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1 Index Terms

Graph partitioning, Approximation algorithms.

2 Synonyms

Maximum bipartite subgraph.

3 Problem Definition

Given an undirected edge-weighted graph, G = (V,E), the maximum cut problem (Max-Cut) is
to find a bipartition of the vertices that maximizes the weight of the edges crossing the partition.
If the edge weights are non-negative, then this problem is equivalent to finding a maximum weight
subset of the edges that forms a bipartite subgraph, i.e. the maximum bipartite subgraph problem.
All results discussed in this article assume non-negative edge weights. Max-Cut is one of Karp’s
original NP-complete problems [Kar72]. In fact, it is NP-hard to approximate to within a factor
better than 16

17 [TSSW00, H̊as01].

For nearly twenty years, the best-known approximation factor for Max-Cut was half, which can
be achieved by a very simple algorithm: Form a set S by placing each vertex in S with probability
half. Since each edge crosses the cut (S, V \S) with probability half, the expected value of this cut is
half the total edge weight. This implies that for any graph, there exists a cut with value at least half
of the total edge weight. In 1976, Sahni and Gonzalez presented a deterministic half-approximation
algorithm for Max-Cut, which is essentially a de-randomization of the aforementioned randomized
algorithm [SG76]: Iterate through the vertices and form sets S and S̄ by placing each vertex in
the set that maximizes the weight of cut (S, S̄) thus far. After each iteration of this process, the
weight of this cut will be at least half of the weight of the edges with both endpoints in S ∪ S̄.

This simple half-approximation algorithm uses the fact that for any graph with non-negative
edge weights, the total edge weight of a given graph is an upper bound on the value of its maximum
cut. There exist classes of graphs for which a maximum cut is arbitrarily close to half the total
edge weight, i.e. graphs for which this “trivial” upper bound can be close to twice the true value of
an optimal solution. An example of such a class of graphs are complete graphs on n vertices, Kn.
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In order to obtain an approximation factor better than half, one must be able to compute an upper
bound on the value of a maximum cut that is better, i.e. smaller, than the trivial upper bound for
such classes of graphs.

3.1 Linear Programming Relaxations

For many optimization (maximization) problems, linear programming has been shown to yield bet-
ter (upper) bounds on the value of an optimal solution than can be obtained via combinatorial
methods. There are several well-studied linear programming relaxations for Max-Cut. For exam-
ple, a classical integer program has a variable xe for each edge and a constraint for each odd cycle,
requiring that an odd cycle C contribute at most |C| − 1 edges to an optimal solution.

max
∑

e∈E

wexe

∑

e∈C

xe ≤ |C| − 1 ∀ odd cycles C

xe ∈ {0, 1}.

The last constraint can be relaxed so that each xe is required to lie between 0 and 1, but need not be
integral, i.e. 0 ≤ xe ≤ 1. Although this relaxation may have exponentially many constraints, there
is a polynomial-time separation oracle (equivalent to finding a minimum weight odd-cycle), and
thus, the relaxation can be solved in polynomial time [GLS81]. Another classical integer program
contains a variable xij for each pair of vertices. In any partition of the vertices, either zero or two
edges from a 3-cycle cross the cut. This requirement is enforced in the following integer program.
If edge (i, j) /∈ E, then wij is set to 0.

max
∑

i,j∈V

wijxij

xij + xjk + xki ≤ 2 ∀i, j, k ∈ V

xij + xjk − xki ≥ 0 ∀i, j, k ∈ V

xij ∈ {0, 1}.

Again, the last constraint can be relaxed so that each xij is required to lie between 0 and 1.
In contrast to the aforementioned cycle-constraint based linear program, this linear programming
relaxation has a polynomial number of constraints.

Both of these relaxations actually have the same optimal value for any graph with non-negative
edge weights [Bar93, Pol92, PT95]. (For a simplified proof of this, see [New04].) Poljak showed
that the integrality gap for each of these relaxations is arbitrarily close to 2 [Pol92]. In other words,
there are classes of graphs that have a maximum cut containing close to half of the edges, but for
which each of the above relaxations yields an upper bound close to all the edges, i.e. no better than
the trivial “all-edges” bound. In particular, graphs with a maximum cut close to half the edges
and with high girth can be used to demonstrate this gap. A comprehensive look at these linear
programming relaxations is contained in the survey of Poljak and Tuza [PT95].
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3.2 Eigenvalue Upper Bounds

Delorme and Poljak [DP93a] presented an eigenvalue upper bound on the value of a maximum
cut, which was a strengthened version of a previous eigenvalue bound considered by Mohar and
Poljak [MP90]. Computing Delorme and Poljak’s upper bound is equivalent to solving an eigenvalue
minimization problem. They showed that their bound is computable in polynomial time with
arbitrary precision. In a series of work, Delorme, Poljak and Rendl showed that this upper bound
behaves “differently” from the linear-programming-based upper bounds. For example, they studied
classes of sparse random graphs (e.g. G(n, p) with p = 50/n) and showed that their upper bound is
close to optimal on these graphs [DP93b]. Since graphs of this type can also be used to demonstrate
an integrality gap arbitrarily close to 2 for the aforementioned linear programming relaxations, their
work highlighted contrasting behavior between these two upper bounds. Further computational
experiments on other classes of graphs gave more evidence that the bound was indeed stronger
than previously studied bounds [PR95b, PR94]. Delorme and Poljak conjectured that the 5-cycle
demonstrated the worst-case behavior for their bound: a ratio of 32

25+5
√

5
≈ .88445 between their

bound and the optimal integral solution. However, they could not prove that their bound was
strictly less than twice the value of a maximum cut in the worst case.

4 Key Result

In 1994, Goemans and Williamson presented a randomized .87856-approximation algorithm for
Max-Cut [GW95]. Their breakthrough work was based on rounding a semidefinite programming
relaxation and was the first use of semidefinite programming in approximation algorithms. Poljak
and Rendl showed that the upper bound provided by this semidefinite relaxation is equivalent to the
eigenvalue bound of Delorme and Poljak [PR95a]. Thus, Goemans and Williamson’s proved that
the eigenvalue bound of Delorme and Poljak is no more than 1.138 times the value of a maximum
cut.

4.1 A Semidefinite Relaxation

Max-Cut can be formulated as the following quadratic integer program, which is NP-hard to solve.
Each vertex i ∈ V is represented by a variable yi, which is assigned either 1 or −1 depending on
which side of the cut it occupies.

max
1

2

∑

(i,j)∈E

wij(1 − yiyj)

yi ∈ {−1, 1} ∀i ∈ V.
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Goemans and Williamson considered the following relaxation of this integer program, in which each
vertex is represented by a unit vector.

max
1

2

∑

(i,j)∈E

wij(1 − vi · vj)

vi · vi = 1 ∀i ∈ V

vi ∈ Rn ∀i ∈ V.

They showed that this relaxation is equivalent to a semidefinite program. Specifically, consider the
following semidefinite relaxation:

max
1

2

∑

(i,j)∈E

wij(1 − yij)

yii = 1 ∀i ∈ V

Y positive semidefinite.

The equivalence of these two relaxations is due to the fact that a matrix Y is positive semidefinite
if and only if there is a matrix B such that BT B = Y . The latter relaxation can be solved to within
arbitrary precision in polynomial time via the Ellipsoid Algorithm, since it has a polynomial time
separation oracle [GLS88]. Thus, a solution to the first relaxation can be obtained by finding a
solution to the second relaxation and finding a matrix B such that BT B = Y . If the columns of B
correspond to the vectors {vi}, then yij = vi · vj, yielding a solution to the first relaxation.

4.2 Random Hyperplane Rounding

Goemans and Williamson showed how to round the semidefinite programming relaxation of Max-

Cut using a new technique that has since become known as “random-hyperplane rounding” [GW95].
First obtain a solution to the first relaxation, which consists of a set of unit vectors {vi}, one vector
for each vertex. Then choose a random vector r ∈ Rn in which each coordinate of r is chosen from
the standard normal distribution. Finally, set S = {i | vi · r ≥ 0} and output the cut (S, V \ S).

The probability that a particular edge (i, j) ∈ E crosses the cut is equal to the probability that
the dot products vi · r and vj · r differ in sign. This probability is exactly equal to θij/π, where
θij is the angle between vectors vi and vj . Thus, the expected weight of edges crossing the cut is
equal to

∑
(i,j)∈E θij/π. How large is this compared to the objective value given by the semidefinite

programming relaxation, i.e. what is the approximation ratio?

Define αgw as the worst-case ratio of the expected contribution of an edge to the cut, to its
contribution to the objective function of the semidefinite programming relaxation. In other words:
αgw = min0≤θ≤π

2
π

θ
1−cos θ

. It can be shown that αgw > .87856. Thus, the expected value of a cut is
at least αgw · SDPOPT , resulting in an approximation ratio of at least .87856 for Max-Cut. The
same analysis applies to weighted graphs with non-negative edge weights.

This algorithm was de-randomized by Mahajan and Hariharan [MH95]. Goemans and Williamson
also applied their random-hyperplane rounding techniques to give improved approximation guar-
antees for other problems such as Max-Dicut and Max-2Sat.
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4.3 Integrality Gap and Hardness

Karloff showed that there exist graphs for which the best hyperplane is only a factor αgw of the
maximum cut [Kar99], showing that there are graphs for which the analysis in [GW95] is tight.
Since the optimal SDP value for such graphs equals the optimal value of a maximum cut, these
graphs can not be used to demonstrate an integrality gap. However, Feige and Schechtman showed
that there exist graphs for which the maximum cut is a αgw fraction of the SDP bound [FS02],
thereby establishing that the approximation guarantee of Goemans and Williamson’s algorithm
matches the integrality gap of their semidefinite programming relaxation. Recently, Khot, Kindler,
Mossel and O’Donnell [KKMO04] showed that if the Unique Games Conjecture of Khot [Kho02] is
assumed to be true, then it is NP-hard to approximate Max-Cut to within any factor larger than
αgw.

5 Applications

The work of Goemans and Williamson paved the way for the further use of semidefinite program-
ming in approximation algorithms, particularly for graph partitioning problems. Methods based on
the random-hyperplane technique have been successfully applied to many optimization problems
that can be categorized as partition problems. A few examples are 3-Coloring [KMS98], Max-

3-Cut [FJ97, GW04, dKPW04], Max-Bisection [HZ02], Correlation-Clustering [CGW03,
Swa04], and Sparsest-Cut [ARV04]. Additionally, some progress has been made in extending
semidefinite programming techniques outside the domain of graph partitioning to problems such
as Betweenness [CS98], Bandwidth [BKRV00], and Linear Equations mod p [AEH01].

6 Cross References

Maximum Satisfiability, Bandwidth, Graph Coloring, Sparsest Cut.
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