
Limits of Approximation Algorithms 21 Jul, 2009

Lec. 8: Semidefinite Programming and Unique Games

Lecturer: Moses Charikar Scribe: Alantha Newman

8.1 Unique Games

The topic of Unique Games has generated much interest in the past few years. The Unique
Games Conjecture was posed by Khot [Kho02]. We will discuss the associated optimization
problem and the algorithmic intuition and insight into the conjecture, as well as the limits
of these algorithmic techniques. Finally, we mention the amazing consequences implied for
many optimization problems if the problem is really as hard as conjectured.

We now define the Unique Games problem. The input is a set of variables V and a
set of k labels, L, where k is the size of the domain. Our goal is to compute a mapping,
ℓ : V → L, satisfying certain constraints that we now describe. Let E denote a set of
pairs of variables, {(u, v)} ⊂ V × V . For each (u, v) ∈ E, there is an associated constraint
represented by πuv, indicating that ℓ(v) should be equal to πuv(ℓ(u)); we assume that the
constraint πvu is the inverse of the constraint πvu i.e, πuv = π−1

vu . Thus, our goal is to
compute the aforementioned mapping, ℓ : V → L, so as to maximize the number of satisfied
constraints.

Each constraint, πuv, can be viewed as a permutation on L. Note that this permutation
may be different for each pair (u, v) ∈ E. For a pair (u, v) ∈ E, if v is given a particular
label from L, say ℓ(v), then there is only one label for u that will satisfy the constraint
πuv. Specifically, ℓ(u) should equal πvu(ℓ(v)). Hence, the “unique” in Unique Games. The
practice of calling this optimization problem a unique “game” stems from the connection
of this problem to 2-prover 1-round games [FL92]. The Unique Games problem is a special
case of Label Cover (discussed in other lectures in the workshop), in which each constraint
forms a bijection from L to L. Having such a bijection turns out to be useful for hardness
results.

8.2 Examples

We will refer to E as a set of edges, since we can view an instance of Unique Games as
a graph G = (V,E) in which each edge (u, v) ∈ E is labeled with a constraint πuv. We
now give some specific examples of optimization problems that are special cases of Unique
Games.

8.2.1 Linear Equations mod p

We are given a set of equations in the form xi − xj ≡ cij (mod p). The goal is to assign
each variable in V = {xi} a label from the set L = [0, 1, . . . p − 1] so as to maximize the
number of satisfied equations. Note that each constraint is a bijection.

8-1

8.2.2 Max Cut

Given an undirected graph G = (V,E), the Max Cut problem is to find a bipartition of
the vertices that maximizes the weight of the edges with endpoints on opposite sides of the
partition.

We can represent this problem as a special case of Linear Equations mod p and therefore
as a special case of Unique Games. For each edge (i, j) ∈ E, we write the equation xi−xj ≡
1 (mod 2). Note that the domain size is two, since there are two possible labels, 0 and 1.

8.3 Satisfiable vs Almost Satisfiable Instances

If an instance of Unique Games is satisfiable, it is easy to find an assignment that satisfies
all of the constraints. Can you see why? Essentially, the uniqueness property says that if
you know the correct label of one variable, then you know the labels of all the neighboring
variables. So we can just guess all possible labels for a variable; at some point your guess
is correct and this propagates correct labels to all neighbors, and to their neighbors, and
so on. This is a generalization of saying that if a graph is bipartite (e.g. all equations in
the Max Cut problem are simultaneously satisfiable), then such a bipartition can be found
efficiently. So when all constraints in an instance of Unique Games are satisfiable, this is
an “easy” problem.

In contrast, the following problem has been conjectured to be “hard”: If 99% of the
constraints are satisfiable, can we satisfy 1% of the constraints? The precise form of the
conjecture is known as the Unique Games Conjecture [Kho02]: For all small constants
ε, δ > 0, given an instance of Unique Games where 1 − ε of the constraints are satisfied, it
is hard to satisfy a δ fraction of satisfiable constraints, for some k > f(ε, δ), where k is the
size of the domain and f is some function of ε and δ.

How does f grow as a function of ε and δ? We claim that f(ε, δ) > 1/δ. This is because
it can easily be shown that we can satisfy a 1/k fraction of the constraints: Randomly
assigning a label to each variable achieves this guarantee. Thus, in words, the conjecture is
that for a sufficiently large domain size, it is hard to distinguish between almost satisfiable
and close to unsatisfiable instances.

8.3.1 Almost Satisfiable Instances of Max Cut

We can also consider the Max Cut problem from the viewpoint of distinguishing between al-
most satisfiable and close to unsatisfiable instances. However, for this problem, a conjecture
as strong as that stated above for general Unique Games is clearly false. This is because we
can always satisfy at least half of the equations. (See Sanjeev’s lecture.) We now consider
the problem of satisfying the maximum number of constraints given that a (1 − ε) fraction
of the constraints are satisfiable. We write the standard semidefinite programming (SDP)
relaxation in which each vertex u (with a slight abuse of notation) is represented by a unit

8-2

vector, u.

max
∑

(u,v)∈E

1 − u · v
2

u · u = 1 ∀u ∈ V

u ∈ R
n ∀u ∈ V.

For a fixed instance of the Max Cut problem, let OPT denote the fraction of constraints
satisfied by an optimal solution, and let OPTSDP denote the value of the objective function
of the above SDP on this instance. If OPT ≥ (1− ε)|E|, then OPTSDP ≥ (1− ε)|E|, since
OPTSDP ≥ OPT . In Lecture 1 (Sanjeev’s lecture), it was shown that using the random
hyperplane rounding of Goemans-Williamson [GW95], we can obtain a .878-approximation
algorithm for this problem. We will now try to analyze this algorithm for the case when
OPT is large, e.g. at least (1 − ε)|E|. From a solution to the above SDP, we obtain a
collection of n-dimensional unit vectors, where n = |V |. We choose a random hyperplane,
represented by a vector r ∈ N(0, 1)n (i.e. each coordinate is chosen according to the normal
distribution with mean 0 and variance 1). Each vector u ∈ V has either a positive or a
negative dot product with the vector r, i.e r · u > 0 or r · u < 0. Let us now analyze what
guarantee we can obtain for the algorithm in terms of ε.

As previously stated, we have the following inequality for the SDP objective function:

∑

(u,v)∈E

(1 − u · v)

2
≥ (1 − ε)|E|.

Let θ′uv represent the angle between vectors u and v, i.e. arccos(u · v). Let θuv denote the
angle (π − θ′uv). Then we can rewrite the objective function of the SDP as:

∑

(u,v)∈E

1 + cos(θuv)

2
.

Further rewriting of the objective function results in the following:

∑

(u,v)∈E

1 + cos(θuv)

2
=

∑

(u,v)∈E

1 − 1 − cos (θuv)

2

= |E| −
∑

(u,v)∈E

1 − cos (θuv)

2

= |E| −
∑

(u,v)∈E

sin2 (
θuv

2
)

≥ |E| − ε|E|.

We say that vertices u and v are “cut” if they fall on opposite sides of the bipartition after
rounding.

Pr[u and v cut] =
θ′uv

π
= 1 − θuv

π
.

8-3

The expected size of S—the number of edges cut in a solution—is:

E[S] =
∑

(u,v)∈E

1 − θuv

π

= |E| −
∑

(u,v)∈E

θuv

π
.

Assume for all (u, v) ∈ E that sin2 (θuv

2) = ε. Then sin (θuv

2) =
√

ε. For small θ, we have
that sin (θ) ≈ θ. Therefore, θuv/2 ≈ √

ε.
Thus, the expected value E[S] ≥ |E|(1 − c

√
ε) for some constant c. In other words, if

we are given a Max Cut instance with objective value (1 − ε)|E|, we can find a solution of
size (1 − c

√
ε)|E|. In other words, an almost satisfiable instance can be given an almost

satisfying assignment, although the assignment has a weaker guarantee.

8.4 General Unique Games

What happens for a large domain? How do we write an SDP for this problem? Before we
had just one vector per vertex. Now for each variable, we have k values. So we have a vector
for each variable and for each value that it can be assigned. First, we will write a {0, 1}
integer program for Unique Games and then we relax this to obtain an SDP relaxation.

8.4.1 Integer Program for Unique Games

Recall that L is a set of k labels. For each variable u and each label i ∈ L, let ui be an
indicator variable that is 1 if u is assigned label i and 0 otherwise. Note that the expression
in the objective function is 1 exactly when a constraint πuv is satisfied.

max
∑

(u,v)∈E

∑

i∈L

ui · vπuv(i)

∑

i∈L

ui = 1 ∀u ∈ V.

Now we move to a vector program. The objective function stays the same, but we can
add some more equalities and inequalities to the relaxation that are valid for an integer
program. Below, we write quadratic constraints since our goal is ultimately to obtain a
quadratic program.

∑

i∈L

ui · ui = 1 ∀u ∈ V, i ∈ L,

ui · uj = 0 ∀u ∈ V, i 6= j ∈ L.

Additionally, we can also add triangle-inequality constraints on triples of vectors, {ui, vj , wh}
for u, v,w ∈ V and i, j, h ∈ L:

||ui − wh||2 ≤ ||ui − vj||2 + ||vj − wh||2, (8.4.1)

||ui − vj||2 ≥ ||ui||2 − ||vj ||2. (8.4.2)

8-4

These constraints are easy to verify for 0/1 variables, i.e. for integer solutions. Note
that these constraints are not necessary for the integer program, but they make the SDP
relaxation stronger.

8.4.2 Trevisan’s Algorithm

We now look at an algorithm due to Trevisan [Tre08]. Recall that if we know that every
constraint in a given instance is satisfiable, then we can just propagate the labels and obtain
a satisfiable assignment. The algorithm that we discuss is roughly based on this idea.

How can we use a solution to the SDP relaxation to obtain a solution that satisfies many
constraints? Suppose that OPT is |E| and consider two vertices u and v connected by an
edge. In this case, the set of k vectors corresponding to u is the same constellation of k
vectors corresponding to vertex v, possibly with a different labeling. If OPT is (1 − ε)|E|,
then although these two constellations may no longer be identical, they should be “close”.
The correlation of the vectors corresponds to the distance, i.e. high correlation corresponds
to small distance. Thus, we want to show that the vector corresponding to the label of the
root vertex r is “close” to other vectors, indicating which labels to assign the other vertices.

8.4.2.1 An Algorithm for Simplified Instances

Consider the following “simplified instance”. Recall that the constraint graph consists of
a vertex for each variable and has an edge between two variables if there is a constraint
between these two variables. Suppose the constraint graph has radius d: there exists a
vertex r such that every variable is a distance at most d from vertex r. The following
lemma can be proved using the ideas discussed above.

Lemma 8.1. If every edge contributes 1− ε/8(d + 1) to the SDP objective value, then it is
possible to efficiently find an assignment satisfying a (1 − ε)-fraction of the constraints.

We now give the steps of the rounding algorithm.

Rounding the SDP

(i) Find root vertex, r, such that every other vertex is reachable from r by a path
of length at most d.

(ii) Assign label i to r with probability ||ri||2.

(iii) For each u ∈ V , assign u label j, where j is the label that minimizes the
quantity ||uj − ri||2.

As mentioned earlier, the intuition for this label assignment is that uj is the vector
that is “closest” to ri. We now prove the following key claim: For each edge (u, v), the
probability that constraint πuv is satisfied is at least 1 − ε. In particular, recall that edge
(u, v) is mislabeled if ℓ(v) 6= πuv(ℓ(u)). Thus, we want to show that the probability that
edge (u, v) is mislabeled is at most ε.

Since r is at most a distance d from all other vertices, a BFS tree with root r has the
property that each u has a path to r on the tree of distance at most d. Fix a BFS tree

8-5

and consider the path from r to u: r = u0, u1, u2, . . . , ut−1, ut = u, where t ≤ d. Let πu1

denote the permutation πu0,u1, and recursively define πuk as the composition of permutations
(πuk,uk−1) · (πuk−1). Let πv = (πuv) · (πu). We now compute the probability that vertex u is
assigned label πu(i) and that vertex v is assigned label πv(i), given that r is assigned label i.
Note that if both these assignments occur, then edge (u, v) is satisfied. (Since edge (u, v)
may also be satisfied with another assignment, we can think of our calculation as possibly
being an underestimate on the probability that edge (u, v) is satisfied.)

Let A(u) denote the label assigned to vertex u by the rounding algorithm. We will show:

Pr[A(u) = πu(i)] ≥ 1 − ε

2
and Pr[A(v) = πv(i)] ≥ 1 − ε

2
.

This implies that the probability that constraint πuv is satisfied is at least 1 − ε. Now we
compute the probability that A(u) 6= πu(i). Suppose that uj for j 6= πu(i) is closer to vector
ri than uπu(i) is. In other words, suppose:

||uj − ri||2 ≤ ||uπu(i) − ri||2. (8.4.3)

Let Bu be the set of labels such that if r is assigned label i ∈ Bu, then u is not assigned
label πu(i). Note that label j belongs to Bu iff inequality (8.4.3) holds for j. Thus, the
probability that u is not labeled with πu(i) is exactly:

Pr[A(u) 6= πu(i)] =
∑

i∈Bu

||ri||2.

One can verify that if there is some label j such that inequality (8.4.3) holds, then the
quantity ||ri||2 is at most 2||ri − uπu(i)||2. This proof makes use of inequalities from the
SDP, (8.4.1) and (8.4.2), as well as inequality (8.4.3). (See Lemma 8.4 from [Tre08], which
we include in the Appendix.) Recall that each edge in the graph (and thus each edge on the
path from r to u in the BFS tree) contributes at most 1− ε/8(d+ 1) to the objective value.
By triangle inequality, this implies that

∑
i∈L ||ri − uπu(i)||2 ≤ ε/4. Thus, we conclude:

Pr[A(u) 6= πu(i)] =
∑

i∈Bu

||ri||2

≤ 2
∑

i∈Bu

||ri − uπu(i)||2

≤ 2
∑

i∈L

||ri − uπu(i)||2

≤ ε

2
.

Similarly, we conclude that Pr[A(v) 6= πv(i)] ≤ ε/2, which implies that the probability that
constraint πuv is not satisfied is at most ε.

8.4.2.2 Shift Invariant Instances

In the case of Linear Equations mod p, we can add more constraints to the SDP relaxation,
which allow for a simplified analysis of the rounding algorithm. For any assignment of labels,

8-6

we can shift each of the labels by the same fixed amount, i.e, by adding a value k ∈ L to
each label, and obtain an assignment with the same objective value. This property of a
solution has been referred to as shift invariance. In these instances, the following are valid
constraints. Note that p = |L|.

||ui||2 =
1

p
u ∈ V, i ∈ L,

ui · vj = ui+k · vj+k u, v ∈ V, i, j, k ∈ L.

In this case, we obtain a stronger version of Lemma 8.1.

Lemma 8.2. In a shift invariant instance in which every edge contributes more than 1 −
1/2(d + 1) to the SDP objective value, it is possible to efficiently find an assignment that
satisfies all of the constraints.

We will show that in this case, the vector ri is closer to vector uπu(i) than to vector
uj for any label j 6= πu(i). In other words, ri · uπu(i) > ri · uj for all j ∈ L. If each edge
contributes more than 1− 1/2(d+1) to the objective value, then ||ri −uπu(i)||2 < 1/p. This
implies that ri · uπu(i) > 1/2p. By triangle inequality, we have:

||uj − uπu(i)||2 ≤ ||uj − ri||2 + ||ri − uπu(i)||2
2

p
≤ 2

p
− 2ri · uj +

1

p
⇒

ri · uj ≤ 1

2p
.

Assuming that vector uj is closer to ri than vector uπu(i), we obtain the following contra-
diction:

1

2p
< ri · uπu(i) ≤ ri · uj ≤ 1

2p
.

Note that in the case of shift invariance, r is assigned each label from L with equal
probability. Because of shift invariance, it does not actually matter which label r is assigned.
Thus, we can just assign r a label i arbitrarily (we no longer need randomization) and then
proceed with the rest of the SDP rounding algorithm.

8.4.2.3 Extension to General Instances

Applying this SDP rounding to general graphs may not yield such good results as in Lemmas
8.1 and 8.2, since the radius of an arbitrary graph can be large, and the objective values of
the SDP relaxation would therefore have to be very high for the lemmas to be applicable.
In order to apply these lemmas, we break the graph into pieces, each with a radius of no
more than O(log n/ε). Doing this requires throwing out no more than an ε-fraction of the
constraints. The following lemma is originally due to Leighton and Rao [LR99] and can
also be found in [Tre08].

Lemma 8.3. For a given graph G = (V,E) and for all ε > 0, there is a polynomial time
algorithm to find a subset of edges E′ ⊆ E such that |E′| > (1− ε)|E|, and every connected
connected component of E′ has diameter O(log |E|/ε).

8-7

Using this lemma, we obtain the following guarantee for general instances: Given an
instance for which OPT is at least (1 − cε3/ log n)|E|, we can efficiently find a labeling
satisfying a 1 − ε fraction of the constraints. Note that c is an absolute constant. For shift
invariant instances, we can satisfy (1 − ε)|E| of the constraints for an instance where OPT
is at least (1 − cε2/ log n)|E|.

Given a graph, we remove the ε
3 fraction of constraints that contribute the least to the

objective value. This leaves us with at least (1 − ε/3)|E| constraints that each contributes
at least 1−3cε2/ log n (or 1−3cε/ log n for shift invariant instances) to the objective value.
We can apply Lemma 8.1 (or Lemma 8.2) with d = log n/ε, satisfying at least (1−2ε/3)|E|
constraints (or (1 − ε/3)|E| constraints).

8.5 Improving the Approximation Ratio

Algorithms with improved approximation guarantees for Unique Games have been presented
in [GT06, CMM06]. The latter work gives an algorithm with the following guarantee: Given
an instance of Unique Games with a domain size k for which OPT is at least (1− ε)|E|, the
algorithm produces a solution that satisfies at least max{1−

√
ε log k, k−ε/(2−ε)} fraction of

the constraints. Furthermore, it has been shown that the existence of an efficient algorithm
that can distinguish between instances in which (1 − ε)|E| constraints can be satisfied and
those at which less than k−ε/2 constraints can be satisfiable, would disprove the Unique
Games Conjecture [KKMO07]. Moreover, it is sufficient to refute the conjecture if this
algorithm works only for the special case of Linear Equations mod p. Thus, focusing on
shift invariant instances is a reasonable approach.

Additionally, the Unique Games problem has been studied for cases in which the con-
straint graph is an expander; in an instance in which OPT is at least (1 − ε)|E|, one can
efficiently find a solution satisfying at least 1−O(ε

λ) fraction of the constraints, where λ is
a function of the expansion of the graph [AKK+08, MM09].

8.6 Consequences

The interest in the Unique Games Conjecture has grown due to the many strong, neg-
ative consequences that have been proved for various optimization problems. Assuming
the Unique Games Conjecture, it has been shown that the Goemans-Williamson algo-
rithm for Max Cut (presented in Sanjeev’s lecture) achieves the optimal approximation
ratio [KKMO07]. More surprisingly, there are many other NP-complete optimization prob-
lems for which the best-known approximation guarantees are obtained via extremely simple
algorithms. Nevertheless, no one has been able to find algorithms with improved approx-
imation guarantees, even when resorting to sophisticated techniques such as linear and
semidefinite programming. Such optimization problems include the Minimum Vertex Cover
problem and the Maximum Acyclic Subgraph problem, for which the best-known approx-
imation factors are 1/2 and 2, respectively. If the Unique Games Conjecture is true, then
these approximation ratios are tight [KR08, GMR08]. This phenomena has been investi-
gated for several other optimization problems as well. A recent result shows that for a
whole class of constraint satisfaction problems, which can be modeled using a particular

8-8

integer program, the integrality gap of a particular SDP relaxation is exactly equal to its
approximability threshold under the Unique Games Conjecture [Rag08].

References

[AKK+08] Sanjeev Arora, Subhash Khot, Alexandra Kolla, David Steurer, Madhur Tulsiani,
and Nisheeth K. Vishnoi. Unique games on expanding constraint graphs are easy: extended
abstract. In Proc. 40th ACM Symp. on Theory of Computing (STOC), pages 21–28. ACM, 2008.
doi:10.1145/1374376.1374380.

[CMM06] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algo-
rithms for unique games. In Proc. 38th ACM Symp. on Theory of Computing (STOC), pages
205–214. ACM, 2006. doi:10.1145/1132516.1132547.

[FL92] Uriel Feige and László Lovász. Two-prover one-round proof systems: Their power and their
problems (extended abstract). In Proc. 24th ACM Symp. on Theory of Computing (STOC),
pages 733–744. ACM, 1992. doi:10.1145/129712.129783.

[GMR08] Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra. Beat-
ing the random ordering is hard: Inapproximability of maximum acyclic subgraph. In Proc.
49th IEEE Symp. on Foundations of Comp. Science (FOCS), pages 573–582. IEEE, 2008.
doi:10.1109/FOCS.2008.51.

[GT06] Anupam Gupta and Kunal Talwar. Approximating unique games. In Proc. 17th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 99–106. SIAM, 2006.
doi:10.1145/1109557.1109569.

[GW95] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–
1145, 1995. (Preliminary version in 26th STOC, 1994). doi:10.1145/227683.227684.

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In Proc. 34th ACM Symp.
on Theory of Computing (STOC), pages 767–775. ACM, 2002. doi:10.1145/509907.510017.

[KKMO07] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal in-
approximability results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput-
ing, 37(1):319–357, 2007. (Preliminary version in 45th FOCS, 2004). eccc:TR05-101,
doi:10.1137/S0097539705447372.

[KR08] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-ε.
J. Computer and System Sciences, 74(3):335–349, 2008. (Preliminary Version in 18th IEEE
Conference on Computational Complexity, 2003). doi:10.1016/j.jcss.2007.06.019.

[LR99] Frank Thomson Leighton and Satish Rao. Multicommodity max-flow min-cut theo-
rems and their use in designing approximation algorithms. J. ACM, 46(6):787–832, 1999.
doi:10.1145/331524.331526.

[MM09] Konstantin Makarychev and Yury Makarychev. How to play unique games on expanders,
2009. arXiv:0903.0367.

[Rag08] Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP?
In Proc. 40th ACM Symp. on Theory of Computing (STOC), pages 245–254. ACM, 2008.
doi:10.1145/1374376.1374414.

[Tre08] Luca Trevisan. Approximation algorithms for unique games. Theory of Comput-
ing, 4(1):111–128, 2008. (Preliminary version in 46th FOCS, 2005). eccc:TR05-034,
doi:10.4086/toc.2008.v004a005.

8.7 Appendix

We include following lemma from [Tre08] and its proof:

8-9

http://dx.doi.org/10.1145/1374376.1374380
http://dx.doi.org/10.1145/1132516.1132547
http://dx.doi.org/10.1145/129712.129783
http://dx.doi.org/10.1109/FOCS.2008.51
http://dx.doi.org/10.1145/1109557.1109569
http://dx.doi.org/10.1145/227683.227684
http://dx.doi.org/10.1145/509907.510017
http://eccc.hpi-web.de/report/2005/101
http://dx.doi.org/10.1137/S0097539705447372
http://dx.doi.org/10.1016/j.jcss.2007.06.019
http://dx.doi.org/10.1145/331524.331526
http://arxiv.org/abs/0903.0367
http://dx.doi.org/10.1145/1374376.1374414
http://eccc.hpi-web.de/report/2005/034
http://dx.doi.org/10.4086/toc.2008.v004a005

Lemma 8.4. Let r,u,v be vectors such that: (i) u · v = 0, (ii) ||r − u||2 ≥ ||r − v||2,
and (iii) the vectors r,u,v satisfy the triangle inequality constraints from the SDP. Then
||r − u||2 ≥ 1

2 ||r||2.

Proof. There are three cases:

1. If ||u||2 ≤ 1
2 ||r||2, then by (8.4.2), we have:

||r − u||2 ≥ ||r||2 − ||u||2 ≥ 1

2
||r||2.

2. If ||v||2 ≤ 1
2 ||r||2, then by (8.4.1), and subsequently (8.4.2), we have:

||r − u||2 ≥ ||r− v||2 ≥ ||r||2 − ||v||2 ≥ 1

2
||r||2.

3. If ||u||2, ||v||2 ≥ 1
2 ||r||2, then from (8.4.1) and assumption (ii), we have:

||v − u||2 ≤ ||v − r||2 + ||r − u||2 ≤ 2||r − u||2.

By Pythagoras theorem and by orthogonality of u and v (assumption (i)), we have:

||v − u||2 = ||v||2 + ||u||2.

Finally, we have:

||r − u||2 ≥ 1

2
||v − u||2 =

1

2
||v||2 +

1

2
||u||2 ≥ 1

2
||r||2.

8-10

	Unique Games
	Examples
	Linear Equations -5mumod5mu- p
	Max Cut

	Satisfiable vs Almost Satisfiable Instances
	Almost Satisfiable Instances of Max Cut

	General Unique Games
	Integer Program for Unique Games
	Trevisan's Algorithm
	An Algorithm for Simplified Instances
	Shift Invariant Instances
	Extension to General Instances

	Improving the Approximation Ratio
	Consequences
	Appendix

