m. If we could approximate the maximum acyclic subgraph to within
482 +¢, then we could distinguish between these two cases. Therefore it is NP-
hard to approximate to approximate the maximum acyclic subgraph to within
32122 + €. We can make n arbitrarily small compared to m by creating another
set of linear equations in which each original equation appears k times for some

k so that we have km clauses and only n variables. The ratio 32£83 is arbitrar-

ily close to % as k becomes large. Therefore, it is NP-hard to approximate the
maximum acyclic subgraph to within $2 + € for anye > 0. |
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