
Algorithms for String and Graph Layout

by

Alantha Newman

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2004

c© Massachusetts Institute of Technology 2004. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 31, 2004

Certified by. .

Santosh S. Vempala
Associate Professor of Applied Mathematics

Thesis Supervisor

Accepted by .

Arthur C. Smith
Chairman, Department Committee on Graduate Students

2

Algorithms for String and Graph Layout

by

Alantha Newman

Submitted to the Department of Electrical Engineering and Computer Science
on August 31, 2004, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Many graph optimization problems can be viewed as graph layout problems. A layout
of a graph is a geometric arrangement of the vertices subject to given constraints.
For example, the vertices of a graph can be arranged on a line or a circle, on a two-
or three-dimensional lattice, etc. The goal is usually to place all the vertices so as to
optimize some specified objective function.

We develop combinatorial methods as well as models based on linear and semidef-
inite programming for graph layout problems. We apply these techniques to some
well-known optimization problems. In particular, we give improved approximation
algorithms for the string folding problem on the two- and three-dimensional square
lattices. This combinatorial graph problem is motivated by the protein folding prob-
lem, which is central in computational biology. We then present a new semidefinite
programming formulation for the linear ordering problem (also known as the max-
imum acyclic subgraph problem) and show that it provides an improved bound on
the value of an optimal solution for random graphs. This is the first relaxation that
improves on the trivial “all edges” bound for random graphs.

Thesis Supervisor: Santosh S. Vempala
Title: Associate Professor of Applied Mathematics

3

4

Acknowledgments

Most of all, I thank Santosh Vempala for being my advisor. Santosh spent countless

hours with me early in my graduate career. He has always been very generous with

his ideas, insights, and intuition regarding research problems. Santosh has a special

ability to explain your own ideas back to you much more clearly than you explained

them to him. My favorite class in graduate school was Santosh’s combinatorial opti-

mization course, which inspired me to pursue this area of research.

Many other theory faculty also helped me during my time at MIT. I thank Madhu

Sudan for all of his support and advice and for being on my thesis committee. I thank

Michel Goemans for running his weekly group meetings, for all of his help and advice,

for solving the maxcut problem, and for being on my thesis committee. I thank David

Karger for being on my thesis committee and for providing valuable help. I also thank

Charles Leiserson, who was my graduate counselor and helped me a great deal.

I thank Bill Hart and Bob Carr for giving me a summer job at Sandia National

Labs and for collaborating on the results in Section 4.4 of this thesis. I especially

thank my big sister, Edith Newman, for being such a good friend, and for drawing

Figures 5-1, 5-5, 5-3 and 5-4 in this thesis. I thank Mona Singh and Martin Farach-

Colton for encouraging me to attend grad school and MIT in particular.

I thank all the students in the theory group for making MIT such an interesting

and fun place to be. I thank Prahladh Harsha for all of the geography and history

lessons on the Far East and for being an encyclopedia when it comes to answering

technical questions. I thank Nitin Thaper for the everyday conversations we had about

everyday life as well as all of the technical advice he gave me. I thank Matthias Ruhl

for being a good friend and for collaborating with me on the results in Chapters 2

and 5 of this thesis. I thank John Dunagan for his patience in the many technical

discussions that I had with him early on in graduate school. I thank Fumei Lam for

her help and collaboration this past year. I thank Anna Lysyanskaya for all of her

sincere advice, support and friendship throughout my entire graduate career. I thank

Christina Olsson for being a good friend and roommate and making the past three

years so much fun.

I thank Peggy Carney, Marilyn Pierce, Joanne Talbot-Hanley and Be Blackburn

for all of their help and support.

Finally, I thank my mother for all the time and the sacrifices she made for me

and my sisters and for always supporting me in her own way. I thank my father for

his unique insights on every topic I raise and for his special sense of humor and for

always supporting me in his own way.

5

6

Contents

1 Introduction 9

1.1 Problems and Results . 11

1.1.1 String Folding . 11

1.1.2 Linear Ordering . 18

1.2 Layout of This Thesis . 23

2 Methods I: Combinatorial 25

2.1 A Combinatorial Lemma for Strings . 26

2.2 Block-Monotone Subsequences . 27

2.2.1 Algorithm . 29

2.2.2 Analysis . 31

2.3 Open Problems . 34

3 Methods II: Linear and Semidefinite Programming 35

3.1 Linear Programming . 36

3.1.1 Assignment Constraints . 37

3.1.2 Graph Layout . 39

3.2 Semidefinite Programming . 40

3.2.1 Cut Problems . 40

3.2.2 Vertex Ordering Problems . 45

3.3 Discussion . 51

4 2D String Folding 53

4.1 Introduction . 53

4.1.1 Motivation . 55

4.1.2 Previous Work . 57

4.1.3 Organization . 57

4.2 A Combinatorial Bound . 58

4.3 A Factor 1
3 -Approximation Algorithm . 60

4.3.1 Algorithm . 62

4.3.2 Analysis . 63

4.4 A Linear Program for String Folding . 66

4.5 Gap Examples . 70

7

4.5.1 Gap for 2D Combinatorial Bound . 70

4.5.2 LP Integrality Gap . 77

4.6 Discussion and Open Problems . 78

5 3D String Folding 79

5.1 Introduction . 79

5.1.1 Background . 80

5.1.2 Organization . 81

5.2 A Diagonal Folding Algorithm . 81

5.3 Improved Diagonal Folding Algorithms . 83

5.3.1 An Algorithm for a Special Class of Strings 84

5.3.2 Relating Folding to String Properties 88

5.4 Another 3D String Folding Algorithm . 91

5.5 Discussion . 96

6 Linear Ordering 99

6.1 Introduction . 99

6.1.1 Background . 100

6.1.2 Organization . 102

6.2 Relating Cuts and Orderings . 103

6.2.1 Relaxations for Cut Problems . 103

6.2.2 A Relaxation for the Linear Ordering Problem 105

6.2.3 Cuts and Uncuts . 106

6.3 Balanced Bisections of Random Graphs . 111

6.4 A Contradictory Cut . 112

6.5 Discussion and Conjectures . 117

8

Chapter 1

Introduction

Graph layout problems involve arranging the vertices and edges of a given graph sub-

ject to specified constraints. For example, by definition a planar graph can be drawn

in a two-dimensional plane such that no edges cross. There are several algorithms for

finding such a layout of a planar graph; a linear-time algorithm was given by Booth

and Lueker [BL76]. Another well-studied graph layout problem is finding a layout of

a non-planar graph that minimizes the number of edge crossings.

Figure 1-1: Planar graph drawing is the problem of laying out a planar graph so that
no edges cross.

In this thesis, we focus on layouts of graphs defined as geometric arrangements of

the vertices on a line, lattice, circle, etc. The goal is usually to optimize a specified

objective function. Two examples of such vertex layout problems are the maximum

linear arrangement problem and the minimum bandwidth problem. In each problem,

the input is an undirected graph G = (V, E). Each vertex i ∈ V is assigned a unique

label ℓ(i) from the set of integers {1, 2, . . . , n}. The goal of the maximum linear

arrangement problem is to assign the labels to the vertices so as to maximize the sum∑
ij∈E |ℓ(i) − ℓ(j)|, i.e. maximize the sum of the lengths of the edges when arranged

on a line according to their labels. The goal of the minimum bandwidth problem is to

9

assign the labels to the vertices so as to minimize the maximum value of |ℓ(i)− ℓ(j)|
over all edges (i, j) ∈ E, i.e. minimize the length of the maximum length edge.

Figure 1-2: A 6-cycle with optimal vertex orderings for the maximum linear arrange-
ment and minimum bandwidth problems.

Many graph optimization problems can be described as finding a maximum/minimum

weight subset of edges (subgraph) with a particular property. Alternatively, many of

these graph optimization problems can be described as a vertex layout problems, in

which the placement of each vertex is chosen from a discrete set of possible positions.

The goal is to place or lay out the vertices so as to optimize some specified objective

function.

One of the most fundamental graph optimization problems is the maximum cut

(maxcut) problem. Suppose we are given an undirected, weighted graph G = (V, E).

Two possible statements of the maxcut problem are:

(i) Find the maximum weight bipartite subgraph.

(ii) Partition the vertices into two disjoint sets (S, S) so as to maximize the weight

of the edges crossing the cut.

Figure 1-3: Two ways of defining the maxcut problem.

These are equivalent optimization problems. Each suggests a different way of com-

municating a solution. For example, suppose we want to record a known solution for

the maxcut of a given graph. Two possible ways to do this are:

10

(i) Give a vector x ∈ {0, 1}|E|, where xei
is a 1 if the edge ei crosses the cut and 0

otherwise.

(ii) Give a vector x ∈ {0, 1}|V |, where xvi
is a 1 if the vertex vi is in S and 0 if it is

in S.

Linear and semidefinite programming methods are frequently used to approximate

the optimal solution for a combinatorial optimization problem by defining a polytope

that closely approximates the convex hull of integer solutions. So the question is,

what set of integer solutions should we approximate? Which way should we view the

problem?

The problems and methods discussed in this thesis are motivated by viewing

graph optimization problems as graph layout problems. In some cases, the most

natural problem statement is in terms of graph layout. In other cases, this alternative

viewpoint provides new insights into the problem.

1.1 Problems and Results

In this thesis, we will focus primarily on two combinatorial graph layout problems.

The first problem is known as the string folding problem. The second is known as

the linear ordering problem. The goal of each problem is to arrange the vertices of

an input graph subject to specified constraints so as to maximize a given objective

function. In this section, we will precisely define these problems and provide back-

ground and motivation. Additionally, we outline our new results. In Section 1.2, we

explain the layout of this thesis.

1.1.1 String Folding

The first problem we address is an optimization problem called the string folding

problem. The input graph can be viewed as a string; it is an undirected graph in

which each vertex except for two end vertices has degree exactly two. Each end vertex

has degree exactly 1. Each vertex in this input graph is labeled as either a ’0’ or a

’1’. Additionally, we are given a lattice. For example, suppose we are given a two-

dimensional square lattice in which one lattice point is arbitrarily assigned to be the

origin with coordinates (0,0) and the rest of the lattice points are labeled accordingly.

We say a vertex from the input graph is placed on a lattice point (x, y) if that vertex

is assigned to lattice point (x, y). A folding of such an input graph corresponds

to placing the vertices of the graph on lattice points subject to the following three

constraints:

(i) Each lattice point can have at most one vertex placed on it.

(ii) Each vertex must be placed on some lattice point.

11

(iii) Adjacent vertices in the string must be placed on adjacent lattice points.

For example, suppose vertex i and i+1 are adjacent in the input graph. On a 2D

square lattice, if vertex i is placed on lattice point (x, y), then vertex i + 1 must be

placed on one of four possible lattice points: (x± 1, y) or (x, y ± 1). Thus, in a valid

folding of a string, the string is laid out on the lattice so that it does not cross itself.

Such a folding is commonly referred to as a self-avoiding walk. When the problem is

defined for a particular lattice, part of the problem definition is to define which pairs

of lattice points are “adjacent”. For example, on the 2D square lattice, we will say

each lattice point has four neighbors, but it is possible to define the problem such

that lattice points diagonally across from each other, i.e. (x, y) and (x+1, y +1), are

neighbors.

Figure 1-4: A so-called self-avoiding walk—a string forms a pattern that does not
cross itself.

The goal of the string folding problem is to find a valid folding of a given input

graph/string that maximizes the number of pairs of vertices both labeled 1 that

occupy adjacent lattice points. Such pairs of vertices, i.e. pairs of vertices both

labeled 1 that occupy adjacent lattice points, are called contacts. By the definition

of a valid folding, two vertices labeled 1 that are adjacent in the input graph must

occupy adjacent lattice points in any valid folding. Such pairs are not considered to

be contacts.

For example, suppose the input graph corresponds to the string 101010101001010101.

Then the folding shown in Figure 1-5 results in eight pairs of vertices labeled 1 that

occupy adjacent lattice points. This folding yields the maximum possible number of

contacts for this string over all foldings on the 2D square lattice. The vertices labeled

1 are denoted by black dots and the vertices labeled 0 are denoted by white or unfilled

dots.

12

1 0111 1 1 1 1 1000 0 0 0 0 0S =

Figure 1-5: An optimal folding for the string S = 101010101001010101. The eight
contacts are marked by thick (red) dashed lines.

Motivation

The string folding problem is motivated by the protein folding problem, which is a

central problem in computational biology. A protein is a sequence of amino acid

residues ranging in length from hundreds to thousands of residues. Shorter amino

acid chains are called peptides. There are about 20 types of amino acids. The three-

dimensional shape of a protein or peptide determines its function.

Figure 1-6: A protein is composed of a one-dimensional amino acid sequence and
folds to a three-dimensional shape that determines its function.

In 1985, Ken Dill [Dil85, Dil90] introduced a simplified model of protein folding

called the Hydrophobic-Hydrophilic (HP) model. This model abstracts the dominant

force in protein folding: the hydrophobic interaction. The hydrophobicity of an amino

acid is its propensity to avoid water. It is known that proteins contain tightly clustered

cores of hydrophobic amino acids that avoid being close to the surface, which comes

into contact with water. In the HP model, each amino acid is classified as an H

(hydrophobic) or a P (hydrophilic or polar).

13

H H H HH

P P P P P

Figure 1-7: Each amino acid is classified as either an H or a P depending on its degree
of hydrophobicity.

The problem is further simplified by restricting the foldings to a two-dimensional

(2D) or three-dimensional (3D) square lattice rather than three-dimensional space.

The goal of the protein folding problem in the HP model is to find a folding of an

input string of H’s and P’s that maximizes the number of pairs of adjacent H’s, i.e.

H-H contacts. This is exactly the combinatorial problem that we called the string

folding problem.

Figure 1-8: Two-dimensional and three-dimensional HP models.

Background

The HP lattice model is a significant simplification of the protein folding problem

but nevertheless computationally difficult. In 1995, Hart and Istrail presented ap-

proximation algorithms for the string folding problem on the two-dimensional and

three-dimensional square lattices [HI96]. If an optimization problem is shown to be

NP-hard, then a typical approach is to give an approximation algorithm since it is

commonly believed that the existence of efficient algorithms for NP-hard optimiza-

tion problems is unlikely. A ρ-approximation algorithm is a polynomial-time algo-

rithm that produces a solution of value at least ρ times the optimal value. Hart and

Istrail presented the string folding problem to the theoretical computer science com-

munity and gave approximation algorithms for the problem on the two-dimensional

and three-dimensional square lattice before either version was known to be NP-hard.

Their linear-time algorithms guaranteed foldings in which the number of contacts was
1
4

and 3
8

of the optimal number of contacts for the 2D and 3D problems, respectively.

14

It was a major open problem to show that the string folding problem on the 2D

or 3D square lattices is NP-hard or give an efficient exact algorithm for it. In 1998,

the 2D string folding problem was shown to be NP-hard by Crescenzi, Goldman, Pa-

padimitriou, Piccolboni and Yannakakis [CGP+98] and the 3D string folding problem

was shown to be NP-hard by Berger and Leighton [BL98]. In 1999, Mauri, Piccolboni,

and Pavesi presented another factor 1
4
-approximation algorithm for the 2D problem

based on dynamic programming [MPP99]. They claimed that their algorithm per-

formed better than that of Hart and Istrail in practice. Additionally, Agarwala et

al. gave approximation algorithms for the string folding problem on the 2D and 3D

triangular lattice with approximation guarantees of slightly better than 1
2

[ABD+97].

It is not known if the string folding problem on the 2D or 3D triangular lattice is

NP-hard.

Figure 1-9: A valid folding on the 2D triangular lattice.

Each of the approximation algorithms referred to above for the string folding

problem on the 2D or 3D square lattice use a simple combinatorial upper bound on the

optimal number of contacts. Hart and Istrail [HI96] and Mauri et al. [MPP99] showed

that their algorithm always achieves at least 1
4

as many contacts as demonstrated by

this combinatorial upper bound.

Figure 1-10: The square lattice is a bipartite graph.

Consider an input graph/string to the string folding problem. If we fix an arbitrary

15

endpoint to be the first vertex on the string, then each vertex has an odd index or

an even index. The square lattice is a bipartite graph, i.e. the lattice points can be

divided into two sets, each containing no edges. In a valid folding, each odd vertex

is assigned to a lattice point from one of these sets and each even vertex is assigned

to a lattice point in the other set. Thus, 1’s with even indices (even-1’s) in the string

can only have contacts with 1’s in odd indices (odd-1’s) in the string. Moreover, each

lattice point has four neighboring lattice points and each vertex—except for the two

vertices with degree 1—can have at most two contacts in a valid folding since two of

its neighboring lattice points will be occupied by adjacent vertices on the string and

therefore cannot form contacts. Let S denote the given input string. Then O[S] is

the number of 1’s in S that have odd indices and E [S] is the number of 1’s in S that

have even indices. Let M2[S] be the maximum number of contacts for any folding

over all possible foldings of the string S on the 2D square lattice. An upper bound

on the maximum number of contacts is:

M2[S] ≤ 2 · min{O[S], E [S]} + 2. (1.1)

Hart and Istrail prove that their approximation algorithm for the 2D string fold-

ing problem achieves at least min{O[S], E [S]}/2 contacts, resulting in a factor 1
4
-

approximation algorithm. As in the 2D case, the 3D square lattice is also bipartite.

Each lattice point has six neighbors. If a vertex (that is not an endpoint) is placed

on a particular lattice point, then two out of six neighboring lattice points will be

occupied by neighboring vertices from the string. Thus, each 1 in the input string

can have at most four contacts. Let M3[S] be the maximum number of contacts for

any folding over all possible foldings of the string S on the 3D square lattice. The

upper bound for the 3D string folding problem is therefore:

M3[S] ≤ 4 · min{O[S], E [S]} + 2. (1.2)

Agarwala et al. argue that the triangular lattice is a more realistic model of

protein folding because it does not have this “parity problem”, i.e. vertices in odd

positions need not exclusively form contacts with vertices in even positions. However,

the square lattice model seems potentially simpler since once a vertex is placed on the

lattice, there are fewer possible positions for each neighboring vertex and has been

very well studied.

New Results

Improving the approximation guarantees of 1
4

and 3
8

given by Hart and Istrail for the

2D and 3D string folding problems, respectively, have been open problems for many

years. In this thesis, we give a new combinatorial factor 1
3
-approximation algorithm

16

for the 2D string folding problem [New02]. Our algorithm runs in linear time and

outputs a folding that yields 1
3

as many contacts as the combinatorial upper bound

given in Equation (1.1).

We also examine the combinatorial upper bound for the 2D string folding problem

specified in Equation (1.1). We show that this bound cannot be used to obtain an

approximation guarantee of more than 1
2

[New02]. We show this by demonstrating

a family of strings such that for any string S in the family, an optimal folding of S

achieves at most (1 + o(1)) min{O[S], E [S]} contacts.

Additionally, we examine a simple linear programming formulation for the 2D

string folding problem and analyze the bound it provides on the value of an optimal

solution [CHN03]. We show that the upper bound it provides is no more than three

times the value of an optimal solution, although we are not aware of a string for

which the linear programming bound is actually this much larger than the value of

an optimal folding. The best gap we can construct is 2: we give an example in which

the bound provided by this linear program can be twice as large as optimal.

Next, we consider the 3D string folding problem. We give another 3
8
-approximation

algorithm for the 3D folding problem based on new geometric ideas [NR04]. The 3
8
-

approximation algorithm of Hart and Istrail [HI96] produces a folding with 3
8
OPT −

Θ(
√
O[S]) contacts. Our algorithm produces a folding with 3

8
OPT − c contacts,

where c is a small positive integer. Thus, our algorithm improves on the absolute

approximation guarantee of Hart and Istrail.

We show that modifying this new algorithm leads to an improved approximation

guarantee of 3
8

+ ǫ for the 3D string folding problem, where ǫ is a small positive

constant [NR04]. These modifications yield two new approximation algorithms for

the 3D folding problem. Both of these algorithms exploit properties of the string

rather than (additional) new geometric ideas: Both have approximation guarantees

expressed in terms of the number of transitions in the input string S from sequences

of 1’s in odd positions to sequences of 1’s in even positions. We refer to the number of

such transitions in a string S as δ(S). Our algorithms have approximation guarantees

of (.439 − Θ(δ(S)/|S|)) and (.375 + Θ(δ(S)/|S|)).
Both of the factor 3

8
-approximation algorithms referred to previously divide the

input string S into two substrings, one substring containing at least half of the 1’s

with even indices and one substring containing at least half of the 1’s with odd indices.

They produce a folding in which all of the even-1’s from one of the substrings has at

least three contacts and all of the odd 1’s from the other substring has at least three

contacts, resulting in a 3
8
-approximation algorithm.

In our improved algorithm, the resulting folding guarantees that there are contacts

using both odd-1’s and even-1’s from each of the two substrings. However, in order

to use odd-1’s and even-1’s from the same substring, it would be convenient if they

form a predictable pattern. Thus, one of the main tools we use is a new theorem on

binary strings. We call a binary string in {a, b}∗ block-monotone if every maximal

17

sequence of consecutive a’s is immediately followed by a block of at least as many

consecutive b’s. Suppose a given binary string has the property that every suffix

of the string has at least as many b’s as a’s. What is the longest block-monotone

subsequence in the string? We obtain a non-trivial lower bound on the length of a

block-monotone subsequence and we show a connection between this problem and

the 3D string folding problem.

1.1.2 Linear Ordering

The second problem we address is a well-studied graph optimization problem called

the linear ordering problem. Given a complete weighted directed graph, G = (V, A),

the goal of the linear ordering problem is to find an ordering of the vertices that

maximizes the weight of the forward edges. A vertex ordering is defined as a mapping

of each vertex i ∈ V to a unique label ℓ(i), where ℓ(i) is an integer. An edge (i, j) ∈ A

is a forward edge with respect to an ordering if ℓ(i) < ℓ(j). For the linear ordering

problem, we can assume without loss of generality that the labels are integers chosen

from the range {1, 2, . . . , n}, where n = |V |. The linear ordering problem is also

known as the maximum acyclic subgraph problem, which is defined as follows: Given

a weighted, directed graph, find the subgraph of maximum weight that contains no

directed cycles. The forward edges in any linear ordering comprise an acyclic subgraph

and a topological sort of an acyclic subgraph yields a linear ordering of the vertices in

which all edges in the acyclic subgraph are forward edges. Thus, these two problems

are equivalent.

Figure 1-11: A maximum acyclic subgraph of a directed graph corresponds to a linear
ordering of its vertices.

Although the problem is NP-hard [Kar72], it is easy to estimate the optimum

to within a factor of 1
2
: In any ordering of the vertices, either the set of forward

edges or the set of backward edges accounts for at least half of the total edge weight.

It is not known whether the maximum can be estimated to a better factor using a

polynomial-time algorithm. The outstanding open problem with respect to the linear

ordering problem is finding a ρ-approximation algorithm for the problem where ρ is

a constant greater than 1
2
. Approximating the problem to within better than 65

66
is

NP-hard [NV01].

18

Motivation

The linear ordering problem is a fundamental graph optimization problem that has ap-

plications in the fields of scheduling, economics, archaeology and psychology. For ex-

ample, in archaeology, it can be applied to the archaeological seriation problem [GKK74,

Tho95]. Archaeologists want to determine a relative time line for the artifacts they

unearth. Sometimes they cannot ascertain an exact date for an artifact, but they

can determine that a certain artifact came before another artifact. They can draw

a graph with a directed edge from i to j if they guess that artifact i came before

artifact j. Then they can find an ordering of the artifacts that is compatible with the

most guesses in order to determine the most likely time line.

In economics, the linear ordering problem is known as the triangulation problem

for input-output matrices. Economists use an input-output matrix to describe an

economy. These matrices have the following graphical representation: In a given

economy, an economic sector i has an edge with weight wij to sector j if a wij fraction

of its output is used by sector j. An ordering of the economic sectors that maximizes

the weight of the forward edges determines the direction of production in the economy

[CW58, KO69].

In addition to its specific applications, the linear ordering problem is also inter-

esting because it belongs to the family of vertex ordering problems. Vertex ordering

problems comprise a fundamental class of combinatorial optimization problems that,

on the whole, is not well understood. For the past thirty years, combinatorial meth-

ods and linear programming techniques have failed to yield improved approximation

guarantees for many well-studied vertex ordering problems such as the linear ordering

problem and the famous traveling salesman problem. Semidefinite programming has

proved to be a powerful tool for solving a variety of cut problems, as first exhibited for

the maxcut problem [GW95]. Cut problems are problems in which the objective is to

partition the vertices into disjoint sets so as to optimize some stated objective func-

tion. Since then, semidefinite programming has been successfully applied to many

other problems that can be categorized as cut problems such as coloring k-colorable

graphs [KMS98], maximum-3-cut [GW04], maximum k-cut [FJ97], maximum bisec-

tion and maximum uncut [HZ01], and correlation clustering [CGW03], to name a few.

In contrast, there is no such comparably general approach for approximating vertex

ordering problems.

Background

The goal of most approaches to an NP-hard maximization problem is to find a good

upper bound on the value of an optimal solution. For an input graph G = (V, A), a

straightforward upper bound on the size of an optimal solution for the linear ordering

problem is the total edge weight. In any ordering, the set of forward edges or the set

of backward edges contains half the total edge weight. Thus, the “all edges” bound

can be no more than twice as large as optimal. The major open problem is to find a

19

bound that is strictly less than twice the value of an optimal solution.

Suppose G = (V, A) is a complete directed graph in which every edge has weight

1, n = |V |, and |A| = n(n − 1). Since the graph contains
(

n

2

)
2-cycles, the maximum

acyclic subgraph of G contains exactly half the edges in A (in a 2-cycle, exactly one

edge if forward and one edge is backward in any vertex ordering). For an unweighted

input graph G = (V, A) that contains no 2-cycles, Berger and Shor gave an algo-

rithm that always produces an acyclic subgraph of size (1
2
+Ω(1√

dmax
))|A|, where dmax

denotes that maximum degree of G [BS97]. When G does contain 2-cycles, their

algorithm produces an acyclic subgraph (1
2

+ Ω(1√
dmax

)) times the number of arcs in

an optimal solution. Their algorithm has running time O(|A||V |). Rubinstein and

Hassin gave algorithms with the same guarantee but with running time O(|A|+d3
max),

which is better than O(|A||V |) in certain cases [HR94]. These bounds are tight in

terms of |A| since since the existence of a class of graphs without 2-cycles for which

the maximum acyclic subgraph has size at most (1
2
+ O(1√

dmax
))|A| follows from a re-

sult of Spencer [Spe87] and de la Vega [dlV83]. Thus, an approximation guarantee of
1
2

is the best constant factor that can be achieved using the “all edges” upper bound.

A typical approach for finding improved upper bound for an NP-hard maximiza-

tion problem is to compute an optimal solution for a linear programming relaxation of

a corresponding integer program. An integer program for an NP-hard maximization

problem is a set of constraints whose integer solutions correspond to solutions for

the optimization problem. For example, solutions for the following integer program

correspond to acyclic subgraphs:

max
∑

ij∈A

wijxij

∑

ij∈C

xij ≤ |C| − 1 ∀ cycles C ∈ A

xij ∈ {0, 1}.

In a solution to the above integer program, at least one edge (i, j) in any cycle C

has value xij = 0. Thus, if we consider the subset of edges that have value xij = 1,

they form an acyclic subgraph. In general, it is NP-hard to solve an integer program.

However, if the constraints are linear in the variables and we relax the requirement

that xij are integers and allow fractional solutions, then we can efficiently solve the

respective linear programming relaxation via the ellipsoid algorithm [YN76, GLS81].

Recently it was shown that several widely-studied polyhedral relaxations for the

linear ordering problem each have an integrality gap of 2, showing that it is unlikely

these relaxations can be used to approximate the problem to within a factor greater

than 1
2

[NV01, New00]. The graphs used to demonstrate these integrality gaps are

random graphs with uniform edge probability of approximately 2
√

log n

n
, where n is the

number of vertices. For sufficiently large n, such a random graph has a maximum

20

acyclic subgraph close to half the edges with high probability. However, each of

the polyhedral relaxations studied provide an upper bound for these graphs that is

asymptotically close to all the edges, which is off from the optimal by a factor of 2.

Thus, in the worst case, the upper bound provided by these polyhedral relaxations is

no better than the “all edges” bound. The main question with respect to the linear

ordering problem is to find an efficiently computable upper bound that is better than

the “all edges” bound for all graphs that have maximum acyclic subgraph close to

half the edges. In particular, is there such an efficiently computable bound that that

beats the “all edges” bound for random graphs with uniform edge probability, i.e.

the graphs used to demonstrate the poor performance of the linear programming

relaxations?

Semidefinite programming has proved to be a very useful tool for computing im-

proved upper bounds on a variety of cut problems such as the maxcut problem. A

semidefinite program is the problem of optimizing a linear function of a symmetric

matrix subject to linear equality constraints and the constraint that the matrix is pos-

itive semidefinite. (Inequality constraints can be modeled with equality constraints

by using additional variables.) For any ǫ > 0, semidefinite programs can be solved

with an additive error of ǫ in polynomial time (ǫ is part of the input, so the running

time dependence on ǫ is polynomial in log 1
ǫ
) using the ellipsoid algorithm [GLS88].

Semidefinite programming relaxations of quadratic integer programs have been used

in efficient algorithms for optimization problems. (A more thorough discussion of

semidefinite programming and its applications to optimization problems is given in

Chapter 3.)

Semidefinite programming techniques have also been applied to some vertex order-

ing problems such as the betweenness problem [CS98] as well as the bandwidth prob-

lem [BKRV00]. The input to the betweenness problem is a set of elements {x1, . . . xn}
and a set of constraints with the following form: xj should go between xj and xk. The

goal is to find an ordering of the elements so as to maximize the number of satisfied

constraints. Note that a constraint of the stated form is satisfied if the relative order

of elements xi, xj , xk in the ordering is xi < xj < xk or xk < xj < xi. Chor and

Sudan showed how to round a semidefinite programming relaxation to find an order-

ing satisfying half of the constraints provided the original constraint set is satisfiable.

The minimum bandwidth problem was defined in the beginning of this introduction.

Blum, Konjevod, Ravi and Vempala gave an O(
√

n
b
log n)-approximation algorithm

for an n-node graph with bandwidth b. They gave the first approximation algorithm

with an approximation guarantee better than the trivially achievable factor of n and

introduced new tools such as spreading metrics that have proven useful in applications

to other problems.

Even though both these problems are vertex ordering problems, the semidefinite

programming formulations used for these two problems cannot immediately be ex-

tended to obtain a formulation for the linear ordering problem. This is because it

is not clear how to use these techniques to model objective functions for directed

21

graphs in which the contribution of edge (i, j) and edge (j, i) to the objective func-

tion may differ. In other words, in a solution to the linear ordering problem, an edge

(i, j) could be a forward edge and contribute to the objective function, while edge

(j, i) is a backward edge and does not contribute to the objective function. Thus, to

use semidefinite programming, we need to find a formulation in which f(i, j) is the

contribution of edge (i, j) to the forward value and f(i, j) is not equal to f(j, i).

New Results

In this thesis, we present a new semidefinite programming relaxation for the linear

ordering problem. A vertex ordering for a graph with n vertices can be fully described

by a series of n − 1 cuts. We use this simple observation to relate cuts and order-

ings. This observation also leads to a semidefinite program for the linear ordering

problem that is related to the semidefinite program used in the Goemans-Williamson

algorithm to approximate the maxcut problem [GW95]. Besides the linear order-

ing problem, this semidefinite program can be used to obtain formulations for many

other vertex ordering problems, since the feasible region over which we are optimizing

is a relaxation of a quadratic integer program whose solutions correspond to vertex

orderings problems.

We would like to show that this new semidefinite programming relaxation provides

an upper bound that is better than the “all edges” bound for all graphs that have a

maximum acyclic subgraph close to half the total edge weight. This problem remains

open. However, we can show that our relaxation provides an upper bound strictly

better than the “all edges” bound for the class of random graphs with uniform edge

probability, which with high probability have a maximum acyclic subgraph close to

half the edges. This is the first relaxation known to provide a good bound on this

large class of graphs. Graphs from this class were used to demonstrate that several

widely-studied polyhedral relaxations provide poor upper bounds, i.e. bounds twice

as large as an optimal solution, in the worst case [NV01].

Specifically, we show that for sufficiently large n, if we choose a random directed

graph on n vertices with uniform edge probability p = d
n

(i.e. every edge in the

complete directed graph on n vertices is chosen with probability p), where d = ω(1),

our semidefinite relaxation will have an integrality gap of no more than 1.64 with

high probability. The main idea is that our semidefinite relaxation provides a “good”

bound on the value of an optimal linear ordering for a graph if it has no small

roughly balanced bisection. With high probability, a random graph with uniform

edge probability contains no such small balanced bisection. These results also appear

in [New04].

22

1.2 Layout of This Thesis

The results in this thesis are based on combinatorial as well as linear and semidefinite

programming methods. The chapters in this thesis fall into two categories: methods

and applications. Chapters 2 and 3 focus on methods and Chapters 4, 5, and 6 focus

on results obtained by applying these methods.

In Chapter 2, we discuss some combinatorial theorems about binary strings that

are used in our algorithms for the string folding problem. These combinatorial theo-

rems can be stated independently of the string folding problems and may have other

applications. Therefore, they have been placed in their own chapter. In Chapter

3, we discuss linear and semidefinite programming and how these methods can be

applied to graph layout problems. These ideas are applied to both linear programs

for string folding (Section 4.4) and to semidefinite programs for the linear ordering

problem (Chapter 6).

In Chapter 4, we present algorithms for 2D string folding. First, we present Hart

and Istrail’s factor 1
4
-approximation algorithm for the 2D string folding problem and

then we present their factor 3
8
-approximation algorithm for the 3D string folding

problem, since it uses the 2D algorithm as a subroutine [HI96]. Next, we present

our improved factor 1
3
-approximation algorithm. Our algorithm uses a theorem from

Chapter 2—the chapter containing combinatorial methods. We then discuss the qual-

ity of the combinatorial upper bound used in the analyses of both our algorithm and

that of Hart and Istrail. We present a family of strings such that the number of con-

tacts in an optimal folding of any string from this family is only half of the number

of contacts represented in this upper bound. We also use methods from Chapter 3

to obtain and analyze a linear programming relaxation for the string folding prob-

lem. The algorithm and the analysis of the combinatorial upper bound have been

previously published [New02]. The linear programming results appear as a technical

report [CHN03].

In Chapter 5, we discuss the 3D string folding problem. We present a new 3
8
-

approximation algorithm and the modifications we can make to this algorithm so as

to obtain a slightly improved approximation guarantee. Our algorithms use theorems

from Chapter 2. Understanding the proofs of these theorems is not required to un-

derstand the applications of the theorems to our algorithms. These results have been

previously published [NR04].

Finally, in Chapter 6, we use methods from Chapter 3 to formulate a new semidefi-

nite program for the linear ordering problem. We prove that our relaxation provides a

good bound on the optimal value of a linear ordering for random graphs with uniform

edge probability. These results have also been previously published [New04].

23

24

Chapter 2

Methods I: Combinatorial

In this chapter, we present some combinatorial methods that are used in our algo-

rithms for string layout. In the string folding problem, odd-1’s (1’s with odd indices)

in the string can only have contacts with even-1’s (1’s with even indices) and vice

versa. Therefore, proving properties about the patterns and occurrences of odd-1’s

and even-1’s can be useful when trying to find folding rules that guarantee many

contacts, which is the goal of the string folding problem. In this chapter, we will

use strings in {a, b}∗ to represent our binary strings, rather than strings in {0, 1}∗.
We use the latter representation of binary strings to represent input to the string

folding problem in Chapters 4 and 5. The theorems in this chapter will be used in

the string folding algorithms in Chapters 4 and 5 by mapping subsequences of odd-1’s

and even-1’s to strings of a’s and b’s, applying the lemmas we prove in this chapter

to the strings of a’s and b’s, and subsequently obtaining lemmas about patterns of

odd-1’s and even-1’s in the input strings to the folding problem. Thus, throughout

this chapter, we note that we could prove theorems about strings in {0, 1}∗. However,

since we would not be mapping 0’s and 1’s in these strings directly to 0’s and 1’s in

the input strings to the string folding problem, we use strings in {a, b}∗ to avoid

confusion.

We define a loop to be a binary string in {a, b}∗ whose endpoints are joined to-

gether. Our first theorem shows that given any loop in {a, b}∗ containing an equal

number of a’s and b’s, we can find a point, i.e. element, in the loop such that if we

begin at that point and move in the clockwise direction, we encounter at least as many

a’s as b’s and if we begin at that point and move in the counter-clockwise direction,

we encounter at least as many b’s as a’s. This theorem is a simple combinatorial

exercise to prove, but proves to be very useful.

Our second theorem addresses a new combinatorial problem on binary strings. We

25

call a binary string in {a, b}∗ block-monotone if every maximal sequence of consecutive

b’s is immediately followed by a sequence of at least as many consecutive a’s. Suppose

we are given a binary string with the following property: every suffix of the string (i.e.

every sequence of consecutive elements that ends with the last element of the string)

contains at least as many a’s as b’s. What is the longest block-monotone subsequence

of the string? The subsequence of all the a’s is a block-monotone subsequence with

length at least half the length of the string. Can we do better? In Section 2.2,

we show that there always is a block-monotone subsequence containing at least a

(2 −
√

2) ≈ .5857 fraction of the string’s elements. In contrast, we are aware of

strings for which every suffix contains at least as many a’s as b’s and for which the

largest block-monotone subsequence has length equal to a .7115 fraction of the string.

2.1 A Combinatorial Lemma for Strings

Suppose we are given a binary string S ∈ {a, b}∗ with an equal number of a’s and

b’s. We join the endpoints of the string S together to form a loop L. We want to

determine if there exists an element si ∈ L such that if we move clockwise away from

this element, we always encounter at least as many a’s as b’s, and if we move counter-

clockwise away from si we always encounter at least as many b’s as a’s. Lemma 2

gives an affirmative answer to this question.

Definition 1. Let na(S) and nb(S) denote the number of a’s and b’s, respectively, in

a string S ∈ {a, b}∗.
Lemma 2. Let L ∈ {a, b}∗ be a loop that contains an equal number of a’s and

b’s. There is an element si ∈ L such that if we go around L in one direction (i.e.

clockwise or counter-clockwise) starting at si to any element sj ∈ L, then the substring

sisi+1 . . . sj that we have traversed contains at least as many a’s as b’s and for any

element sk ∈ L the substring si−1si−2 . . . sk has at least as many b’s as a’s.

Proof. Given a loop L ∈ {a, b}∗, let S = s1 . . . sn be a binary string in {a, b}∗ that

results when the loop L is cut between elements s1 and sn to form a string, i.e. joining

the endpoints of the string S should result in the loop L. Let f(j) = na(s1s2 . . . sj)−
nb(s1s2 . . . sj). In other words, f(j) is the number of a’s minus the number of b’s

present in the substring s1s2 . . . sj. Then let j∗ be a value of j that minimizes f(j).

For example, in Figure 2-1, the function f(j) is shown for the string ababbaaabb

and j∗ = 5 for this string. Note that sj∗ must be a b. (If sj∗ were an a, then

f(j∗ − 1) < f(j∗).) Furthermore, sj∗+1 must be an a.

Now consider the string S ′ = s′1 . . . s′n such that s′1 = sj∗+1 and s′2 = sj∗+2, etc.

The function f(j) for this new string S ′ is always positive for all j ranging from

1 to n. Thus, na(s
′
1s

′
2 . . . s′j) ≥ nb(s

′
1s

′
2 . . . s′j) for any s′j in the string S ′. If we

consider the reverse string s′n . . . s′1, then it is always the case that nb(s
′
ns′n−1 . . . s′j) ≥

na(s
′
ns

′
n−1 . . . s′j) for any point s′j . Thus, the theorem is true when si = s′1.

26

0
1
2

f(j)

−1
−2

1 2 3 54 6 7 98 10

j

3

0
1
2

f(j)

−1
−2

j

3

6 7 8 9 543210 1

Figure 2-1: The graph of the function f(j) for the string S = ababbaaabb and the
string S ′ = aaabbababb.

2.2 Block-Monotone Subsequences

Consider a binary string in {a, b}∗. We define a block to be a maximal sequence of

consecutive a’s or a maximal sequence of consecutive b’s in the binary string. For

example, the string bbbbaaabb has two blocks of b’s (of length four and two) and one

block of a’s (of length three). We say a binary string in {a, b}∗ is block-monotone

if, as we go from one endpoint to the other—without loss of generality, from left to

right—each block of consecutive b’s is followed by a block of a’s of at least the same

length. Some examples of block-monotone strings are:

bbbbbaaaaa,

bababa,

aaaabbbbaaaabbbaaaa.

Some examples of non block-monotone strings are:

aaaabbbb,

aaabbbbaa,

bababab.

Given a binary string S in {a, b}∗, we address the problem of finding a long block-

monotone subsequence. If the string S contains only b’s, then S does not contain any

block-monotone subsequences. Thus, we enforce a stronger condition on the string S:

We call a string suffix-monotone if every suffix contains at least as many a’s as b’s. In

other words, as we go from right to left, the number of a’s always leads the number

of b’s. For example, the string ababa is suffix-monotone as is the string baabbabbaaa.

Definition 3. A binary string S = s1 . . . sn, S ∈ {a, b}∗ is suffix-monotone if for

every suffix Sk = sk+1 . . . sn, 0 ≤ k < n, we have na(Sk) ≥ nb(Sk).

27

Figure 2-2: A graphical representation of the string S = bbbbaabbaaaaaa. We use an
“up” edge to denote a ′b′ and a “down” edge to denote an ′a′.

Figure 2-3: Graphical representations of some block-monotone subsequences of the
string S = bbbbaabbaaaaaa.

Any string S ∈ {a, b}∗ contains a block-monotone subsequence of length at least

na(S) since the subsequence of a’s is trivially block-monotone. If the string S is

suffix-monotone, then na(S) ≥ nb(S), so S contains a block-monotone subsequence

with length at least half the length of S. Now we consider the following problem:

Suppose S is a suffix-monotone string in {a, b}∗. Does every such string S contain a

block-monotone subsequence of length more than half the length of S?

For example, suppose we have the string (see also Figure 2-2):

S = bbbbaabbaaaaaa.

The string S has length 14 and the longest block-monotone subsequence of S has

length 12. Some block-monotone subsequences of S are (see also Figure 2-3):

−− bbaabbaaaaaa,

bbbbaa −−aaaaaa,

bbbb −−bbaaaaaa.

The problem of finding the longest block-monotone subsequence of a binary string

is not NP-hard. The optimal block-monotone subsequence can be found using dy-

28

namic programming. But we emphasize that although our applications require that

we actually find block-monotone subsequences, finding optimal length block-monotone

subsequences is not a hard problem. Our main goal in this section is to prove a lower

bound on the length of the longest block-monotone subsequence. It seems difficult

to analyze the optimal dynamic programming algorithm to show that the longest

block-monotone subsequence is a large fraction of the string.

There are strings for which the longest block monotone subsequence is slightly less

than .75 times the length of the string. For example, consider the string (bbba)3(bba)6(a)12.

The longest block-monotone subsequence is (b)15(a)16, which is only a .74 fraction of

the string. The best upper bound we are aware of is a string for which the longest

block-monotone subsequence is a .7115 fraction of the string:

bbbbbbbbbbbbbbabaabababaaabaaabbbabaabaaabaaaabaaaaa.

Thus, our goal is to show that the longest block-monotone subsequence of a given

binary string is long. By “long”, we mean a constant fraction greater than .5 and less

than .7115.

2.2.1 Algorithm

In this section, we give an algorithm for finding a block-monotone subsequence of

a given suffix-monotone string. This algorithm does not necessarily generate the

longest block-monotone subsequence and is therefore not optimal, but we show that

the subsequence it does output is long. In particular, if the input string is suffix-

monotone and has an equal number of a’s and b’s, then the algorithm outputs a

block-monotone subsequence of length at least a (2 −
√

2) ≈ .5857 fraction of the

input string.

The idea behind our algorithm is to move down the string—from one endpoint to

the other—and if we encounter a block of a’s, we keep this block and move on. If we

encounter a block of b’s, we match a subsequence of b’s containing that block with

a subsequence of a’s that follows. Thus, we only keep a subsequence of b’s when we

can match it with a following subsequence of a’s of at least the same length.

We will illustrate the idea of the algorithm with the following example, in which

we show how to find a block-monotone subsequence of length 7
12

the length of the

input string S and give a proof sketch. Suppose we have a suffix-monotone string

S ∈ {a, b}∗. If the first block of the string is: (i) a block of a’s, then we add this block

of a’s to the solution and let S ′ be the string S with this block of a’s removed. If the

first block of the string is: (ii) a block of b’s, let Sk be the shortest string starting

at the current left endpoint such that the ratio of a’s to b’s is at least 1 to 2. Now

we find the prefix of Sk (call it Sℓ) such that the total number of b’s in Sℓ does not

exceed the total number of a’s in Sk \ {Sℓ} and the total number of b’s in Sℓ plus a’s

in Sk \{Sℓ} is maximized. We keep all the b’s in Sℓ and all the a’s in Sk \{Sℓ} for the

29

solution and let S ′ be the string S \ {Sk}. After both steps (i) and (ii), we recurse on

the string S ′.

Note that the ratio of b’s to a’s in any proper prefix of Sk is at least 2 : 1. In any

proper suffix of Sk, the ratio of a’s to b’s is at least 1 : 2. Thus, if the length of Sℓ

is |Sk|
3

, then there are least (2
3
)(|Sk|

3
) b’s from Sℓ in the resulting subsequence and at

least (1
3
)(2|Sk|

3
) a’s from Sk \ {Sℓ} in the resulting subsequence, which totals 4

9
of the

elements in Sk. Since the ratio of the a’s to b’s in Sk is 1:2, if na(S) = nb(S), roughly

three-fourths of the elements in S belong to some string Sk considered in step (ii)

and roughly one-fourth of the elements in S are added to the solution set in step (i).

Thus the solution contains at least (4
9
)(3

4
) + 1

4
= 7

12
of the elements in the original

string. This is the main idea behind our algorithm, but we have glossed over some

details. For example, since the length of |Sk| is integral, the ratio of the elements

considered in step (ii) may be more than 1:2. Thus, more than three-fourths of the

string is considered in step (ii) and less than one-fourth of the string considered in

step (i). However, in the analysis of the algorithm, we will show that this idea does

lead to an algorithm that outputs a solution with length more than half that of the

original string.

The algorithm has the best guarantee on the length of the block-monotone subse-

quence that it outputs when Sk is the shortest string in which the ratio of b’s to a’s

is at least 1√
2

: 1− 1√
2
. This leads to a block-monotone subsequence of length at least

2 −
√

2 the length of the input string.

l k

slope 1−2α

Figure 2-4: These three figures give a pictorial representation of the Block-

Monotone Algorithm. An up edge corresponds to an b and a down edge cor-
responds to a a. In the first figure, k denotes the point chosen in Step 2 (i) and ℓ
denotes the point chosen in Step 2 (iii). In the second figure, the crossed-out edges
represent the elements that are removed from the string. The third figure shows the
string after removing the crossed-out elements, i.e. the elements that correspond to
the block-monotone subsequence.

We will now precisely describe our algorithm and present its analysis to prove our

main theorem.

Notation. α := 1 − 1√
2
≈ 0.2929.

Definition 4. A binary string S = s1 . . . sn, S ∈ {a, b}∗ is α-suffix-monotone if for

every suffix Sk = sk+1 . . . sn, 0 ≤ k < n, we have na(Sk) ≥ α · (n − k).

30

Block-Monotone Algorithm

Input: An α-suffix-monotone string S = s1 . . . sn.

Output: A block-monotone subsequence of S.

Let Si = s1 . . . si, Si = si+1 . . . sn for i : 1 < i ≤ n.

1. If s1 = a:

(i) Find the largest index k such that Sk is a block of a’s and output Sk.

2. If s1 = b:

(i) Find the smallest index k such that:

na(Sk) ≥ αk.

(ii) Let S′
ℓ = sℓ+1 . . . sk for ℓ : 1 ≤ ℓ < k.

(iii) Find ℓ such that:

nb(Sℓ) ≤ na(S
′
ℓ),

nb(Sℓ) + na(S
′
ℓ) is maximized.

(iv) Remove all the a’s from Sℓ and output Sℓ.

(v) Remove all the b’s from S′
ℓ and output S′

ℓ.

3. Repeat algorithm on string Sk.

Figure 2-5: The Block-Monotone Algorithm.

This definition is less restrictive than the definition of suffix-monotone (Definition

3). For example, a suffix-monotone string is α-suffix-monotone. We can now state

our main theorem.

Theorem 5. Suppose S is an α-suffix-monotone string of length n. Then there is a

block-monotone subsequence of S with length at least n−nb(S)(2
√

2−2). Furthermore,

such a subsequence can be found in linear time.

If nb(S) ≤ 1
2
n and S is suffix-monotone, then Theorem 5 states that we can find

a block-monotone subsequence of length at least (2 −
√

2) > .5857 the length of S.

This is accomplished by the Block-Monotone Algorithm, which is based on the

ideas described previously.

2.2.2 Analysis

In this section, we prove that, on an α-suffix-monotone input string S, the Block-

Monotone Algorithm outputs a subsequence of length at least n−nb(S)(2
√

2−2).

First, we argue correctness, i.e. that the Block-Monotone Algorithm out-

puts a subsequence that is block-monotone. In Step 2 (i), there always is an index

k with the required property because the definition of α-suffix-monotone implies it

31

is true for k = n. Similarly, if ℓ = 1, then nb(Sℓ) = 1 ≤ na(S
′
ℓ). Thus there is

always an ℓ that meets the requirement in Step 2 (iii). Finally, the algorithm outputs

a block-monotone subsequence because whenever it outputs a subsequence of b’s (in

Step 2 (iv)), it also outputs at least as many a’s (in Step 2 (v)). This shows that the

algorithm is correct.

In this algorithm, we modify the input string by removing a’s and b’s. However,

in order to analyze the algorithm, we will first consider a continuous version of the

problem in which we can remove a fraction of each a or b. In the continuous version

of the problem, we consider each element as a unit-length interval. For example, if

si = a, then si is a unit-length segment labeled ‘a’ and if si = b, then si is a unit-

length segment labeled ‘b’. Thus, we will view the string S as a string of unit-length

a- and b-segments. Suppose s1 = b and Sk is a prefix of the input string S such that

na(Sk) ≥ αk and na(Sj) < αj for all j : 1 ≤ j < k as in Step 2 (i) of the algorithm.

Let t denote the (fractional) index in the string at which na(St) = αt. Note that

there always exists a point t at which na(St) = αt because the string S is suffix-

monotone, which implies that at least an α fraction of S is a’s. The value of t may

be a non-integral real number between k − 1 and k and the string St may end with a

fractional part of an a.

We define S ′
y as the substring starting at position y up to position t. Let y be

the (fractional) point in the string St such that nb(Sy) = na(S
′
y). If we could keep

fractional portions of the string, we could keep all the (fractions of) b-intervals in Sy

and all the (fractions of) a-intervals in S ′
y. At least a (1−α) fraction of the elements

in Sy are b’s, and at least an α-fraction of the elements in S ′
y are a’s. So for the

fractional problem, the best place to cut the string is at the point ℓ = βt where:

β(1 − α) = (1 − β)α =⇒ β = α

Thus, we keep a 2α(1 − α) fraction of each substring considered in Step 2. Next, we

are going to compute the total length of the output of our algorithm. Let T1 represent

the set of substrings (i.e. blocks of a’s) that are output unmodified during the first

step of the algorithm and let |T1| represent their total length. Let T2 represent the

set of substrings which are modified during the second step of the algorithm and let

|T2| represent their total length. Let m be the length of the output of the algorithm.

Then we have the following equations:

n = |T1| + |T2|
nb(S) = (1 − α)|T2|

m = |T1| + 2α(1 − α)|T2|

Solving these three equations, we find that the total fraction of the string that remains

32

is:

m =

(
2α +

1

α − 1

)
nb(S) + n.

This expression is maximized for α = 1 − 1/
√

2, which is why we assigned α this

value. Substituting, we get:

m = n − (2
√

2 − 2)nb(S). (2.1)

Thus, in the case where we can remove fractions of the a’s and b’s, the algorithm

results in a string whose length is indicated in Equation (2.1).

In the integral case, we will show that the algorithm results in a string whose

length is at least as large as the fraction in Equation (2.1). By definition, in the

algorithm, k equals ⌈t⌉. If the point y in St is in an a interval, then ℓ is equals ⌊y⌋,
since the point ℓ is chosen to as to maximize the quantity nb(Sℓ) + na(S

′
ℓ). In the

algorithm, we keep the whole a-interval that contains t and the whole a interval that

contains ℓ. In other words, in addition to keeping the b’s in Sy and the a’s in S ′
y, we

are also keeping the fraction of the a-interval that lies in Sy. Note that everything

that is added to the solution set in the continuous version is also added to the solution

in the algorithm; in addition, the algorithm may add more to the solution set.

If the point y in St is in a b-interval, then note that the (fractional) number of

b’s in Sy is equal to the (fractional) number of a’s in S ′
y. In the algorithm, the whole

a interval in which t lies is included in Sk and therefore in the solution set. Thus,

it must be the case that ℓ = ⌈y⌉. In the continuous version of the algorithm, the

whole a-interval in which t lies is also included in the solution set and only part of

the b-interval in which y lies is included. Thus, in the discrete case, we add at least

as much to the solution set as we do in the continuous case.

This concludes the proof of Theorem 5. We now prove another simple lemma that

shows we can output block-monotone subsequences with a specified number of a’s and

a specified number of b’s. We will find this lemma useful in our folding algorithms

for the 3D string folding problem, because we give an application in which we need

to know the number of each type of elements in a block-monotone subsequence in

advance.

Lemma 6. We can modify the block-monotone subsequence S ′ output by the Block-

Monotone Algorithm so that:

na(S
′) =

⌈(
1 − 1√

2

)
nb(S)

⌉
and nb(S

′) =

⌈
n −

(
3√
2
− 1

)
nb(S)

⌉
.

Proof. Following the notation of the proof of Theorem 5, in the fractional case, we

keep:

33

α(1 − α)|T2| = αnb(S) b′s,

and:

|T1| + α(1 − α)|T2| = n − 1 − α + α2

1 − α
nb(S) a′s.

Since these are lower bounds on what we keep in the integral case, the subsequence

output by the algorithm has at least (1 − 1√
2
)nb(S) a’s and n − (3√

2
− 1)nb(S) b’s.

To keep exactly the number of symbols claimed in this Lemma, it suffices to delete

the excess number of a’s and b’s. To do this, first delete the excess b’s anywhere in

the output string, the result will clearly still be block-monotone. Then we delete the

excess a’s. Note that at this point, the number of a’s exceeds the number of b’s, so

there will always be a block of a’s strictly greater than the preceding block of b’s and

we can delete a’s from this block.

2.3 Open Problems

Theorem 5 states that α-suffix-monotone strings contain block-monotone subsequences

of at least 2 −
√

2 ≈ .5857 their length. As previously, mentioned we are aware of

α-suffix-monotone strings for which the longest block-monotone subsequence is only

a .7115 fraction of the string. The string below is an example of a suffix-monotone

string that demonstrates this upper bound:

bbbbbbbbbbbbbbabaabababaaabaaabbbabaabaaabaaaabaaaaa.

The longest block-monotone subsequence of this string is a18b19, which is 37
52

≈ 71.15%

of the length of the original string.

An obvious open question is to close the gap between .5857 and .7115 by improving

the upper and/or lower bounds. Additionally, if the string is suffix-monotone—a

stronger condition than α-suffix-monotone—then perhaps we can find block-monotone

subsequences of length much more than a .5857 fraction of the string. We conjecture

that suffix-monotone strings contain block-monotone subsequences at least 2
3

their

length.

34

Chapter 3

Methods II: Linear and

Semidefinite Programming

In this chapter, we discuss linear and semidefinite programming approaches that can

be applied to graph layout problems. Linear and semidefinite programs for combina-

torial problems are obtained by relaxing integer programs. An integer program for

a combinatorial problem is a set of constraints whose integral solutions correspond

to solutions for the optimization problem. In general, it is NP-hard to solve an in-

teger program, but the constraints that the variables are integral can be relaxed to

form linear or semidefinite programming relaxations, which can be used to efficiently

compute bounds on the values of optimal solutions.

For many graph optimization problems, integer programs that correspond to find-

ing a maximum/minimum weight subgraph with a particular property have been

studied. Linear programming relaxations of these integer programs approximate the

convex hull of integer solutions in {0, 1}|E|. Many well-studied linear programming

relaxations for the maxcut problem are of this type [Bar83, BGM85, BM86, PT95].

(The maxcut problem was defined in Chapter 1.) For example, one of these relax-

ations, introduced by Barahona, Grötschel and Mahjoub, is based on the integer

program below, which requires that an integral solution contain no odd cycles, i.e. it

is bipartite [BGM85].

35

max
∑

e∈E

wexe (3.1)

∑

e∈C

xe ≤ |C| − 1 ∀ odd cycles C ⊆ E

xe ∈ {0, 1} ∀ e ∈ E.

As we will see in this chapter, there are other integer programs for the maxcut

problem, some of which lead to stronger bounds on the value of an optimal solution.

For example, there are formulations in which variables are used to indicate which

vertices should be placed on which side of a cut rather than which edges should be

included in a subgraph. Our goal is to find new integer programs for graph layout

problems that lead to efficiently solvable relaxations.

3.1 Linear Programming

A linear program is the problem of optimizing a linear function subject to linear

inequality constraints. The vector c has length n, the matrix A has m rows—one for

each constraint—each with n entries, and the vector b has length m. The goal is to

find a solution for the vector x = {x1, x2, . . . , xn} that satisfies the following:

max cTx

ATx ≤ b.

A linear program with a polynomial number of constraints can be solved in polyno-

mial time using the Ellipsoid algorithm, developed by Yudin and Nemirovskii [YN76]

and proved to have efficient running time by Khachiyan [Kha79], or using interior

point methods [Kar84]. More generally, a linear program with a polynomial-time

separation oracle can be solved in polynomial time even if it has an exponential num-

ber of constraints [GLS81, GLS88]. A new, simple algorithm for this more general

problem due to Bertsimas and Vempala uses random walks [BV04].

Given a solution to a linear program, a polynomial-time separation oracle is an

efficient algorithm that determines if the solution is feasible, i.e. does not violate

any constraints, or is infeasible. If the solution is infeasible, the separation oracle

also specifies a violated constraint. For example, consider the linear programming

relaxation of the aforementioned integer program for the maxcut problem:

36

max
∑

e∈E

wexe (3.2)

∑

e∈C

xe ≤ |C| − 1 ∀ odd cycles C ⊆ E

0 ≤ xe ≤ 1 ∀ e ∈ E.

Even though there could potentially be an exponential number of odd cycles and

thus an exponential number of constraints, there is a well-known efficient separation

oracle. In other words, given a solution to the above linear program, {xe}, there is

a polynomial-time algorithm to determine if the total value of the edge variables for

any odd-cycle C is at most |C|−1. Finding such an algorithm is a common homework

problem!

Linear programming relaxations are often used to compute upper bounds on the

values of optimal solutions for maximization problems (or lower bounds on the values

of optimal solutions for minimization problems). Suppose we have a combinatorial

problem (e.g. the maxcut problem or the maximum acyclic subgraph problem) and a

corresponding integer program for that problem. We can obtain a linear programming

relaxation of this integer program by relaxing the requirement that the variables are

integral. For example, from the aforementioned integer program for the maxcut

problem, Equation (3.1), we obtain a linear programming relaxation by replacing the

integrality constraint xe ∈ {0, 1} with the constraint 0 ≤ xe ≤ 1, Equation (3.2).

We can solve this linear programming relaxation efficiently using one of the effi-

cient algorithms for linear programs referred to above. For a maximization problem,

the optimal value of the linear programming relaxation is an upper bound on the

optimal value of the integer program. Thus, a general approach to finding an upper

bound for a maximization problem is to (i) find an integer program that describes

the problem, (ii) relax the integrality constraints to obtain a linear programming re-

laxation for the problem, (iii) solve the linear program to efficiently compute a bound

on an optimal integral solution.

3.1.1 Assignment Constraints

A graph layout problem can be cast as an assignment problem. In an assignment

problem, the goal is to assign each vertex a position, a set or a label so as to optimize

a particular objective function. For example, in the maxcut problem the goal is to

assign each vertex of a given graph to S or S so as to maximize the weight of the

edges with endpoints in both sets. In the linear ordering problem, the goal is to assign

each vertex to a unique set labeled {1, 2, . . . , n} so as to maximize the weight of the

directed edges (i, j) such that vertex i has a smaller label than vertex j.

Linear programs for assignment problems can be formulated with—what are often

37

referred to as—assignment constraints. Suppose we are given a graph G = (V, E)

and a set of positions P , and we want to assign each vertex to a position. We can

formulate a linear program in which we have a variable xip for each vertex i ∈ V and

each position p ∈ P . If the vertex i is assigned to position p, then variable xip = 1,

otherwise xip = 0. If each variable in the set {xip} is a positive integer, then constraint

(3.3) enforces the requirement that each vertex is assigned to some position.

∑

p∈P

xip = 1 ∀i ∈ V. (3.3)

If we want to enforce the condition that each position has at most one vertex assigned

to it, as is the case in a vertex ordering problem, we can use the following constraint:

∑

i∈V

xip = 1 ∀p ∈ P. (3.4)

We can use these constraints to formulate another integer program for the maxcut

problem, which is different the one given earlier (3.1). Our goal is to place each vertex

in one of two sets. For each vertex i ∈ V , we have two variables, xi1 and xi2. If i

is placed in S, then in an integral solution, we require that xi1 = 1 and xi2 = 0.

Alternatively, if i is placed in S, then we require that xi1 = 0 and xi2 = 1. For each

edge, ij ∈ E, we have two variables fij and bij . We will require that the variable

fij = 1 if i is in S and j is in S and the variable bij = 1 if i is in S and j is in S. We

can enforce these requirements with the following integer program:

max
∑

ij∈E

wij(fij + bij) (3.5)

xi1 + xi2 = 1 ∀i ∈ V

fij ≤ min{xi1, xj2} ∀ij ∈ E

bij ≤ min{xj1, xi2} ∀ij ∈ E

xi1, xi2 ∈ {0, 1} ∀i ∈ V

fij, bij ∈ {0, 1} ∀ij ∈ E.

The constraint,

fij ≤ min{xi1, xj2} ∀ij ∈ E,

can be enforced with the following two linear constraints:

38

fij ≤ xi1 ∀ij ∈ E,

fij ≤ xj2 ∀ij ∈ E.

If we replace the integrality restriction with the relaxed constraint 0 ≤ xi1, xi2 ≤
1, 0 ≤ fij , bij ≤ 1, we obtain another linear programming relaxation for the maxcut

problem. How good is the bound provided by this linear program? This linear

program actually does not provide a very good bound. This is because we can let

xi1 = xi2 = 1
2

for every i ∈ V . Then every edge contributes 1 to the objective

value. Thus, it simply says that the optimal value of any maxcut is |E|, which is

a trivial bound. Furthermore, with high probability, a random graphs with uniform

edge probability has a maxcut arbitrarily close to half the edges [Pol92]. So this linear

program can have an optimal value of twice the optimal integral value.

3.1.2 Graph Layout

Assignment constraints can be used to design linear programs for graph layout prob-

lems. For example, we can generalize the integer program in the previous section,

(3.5), to obtain an integer program for the linear ordering problem. Given a di-

rected graph G = (V, A), our goal is to assign each vertex in the graph a label from

{1, 2, . . . , n} so as to maximize the weight of the directed edges (i, j) such that i has

a smaller label than j. For each vertex i and each label h, we have a variable xih = 1

if vertex i is labeled h.

max
∑

ij∈A

wij(
∑

h<ℓ

yhℓ
ij)

n∑

h=1

xih = 1 ∀i ∈ V

n∑

i=1

xih = 1 ∀h ∈ {1, 2, . . . , n}

yhℓ
ij ≤ min{xih, xjℓ} ∀ij ∈ E, ∀i, h ∈ {1, 2, . . . , n}

xih ∈ {0, 1} ∀i ∈ V, ∀h ∈ {1, 2, . . . , n}
yhℓ

ij ∈ {0, 1} ∀ij ∈ E, ∀h, ℓ ∈ {1, 2, . . . , n}.

We can obtain a linear programming relaxation by relaxing the constraint that the

variables {xih}, {yhℓ
ij } are integral and instead require them to have values between 0

and 1. If we let each variable xih = 1
n
, then each edge contributes

(
n

2

)
· 1

n
= n−1

2
to

the objective function. Therefore, this linear program provides a very bad bound on

the optimal value of a linear ordering.

39

However, these basic ideas of using assignment constraints can still be useful

in graph layout problems. We can use this general framework to formulate linear

programs for problems involving laying out graphs on square lattices, for example.

In Section 4.4, we show how to use these ideas to formulate an integer program and

a corresponding linear programming relaxation for the string folding problem. We

will have a variable xiv for each vertex i and each lattice point v. For every edge in

the lattice, i.e. pair of adjacent lattice points, we have a variable h(v,w) that indicates

whether there is 0 or 1 contact across edge (v, w) in the lattice. In other words,

we will specify constraints to enforce that for each edge in the lattice, (v, w), the

variable h(v,w) is 1 if and only if there are vertices from the input graph each labeled

1 and occupying lattice point v and w. Additionally, the semidefinite programs for

the linear ordering problem that we discuss in the next section and in Chapter 6 are

based on assignment constraints.

3.2 Semidefinite Programming

A semidefinite program is the problem of optimizing a linear function of a symmetric

matrix subject to linear equality constraints and the constraint that the matrix is

positive semidefinite. (We indicate that a matrix Y is positive semidefinite by: Y �
0.) Inequality constraints can also be included in a semidefinite program, because

they can be modeled with equality constraints using additional variables. For any

ǫ > 0, semidefinite programs can be solved with an additive error of ǫ in polynomial

time (ǫ is part of the input, so the running time dependence on ǫ is polynomial in

log 1
ǫ
) using the ellipsoid algorithm [GLS88]. Other methods can also be used to solve

semidefinite programs efficiently such as interior point methods [Ali95]. Although

not provably efficient, the simplex method can also be used to solve semidefinite

programs [Pat96].

3.2.1 Cut Problems

Semidefinite programming yields another way to develop efficiently computable re-

laxations for combinatorial optimization problems. A useful feature of semidefinite

programming is the structure of the semidefinite solution matrix. An n × n posi-

tive semidefinite matrix Y can be decomposed into Y = XXT where X is an n × n

matrix. This decomposition lies at the heart of the Goemans-Williamson .87856-

approximation algorithm for the maxcut problem [GW95].

Consider the following integer quadratic program for the maxcut problem. For a

given a graph G = (V, E), each vertex i ∈ V has a corresponding vector vi that is

required to be in {1,−1}; the assignment vi = 1 means that vertex i is on one side of

the cut and the assignment vi = −1 means that vertex i is on the other side of the

cut. Each edge contributes value
wij

2
(1 − vi · vj) to the objective function: if vi = vj ,

40

then this contribution is 0; if vi 6= vj , then this contribution is wij.

max
1

2

∑

i<j

wij(1 − vivj) (3.6)

vi ∈ {−1, 1} ∀i ∈ V.

Goemans and Williamson showed that the semidefinite relaxation of this integer

program can be used in an approximation algorithm for the maxcut problem [GW95].

They used the following semidefinite relaxation of the above integer program (3.6):

max
1

2

∑

i<j

wij(1 − yij) (3.7)

yii = 1

Y � 0.

In the Goemans-Williamson algorithm for the maxcut problem, the matrix Y is

decomposed into Y = XXT . Each of the n rows of the matrix X is a unit vector.

These vectors, {x1, x2, . . . , xn}, have the property that xi · xj = yij. Each vertex i

corresponds to a unit vector xi in this decomposition. Thus, the relaxation (3.7) is

equivalent to the relaxation (3.8):

max
1

2

∑

i<j

wij(1 − xi · xj) (3.8)

xi · xi = 1

xi ∈ Rn ∀i ∈ V.

To obtain a feasible solution for the maxcut problem, a vector r ∈ Rn is chosen

at random. A vertex i is assigned to one side of the cut if vi · r < 0 and to the other

side if vi · r ≥ 0. In expectation, the total edge weight crossing the cut is at least

.87856 of the objective value of the semidefinite relaxation, which is at least .87856

of the value of an optimal maxcut. This relaxation is the only known relaxation that

provably provides a bound of less than “all edges” for all graphs with a maxcut close

to half the total edge weight.

Closely related to the maxcut problem is the maximum directed cut (dicut) prob-

lem. Given a directed weighted graph G = (V, A), the dicut problem is to find a bipar-

tition of the vertices—call these disjoint sets S1 and S2—that maximizes the weight

of the edges directed from S1 to S2, i.e. the weight of the directed edges (i, j) such

that vertex i is in set S1 and vertex j is in set S2. Goemans and Williamson [GW95]

and Feige and Goemans [FG95] study semidefinite relaxations of integer programs

for this problem. One such integer program is based on assignment constraints. In

41

Figure 3-1: A maximum dicut for the graph on the left is shown on the right.

Figure 3-2: The dicut problem is to divide the vertices of a directed graph into sets
S1 and S2 so as to maximize the weight of edges directed from S1 to S2.

the following integer program, each vertex i has two corresponding vectors, ti and fi.

The vector v0 is an arbitrary unit vector; without loss of generality, we can assume

v0 = {1, 0, . . . , 0}. In an integral solution, if vertex i is assigned to S1, then ti is

assigned value v0 and fi is assigned 0; if vertex i is assigned to S2, then ti = 0 and

fi = v0. Thus, the following constraints enforce the requirements that in an integral

solution, exactly one of ti and fi is set to v0 for each vertex i. For a directed edge

(i, j), if i is in S1 and j is in S2, then ti = fj = v0, so the contribution of that edge

to the objective value is wij.

max
∑

ij∈A

wij(ti · fj)

ti · fi = 0 ∀i ∈ V

v0 · ti + v0 · fi = 1 ∀i ∈ V

v0 · v0 = 1

ti, fi ∈ {0, v0} ∀i ∈ V.

The integrality constraint in the above integer program can be relaxed to form

the following semidefinite relaxation for the dicut problem. Instead of being assigned

to 0 or v0, each ti and fi will be assigned a vector in Rn. This is equivalent to

the constraint that the matrix of ti, fi values is positive semidefinite. Note that the

42

following constraints imply that fi = v0 − ti. Thus, the dimension of the solution

matrix is n + 1.

max
∑

ij∈A

wij(ti · fj) (3.9)

ti · fi = 0 ∀i ∈ V

v0 · ti + v0 · fi = 1 ∀i ∈ V

v0 · v0 = 1

ti, fi ∈ Rn+1 ∀i ∈ V.

Goemans and Williamson also gave a new approximation algorithm for the dicut

problem that is very similar to their algorithm for the maxcut problem [GW95]. It is

based on rounding a semidefinite relaxation of the following integer program. In this

integer program, a vector vi = v0 if vertex i belongs to set S1 and vi = −v0 if vertex i

belongs to set S2. Thus, if edge (i, j) is directed from S1 to S2, then the contribution

to the objective value is wij and if vertex i is not in S1 or if vertex j is not in S2, then

the contribution to the objective value is 0.

max
1

4

∑

ij∈A

wij(1 + v0 · vi − v0 · vj − vi · vj) (3.10)

vi · vi = 1 ∀i ∈ V ∪ {0}
vi ∈ {v0,−v0} ∀i ∈ V ∪ {0}.

We obtain an efficiently solvable relaxation by relaxing the constraint that vi is either

v0 or −v0 and requiring only that vi is a unit vector in Rn+1.

max
1

4

∑

ij∈A

wij(1 + v0 · vi − v0 · vj − vi · vj) (3.11)

vi · vi = 1 ∀i ∈ V ∪ {0}
vi ∈ Rn+1 ∀i ∈ V ∪ {0}.

After solving the above semidefinite relaxation to obtain a set of solution vectors,

{vi}, a random vector r ∈ Rn+1 is chosen. If r · v0 < 0, then each vertex i such that

vi ·r < 0 is placed in S1 and the rest of the vertices are placed in S2. If r ·v0 > 0, then

each vertex i such that vi · r > 0 is placed in S1 and the rest of the vertices are placed

in S2. Goemans and Williamson showed that this algorithm has an approximation

guarantee of at least .79607 [GW95].

The relaxations (3.9) and (3.11) are equivalent. Consider a solution to the above

43

relaxation (3.9). Let vi = ti − fi. Then the vectors {vi} satisfy the constraint in

(3.11) that they are unit vectors. Similarly, consider a solution {vi} for the relaxation

(3.11). Let ti = v0+vi

2
and fi = v0−vi

2
. Then ti · fi = 0 and v0 · (ti + fi) = 1, satisfying

the constraints in the relaxation (3.9). The objective function in the relaxation (3.9)

can be rewritten as:

ti · fi =

(
v0 + vi

2

)
·
(

v0 − vj

2

)
=

1

4
(1 + vi · v0 − vj · v0 − vi · vj).

Feige and Goemans note that constraints can be added to strengthen the relax-

ation (3.9). In particular, we can require that: ti · fj ≥ 0, ti · tj ≥ 0, fi · fj ≥ 0.

Transforming these constraints to the form in the relaxation (3.11), we obtain the

following constraints for all i, j ∈ V :

v0 · vi + v0 · vj + vi · vj ≥ −1

−v0 · vi − v0 · vj − vi · vj ≥ −1

−v0 · vi + v0 · vj − vi · vj ≥ −1.

Additionally, Feige and Goemans note that we can obtain an even stronger relaxation

by allowing any vector vk to take the role of v0 in the above constraints:

vi · vj + vi · vk + vj · vk ≥ −1 (3.12)

−vi · vj − vi · vk + vj · vk ≥ −1

−vi · vj + vi · vk − vj · vk ≥ −1

vi · vj + vi · vk − vj · vk ≥ −1.

These constraints are valid because they hold for any set of variables {vi, vj , vk} ∈
{1,−1}. Note that these constraints can also be used to strengthen the maxcut

relaxation (3.6). Although these constraints strengthen the relaxations (3.11) and

(3.6), it is an open problem how to use these constraints to improve the approximation

guarantee for the maxcut or dicut problems. However, Halperin and Zwick showed

how to use these so-called triangle inequalities to strengthen related relaxations and

improve the approximation guarantees for several cut problems such as the maximum-
n
2
-bisection problem and the maximum-n

2
-directed-bisection problem [HZ01]. The

maximum-n
2
-bisection problem is that of finding a maximum cut with the further

constraint that the two sets S and S have the same cardinality (the cardinality of the

two sets differs by 1 vertex if n is odd). Similarly, the maximum-n
2
-directed-bisection

problem is that of finding a maximum directed cut with the extra constraint that the

two sets S1 and S2 have the same cardinality.

44

3.2.2 Vertex Ordering Problems

The edges in a directed cut form an acyclic subgraph. We can generalize the dicut

problem to that of dividing the vertices into k labeled sets S1, S2, . . . , Sk so as to

maximize the weight of the edges (i, j) such that vertex i is in set Sh and vertex j

is in set Sℓ and h < ℓ. We call this the k-acyclic dicut problem. The linear ordering

problem is equivalent to the n-acyclic dicut problem.

...

Figure 3-3: We define the k-acyclic dicut problem to be that of dividing the vertices
of a directed graph into k sets labeled S1, S2, S3, . . . , Sk so as to maximize the weight
of edges directed from Si to Sj, i < j.

Thus, the semidefinite programs for the dicut problem can also be generalized to

formulate semidefinite programs for vertex ordering problems. In this section, we will

discuss how to obtain such a formulation for vertex ordering problems. For example,

in the semidefinite relaxation for the dicut problem (3.9), we use two variables ti and

fi to represent if vertex i is assigned to S1 or S2. For the k-acyclic dicut problem,

we can use k vectors for each vertex—as opposed to two vectors—to indicate which

of the k positions vertex i occupies. Similarly, for the linear ordering problem, we

will use n vectors to indicate which position vertex i occupies. We will formulate

an integer program for the linear ordering problem in which v0 is an arbitrary unit

vector and vector uih = v0 if vertex i is in position h in the ordering and uih = 0

if vertex i is not in position h. Thus, our integer program will have n2 + 1 vectors.

The following constraints (3.13) are valid for an integer program in which the feasible

solutions are all permutations of the vertices of a given graph. Let N represent the

set {1, 2, . . . , n}.

v0 · v0 = 1 (3.13)
n∑

h=1

uih · v0 = 1 ∀i ∈ V

n∑

i=1

uih · v0 = 1 ∀h ∈ N

uih ∈ {0, v0} ∀i ∈ V, ∀h ∈ N.

Lemma 7. There is a one-to-one correspondence between permutations of the vertices

45

and feasible solutions for the set of constraints (3.13).

Proof. Consider a permutation of the vertices in which each vertex i has a unique

label h in the set N . Let uih = v0, where v0 is a unit vector, and let uiℓ = 0 for ℓ 6= h.

We will show that this solution satisfies the constraints (3.13). The first constraint

v0 · v0 = 1 is satisfied since v0 is a unit vector. The second constraint,

n∑

h=1

uih · v0 = 1 ∀i ∈ V,

is satisfied since for each i, there is only one value of h such that uih = v0. The next

constraint,
n∑

i=1

uih · v0 = 1 ∀h ∈ N,

is satisfied since for each position h, there is only one vertex i such that uih = v0.

Thus, for every permutation, there is a unique feasible solution.

Now we argue that each feasible solution for the constraints (3.13) corresponds to

a permutation of the vertices. Consider a feasible solution to the constraints. By the

first constraint, for each vertex i, there is exactly one value of h such that uih = v0,

so each vertex is assigned a position. By the second constraint, for each position h,

there is exactly one vertex i such that uih = v0, i.e. vertex i is assigned to position

h. Therefore, a feasible solution corresponds to a permutation of the vertices.

Since a feasible solution for the constraints (3.13) corresponds to a permutation

of the vertices, we can measure the weight of the forward edges with respect to a

particular solution, i.e. vertex permutation, using the following objective function.

Let G = (V, A) be a given directed graph and let {uih}, v0 be a feasible solution to

the constraints (3.13).

max
∑

ij∈A

wij(
∑

h<ℓ

uih · ujℓ). (3.14)

Consider an edge (i, j) ∈ A. If (i, j) is a forward edge in the vertex permutation

corresponding to the given feasible solution, then there are some vectors uih, ujℓ such

that uih = ujℓ and h < ℓ. Conversely, if i comes before j in the ordering, then there

is some h < ℓ such that uih = ujℓ.

Unfortunately, optimizing the objective function (3.14) over the constraints (3.13)

is NP-hard, since this would yield an optimal solution to the linear ordering problem,

which is NP-hard. So we relax the constraint that each uih is either v0 or 0 to the

constraint that uih ∈ Rn2+1. We can also add constraints that are valid for integer

solutions and may strengthen our semidefinite relaxation. For example, the constraint

uih · uih = uih · v0 is valid in an integral solution since uih is either 0 or equal to v0.

46

Additionally, in an integral solution, it is the case that uih · uiℓ = 0, since for each

vertex i, the variable uih is non-zero for exactly one value of h. Similarly, uih ·ujh = 0

is a valid constraint because for each position h, the uih is non-zero for exactly one

vertex i. Finally, we can also require that every pair of vectors from the set {uih}
has a non-negative dot product, since this constraint holds for an integral solution.

Combining all these constraints results in the following semidefinite programming

relaxation.

max
∑

ij∈A

wij(
∑

h<ℓ

uih · ujℓ) (3.15)

v0 · v0 = 1
n∑

h=1

uih · v0 = 1 ∀i ∈ V

n∑

i=1

uih · v0 = 1 ∀h ∈ N

uih · uih = uih · v0 ∀i ∈ V, h ∈ N

uih · uiℓ = 0 ∀i ∈ V, h, ℓ ∈ N

uih · ujh = 0 ∀i, j ∈ V, h ∈ N

uih · ujℓ ≥ 0 i, j ∈ V, h, ℓ ∈ N

uih ∈ Rn2+1 ∀i ∈ V, ∀h ∈ N.

Lemma 8. For a given graph G = (V, A), the optimal value of the semidefinite

program in constraints (3.15) is
∑

ij∈A wij.

Proof. We will show that the total contribution to the unweighted objective function

for any 2-cycle is one edge. A 2-cycle constraint can be written as follows:
∑

1≤h<ℓ≤n

uih · ujℓ +
∑

1≤h<ℓ≤n

ujh · uiℓ = 1.

Since uih · ujh = 0, we have:

∑

1≤h<ℓ≤n

uih · ujℓ +
∑

1≤h<ℓ≤n

ujh · uiℓ = (
n∑

k=1

uik) · (
n∑

k=1

ujk) = v0 · v0 = 1.

Thus, we can bound the forward value for any edge by 1:
∑

1≤h<ℓ≤n

uih · ujℓ ≤ 1 ⇒
∑

ij∈A

∑

1≤h<ℓ≤n

wij(uih · ujℓ) ≤
∑

ij∈A

wij.

This semidefinite program is related to the semidefinite program for the dicut

47

...

Figure 3-4: A vertex ordering can be precisely described by n − 1 bipartitions of the
vertices.

problem (3.9). A vertex ordering can be completely described by a a series of n − 1

cuts. For example, the first cut has one vertex on one side and n − 1 vertices on the

other; the second cut has two vertices on one side and n− 2 on the other; the kth cut

has k vertices on one side and n − k on the other. In fact, if we consider a solution

to the constraints (3.15), {{uih}, v0}, we can fix a value h ∈ N and let

ti =
h∑

i=1

uih, fi =
n∑

i=h+1

uih.

This yields a feasible solution for the dicut semidefinite program (3.9). Moreover,

suppose ti and fi are computed using an integral feasible solution for the constraints

(3.15) (i.e. uih ∈ {0, v0}). This integral solution corresponds to a vertex permutation.

Then the resulting objective value for the dicut semidefinite program is exactly the

weight of the edges crossing the cut (in the forward directed) that divides the first h

vertices from the last n − h vertices in the vertex permutation that corresponds to

the integral solution.

This semidefinite program (3.15) is based on representing an ordering using 0-

1 vectors (without loss of generality, we can assume that v0 = (1, 0, . . . , 0)). For

example, a vertex ordering of a graph on four vertices in which vertex i is in position

i in the ordering has the following representation:

{u11, u12, u13, u14} = {1, 0, 0, 0},
{u21, u22, u23, u24} = {0, 1, 0, 0},
{u31, u32, u33, u34} = {0, 0, 1, 0},
{u41, u42, u43, u44} = {0, 0, 0, 1}.

There are other ways to represent vertex orderings. We now discuss another way

that uses {1,−1} vectors (or {v0,−v0} vectors, where v0 is an arbitrary unit vector).

48

This representation is also based on the observation that a vertex ordering can be

fully described by a series of n− 1 cuts. This semidefinite program can be viewed as

a generalization of the second semidefinite program discussed for the dicut problem

(3.11). In this representation, each vertex i will have n + 1 associated unit vectors,

{v0
i , v

1
i , v

2
i , . . . v

n
i }. In an integral solution, we enforce that v0

i = −1, vn
i = 1 and that

vh
i and vh+1

i differ for only one value of h, 0 ≤ h < n. This position h denotes vertex

i’s position in the ordering. For example, suppose we have a graph G that has four

vertices, arbitrarily labeled 1 through 4. Consider the vertex ordering in which vertex

i is in position i. An integral description of this vertex ordering is:

{v0
1, v1

1, v2
1 , v3

1, v4
1} = {−1, 1, 1, 1, 1},

{v0
2, v1

2, v2
2 , v3

2, v4
2} = {−1,−1, 1, 1, 1},

{v0
3, v1

3, v2
3 , v3

3, v4
3} = {−1,−1,−1, 1, 1},

{v0
4, v1

4, v2
4 , v3

4, v4
4} = {−1,−1,−1,−1, 1}.

There is actually a connection between this representation (i.e. using {−1, 1}
variables and the previously discussed representation (i.e. using {0, 1} variables). In

integral solutions, we have the following relation between the uih and vh
i variables:

vh
i =

h∑

k=1

uik −
n∑

k=h+1

uik.

Note that we can assume ui0 = 0. Then v0
i = −∑n

k=1 uik. Similarly, we have:

uih =
vh

i − vh−1
i

2
.

Thus, using this connection between the two representations, we can obtain con-

straints for the linear ordering problem in terms of the {vh
i } variables. Below, we

translate each of the constraints (3.15) line by line. Note that an edge (i, j) only

contributes 1 to the objective function when: vh−1
i = vℓ−1

j = −1 and vh
i = vℓ

j = 1.

49

Valid: . . . h-1 h . . . ℓ-1 ℓ . . .
. . . -1 1 . . . 1 1 . . .
. . . -1 -1 . . . -1 1 . . .

Invalid: . . . h-1 h . . . ℓ-1 ℓ . . .
. . . -1 -1 . . . 1 -1 . . .
. . . -1 1 . . . 1 1 . . .

Figure 3-5: The invalid assignment violates the constraint (vh
i −vh−1

i) · (vℓ
j −vℓ−1

j) ≥ 0
since the lefthand side of this expression evaluates to -4 for these vectors.

max
∑

ij∈A

∑

h<ℓ

1

4
wij(v

h
i − vh−1

i) · (vℓ
j − vℓ−1

j)(3.16)

v0 · v0 = 1

(vn
i − v0

i) · v0 = 2 ∀i ∈ V
n∑

i=1

(vh
i − vh−1

i) · v0 = 2 ∀h ∈ N

vh
i · vh−1

i − vh
i · v0 − vh−1

i · v0 = 1 ∀i ∈ V, h ∈ N

(vh
i − vh−1

i) · (vℓ
i − vℓ−1

i) = 0 ∀i ∈ V, h, ℓ ∈ N

(vh
i − vh−1

i) · (vh
j − vh−1

j) = 0 ∀i, j ∈ V, h ∈ N

(vh
i − vh−1

i) · (vℓ
j − vℓ−1

j) ≥ 0 i, j ∈ V, h, ℓ ∈ N

vh
i ∈ Rn2+1 ∀i ∈ V, ∀h ∈ N.

Other constraints we can add are triangle inequalities which are shown (3.12).

We can apply these triangle inequalities on any set of three vectors chosen from the

set {vh
i }. We can also add the following constraint, which states that the number of

vertices on each side of the middle cut is n
2

for even n:

∑

i,j∈V

v
n
2
i · v

n
2
j = 0.

In Chapter 6, we will actually focus on the following semidefinite program, which

includes a subset of these constraints. These constraints are sufficient to prove that

the integrality gap is small for random graphs.

50

max
1

4

∑

ij∈A

∑

1≤h<ℓ≤n

wij(v
h
i − vh−1

h) · (vℓ
j − vℓ−1

j)

(vh
i − vh−1

i) · (vℓ
j − vℓ−1

j) ≥ 0 ∀i, j ∈ V, h, ℓ ∈ [n] (3.17)

vh
i · vh

i = 1 ∀i ∈ V, h ∈ [n]

v0
i · v0 = −1 ∀i ∈ V

vn
i · v0 = 1 ∀i ∈ V

∑

i,j∈V

v
n
2
i · v

n
2
j = 0 (3.18)

vh
i ∈ {1,−1} ∀i, h ∈ [n]. (3.19)

3.3 Discussion

Besides the linear ordering problem, we can also model other vertex ordering problems

using the semidefinite programs presented in Section 3.2.2. For example, given an

undirected graph G = (V, E), the goal of the minimum bandwidth problem is to

assign each vertex i ∈ V a unique label ℓ(i) from the set of integers N = {1, 2, . . . , n}
so as to minimize the quantity: maxij∈E |ℓ(i)−ℓ(j)|. We can use the constraints in the

semidefinite program (3.15) (without the objective function) and add the additional

constraint:

uih · ujℓ = 0 ∀ij ∈ E, ℓ, h ∈ N, |ℓ − h| > b.

We can run a semidefinite program solver for each integral value of b from 1 through

n and find the minimum value of b such that the semidefinite program is feasible.

This value of b is a lower bound on the value of the minimum bandwidth. We note

that we can easily extend this idea to obtain a relaxation for the minimum directed

bandwidth problem as well. The input to the minimum directed bandwidth problem

is an acyclic graph and the goal is to find a topological sort of the vertices that

minimizes the maximum length edge. If the graph G = (V, A) is acyclic, then in an

integral solution, we can require that every edge is a forward edge using the following

constraint for each edge (i, j) ∈ A:

∑

h≥ℓ

uih · ujℓ = 0. (3.20)

Another problem we can model is the minimum linear arrangement problem. For

a given undirected graph G = (V, E), the goal of this problem is to assign each vertex

i ∈ V a unique label ℓ(i) from the set of integers N = {1, 2, . . . , n} so as to minimize

51

the quantity:
∑

ij |ℓ(i)−ℓ(j)|. Again, we can use the constraints from the semidefinite

program (3.15) substituting the following for the objective function:

min
∑

ij∈E

∑

h,ℓ∈N

|ℓ − h|uij · ujℓ.

Finally, another well-known vertex ordering problem that we can model with our

semidefinite program is the traveling salesman problem. Given a complete, weighted

undirected graph with weights obeying the triangle inequality, the goal is to find an

ordering of the vertices such that the total weight of edges connecting consecutive

vertices in the ordering is minimized. Let ui,n+1 = ui1. Then following objective

function corresponds to the traveling salesman problem:

min
∑

i,j∈V

n∑

h=1

wij(uih · ujh+1).

52

Chapter 4

2D String Folding

4.1 Introduction

In this chapter, we focus on an optimization problem known as the string folding

problem. The string folding problem is motivated by the protein folding problem,

which is a central problem in computational biology. It is considered to be one of the

simplest models of the protein folding problem and leads to a purely combinatorial

problem.

In this combinatorial problem, the input is a string: a path graph in which each

vertex except the two endpoints has degree exactly two and each end vertex has

degree one. Each vertex in the string is labeled 1 or 0. Throughout this chapter, we

will refer to such a path graph as a string S in {0, 1}∗.

...

Figure 4-1: The input to the string folding problem can be viewed as a path graph.

Additionally, a particular type of lattice is specified as part of the input. In this

chapter, we use a square lattice. A two-dimensional square lattice (three-dimensional

square lattice) is a graph drawn in the (x, y)-plane ((x, y, z)-plane) in which the

vertices are all points with integral coordinates. The edges connect pairs of vertices

that are at distance one. Figure 4-2 illustrates a square lattice as well as a triangular

lattice, which is another possible type of input lattice.

We say a vertex from the string is placed on a lattice point (x, y) if that vertex

is assigned to lattice point (x, y). A folding of such an input string corresponds to

53

Figure 4-2: A square lattice and a triangular lattice.

placing the vertices of the graph on a lattice subject to the following three constraints:

(i) Each lattice point can have at most one vertex placed on it.

(ii) Each vertex must be placed on some lattice point.

(iii) Adjacent vertices in the string must be placed on adjacent lattice points.

For example, suppose vertex i and i + 1 are adjacent in the input graph. On a

two-dimensional square lattice, if vertex i is placed on lattice point (x, y), then vertex

i + 1 must be placed on one of four possible lattice points: (x ± 1, y) or (x, y ± 1).

In a valid folding of a string, the string is laid out on the lattice so that it does not

cross itself. Such a configuration on the square lattice folding is commonly referred

to as a self-avoiding walk.

Figure 4-3: Some examples of self-avoiding walks.

There are many possible valid foldings for an input string. We are interested in

finding certain types of foldings. With respect to a particular folding of an input

string, we say a pair of vertices forms a contact if they are not adjacent on the string,

54

they are both labeled 1, and they are placed on neighboring lattice points. The goal

of the string folding problem is to find a folding of the input string that maximizes

the number of contacts.

1 01 1 1 1 10 0 0 0 001=S

Figure 4-4: Two possible foldings for the string S = 10101010010101. The first folding
has four contacts and the second folding has six contacts. Contacts are indicated by
the dashed lines.

For example, suppose the input graph is the string 10101010010101. The first

folding shown in Figure 4-4 results in four contacts. The second folding shown in

Figure 4-4 results in six contacts, which is optimal. Throughout this chapter, vertices

labeled 1 are denoted by black dots and vertices labeled 0 are denoted by white or

unfilled dots.

4.1.1 Motivation

This string folding problem is motivated by the protein folding problem, a widely

studied problem in the field of computational biology. A protein is a sequence of

amino acids. Each sequence folds to a unique shape. The three-dimensional shape of

a protein determines its function. The protein folding problem is to determine the

three-dimensional shape of a protein given its amino acid sequence.

A simplified model of protein folding known as the Hydrophobic-Hydrophilic (HP)

model was introduced by Dill [Dil85, Dil90]. This model abstracts the dominant force

in protein folding: the propensity of hydrophobic amino acids to cluster together

to avoid water. In the HP model, each amino acid residue is classified as an H

(hydrophobic or non-polar) or a P (hydrophilic or polar). An optimal conformation

for a string of amino acids in this model is one that has the lowest energy, which

is achieved when the maximum number of H-H contacts (i.e. pairs of H’s that are

adjacent in the folding but not in the sequence) are present. This model is further

simplified by restricting the foldings to the two-dimensional (2D) or three-dimensional

55

Figure 4-5: A protein is composed of a one-dimensional amino acid sequence and
folds to a three-dimensional shape that determines its function.

(3D) square lattice. The protein folding problem in the hydrophobic-hydrophilic (HP)

model on the 2D square lattice is combinatorially equivalent to the string folding

problem described previously. We are given a string of P’s and H’s (instead of 0’s

and 1’s) and our goal is to find a folding on the lattice that maximizes the number of

adjacent pairs of H’s (instead of 1’s). Hart and Istrail give an informative discussion

of the HP model and its applicability to protein folding [HI96]. In this chapter, we

focus on the string folding problem on the 2D square lattice, which we refer to as the

2D string folding problem. In Chapter 5, we focus on the string folding problem on

the 3D square lattice, which we refer to as the 3D string folding problem.

H H H HH

P P P P P

Figure 4-6: Each amino acid is classified as either an H or a P depending on its degree
of hydrophobicity.

Figure 4-7: The three-dimensional HP model.

56

4.1.2 Previous Work

The HP lattice model of protein folding is one of the simplest models of protein folding

in terms of the problem description. Nevertheless, the problem is computationally

difficult to solve. In 1995, Hart and Istrail introduced the string folding problem to

the theoretical computer science community and presented approximation algorithms

for the string folding problem [HI96]. At this time, neither the 2D nor the 3D problem

was known to be NP-hard and settling this question was a major open problem. They

gave linear-time algorithms that, for a given input string, output foldings with at least
1
4

and 3
8

of the optimal number of contacts for the problem on the 2D and 3D square

lattice, respectively. In 1998, the 2D string folding problem was shown to be NP-hard

by Crescenzi, Goldman, Papadimitriou, Piccolboni and Yannakakis [CGP+98] and the

3D string folding problem was shown to be NP-hard by Berger and Leighton [BL98].

Additionally, Agarwala et al. gave approximation algorithms for the string fold-

ing problem on the 2D and 3D triangular lattice with approximation guarantees of

slightly better than 1
2

[ABD+97]. It is not known if the string folding problem on the

2D or 3D triangular lattice is NP-hard. More recently, Mauri, Piccolboni, and Pavesi

gave another factor 1
4
-approximation algorithm for the 2D problem based on dynamic

programming in 1999 [MPP99]. They claimed that their algorithm performed better

than Hart and Istrail’s algorithm in practice. Improving the approximation guaran-

tees of 1
4

and 3
8

for the string folding problem on the 2D and 3D square lattices have

been open problems in computational biology for several years.

4.1.3 Organization

In this chapter, we show that the the approximation guarantee for the 2D folding

problem can be improved from 1
4

to 1
3
. In Section 4.2, we discuss the combinatorial

upper bound used by Hart and Istrail and describe their linear-time approximation

algorithms. In Section 4.3, we present an improved linear-time 1
3
-approximation for

the 2D string folding problem. We prove that our algorithm outputs a folding with

at least 1
3

as many contacts as prescribed by the simple combinatorial upper bound

described in Section 4.2. In Section 4.4, we discuss a linear programming relaxation

for the string folding problem and show that the bound provided by the linear program

is no more than three times the optimal number of contacts. In Section 4.5, we show

that both the combinatorial upper bound and our linear programming upper bounds

cannot be used to obtain an algorithm with an approximation factor better than 1
2
.

In particular, we describe a string for which the optimal folding achieves only half of

the combinatorial upper bound and only half of the linear programming upper bound.

57

4.2 A Combinatorial Bound

Hart and Istrail gave linear-time algorithms that, for a given input string, output

foldings with at least 1
4

and 3
8

of the optimal number of contacts for the 2D and 3D

problems, respectively. For the 2D problem, they used a simple combinatorial upper

bound on the optimal number of contacts possible in any folding. The 2D square

lattice is a bipartite graph and a string is a bipartite graph. Therefore, when placed

on the lattice, each vertex with an even index in the string can only be adjacent to a

vertex with an odd index in the string and vice versa. We refer to vertices with even

(odd) indices labeled 1 as even-1’s (odd-1’s).

Let S be a specified input string for the folding problem. Let E [S] denote the

number of even-1’s in S and let O[S] denote the number of odd-1’s in S. Even-1’s

can only have contacts with odd-1’s and vice versa. In any folding of an input string,

each vertex (except for the two endpoints) has two vertices that are adjacent to itself

on the string and on the lattice. Since each lattice point has four neighbors, each

vertex can have at most two contacts. Let M2[S] denote the maximum number of

contacts possible for a string S. The maximum possible number of contacts in any

folding of S is:

M2[S] ≤ 2 · min{E [S],O[S]} + 2. (4.1)

Hart and Istrail used this upper bound to give a 1
4
-approximation for the 2D

problem. In other words, they gave an algorithm that outputs a folding with at least

min{E [S],O[S]}/2 contacts. Their algorithm is quite simple. First, choose a vertex

p in the input string S such that at least half the odd-1’s are on one side of p and

at least half the even-1’s are on the other side of p. It is easy to find such a vertex:

find a vertex in S such that at least half the even-1’s are on one side and at least

half the even-1’s are on the other side. One of these sides contains at least half of

the odd-1’s—let this side be the odd side and the other side be the even side. Then,

place all odd-1’s from the odd side in a straight line and place all the even-1’s from

the even side in an adjacent straight line. See Figure 4-9 for an illustration. Without

loss of generality, assume O[S] ≤ E [S]. Then this folding results in at least O[S]/2

contacts. The maximum possible number of contacts is 2 ·O[S]. Thus, this algorithm

has an approximation guarantee of 1
4
.

Hart and Istrail also gave a 3
8
-approximation for the 3D string folding problem.

We discuss the 3D string folding problem in the next chapter, but we describe their 3D

algorithm now since it uses the 2D algorithm that we just described as a subroutine.

Let M3[S] denote the maximum number of contacts for a string S when folding on the

3D square lattice. For the 3D problem, the upper bound on the maximum number

of contacts is:

58

p even sideodd side

Figure 4-8: . Vertex p is chosen such that at least half the odd-1’s are on one side of
p and at least half the even-1’s are on the other side of p.

p

even sideodd side

Figure 4-9: An illustration of a folding output by Hart and Istrail’s 1
4
-approximation

algorithm for the 2D string folding problem.

M3[S] ≤ 4 · min{O[S], E [S]} + 4. (4.2)

Let k = O[S]/2. Then the odd side has at least k odd-1’s and the even side has

at least k even-1’s. The next step is to divide the odd side into segments with
√

k

odd-1’s and divide the even side into segments with
√

k even-1’s. The 2D folding

algorithm is then repeated
√

k times in adjacent (x, y)-planes. The idea is that each

of the odd-1’s on the odd side has three contacts: one in the (x, y)-plane, one with

the plane above and one with the plane below. Without loss of generality, assume

O[S] ≤ E [S]. Then, in particular, three contacts are made for O[S]/2− c
√
O[S] odd-

1’s for some constant c. This results in an algorithm with an absolute approximation

guarantee of (3/8 − O(1/
√
O[S])) and an asymptotic approximation guarantee of 3

8
.

See Figure 4-10 for an illustration of this algorithm.

59

y z

x

z=0

z=1

z=2

Figure 4-10: An illustration of a folding output by Hart and Istrail’s 1
4
-approximation

algorithm for the 3D string folding problem.

4.3 A Factor 1
3-Approximation Algorithm

We now present a factor 1
3
-approximation algorithm for the string folding problem

on the 2D square lattice. In Section 4.3.1, we state the algorithm itself, and in

Section 4.3.2 we analyze the approximation guarantee and the running time. The

approximation guarantee of 1
3

for our algorithm is obtained by showing that at least
2
3

of the odd-1’s or at least 2
3

of the even-1’s average at least one contact each. Without

loss of generality, we make the following assumptions about any input string S to the

string folding problem.

(i) The length of S is even.

(ii) The number of odd-1’s is equal to the number of even-1’s, i.e. O[S] = E [S].

If the length of the string S is odd, we can pad the string with an extra vertex

labeled 0. If the string S does not have an equal number of odd-1’s and even-1’s, say

60

Figure 4-11: Our algorithm folds a loop rather than a string.

O[S] < E [S], we can turn an arbitrarily chosen subset of E [S] − O[S] even-1’s into

vertices labeled 0. Both of these modifications leave the quantity min{O[S], E [S]}—
and therefore the value of the upper bound (Equation (4.1))—unchanged.

For the sake of convenience, we consider folding a loop rather than a string. That

is, given a string S ∈ {0, 1}∗ (which has even length by assumption (i) above), we

add an edge between the first and last vertices to obtain the loop L(S). Note that

the upper bound stated in Section 4.2 is also a valid upper bound for the number of

contacts that can be obtained by folding a loop. Since the loop is closed, we need to

demarcate which vertices are have odd indices and which vertices have even indices.

It suffices to choose any vertex, label it ’odd’ and call every vertex an even distance

away from this vertex ’odd’ and call the rest ’even’.

Lemma 9. Let S be a string such that if we join the endpoints, we obtain the loop

L(S). Then a folding of the loop L(S) resulting in k contacts also yields folding of

the string S with at least k contacts.

Proof. Consider any folding of L(S) with k contacts. Any string that is obtained

by disconnecting two adjacent vertices of L(S) can assume the same configuration as

this folding. So this configuration also yields at least k contacts for such a string.

One of the combinatorial observations discussed in Section 2.1 plays a key role in

our algorithm. We apply Lemma 2 from Section 2.1. Lemma 2 states that if we have

a loop L ∈ {a, b}∗ with an equal number of a’s and b’s, then there is some element in

the loop such that if we go in the clockwise direction, we encounter at least as many

a’s as b’s and if we go in the counter-clockwise direction, we encounter at least as

many b’s as a’s.

Consider the loop L(S) in which each odd-1 is replaced by an a and each even-1 is

replaced by a b and each 0 is ignored. By Lemma 2, there is a vertex si in L(S) with

the following properties: if we start at vertex si and move in the clockwise direction,

we will encounter at least as many odd-1’s as even-1’s (i.e. at least as many a’s as

b’s), and if we start at vertex si−1 and move in the counter-clockwise direction, we

will encounter at least as many even-1’s as odd-1’s (i.e. at least as many b’s as a’s).

We will refer to vertex si as vertex p.

61

Consider the jth odd-1 encountered if we start at vertex p+1 and go along L(S) in

the clockwise direction, and define BO(j) to be the substring from the vertex directly

following the (j−1)st odd-1 up to and including the jth odd-1. Consider the ith even-1

encountered if we start at vertex p− 2 and move along L(S) in the counter-clockwise

direction, and define BE(i) to be the substring from the vertex directly following the

i−1th even-1 up to and including the ith even-1. Let the length of BO(j) be ℓO(j)+1

and the length of BE(i) be ℓE(i)+1. Note that ℓE(i) and ℓO(j) are always odd integers.

For example, given the loop corresponding to the string S = 11010110100011, where

p = s7, we have that BO(1) = 01, BO(2) = 0001, BO(3) = 11. We also have that

BE(1) = 01, BE(2) = 01, and BE(3) = 11. See Figure 4-12 for an illustration.

p

Figure 4-12: Moving clockwise from p, we have the substrings BO(1), BO(2), etc.
Moving counter-clockwise from p, we have the substrings BE(1), BE(2), etc.

4.3.1 Algorithm

We now describe our String Folding Algorithm. Our goal is to find a folding

of a given string S ∈ {0, 1}∗ so as to maximize the number of pairs of adjacent 1’s.

Using Lemma 9, we consider folding the loop L(S). Using Lemma 2, we find a vertex

p, such that if we go around the loop L(S) in the clockwise direction from p, we

always encounter at least as many odd-1’s as even-1’s and if go around L(S) in the

counter-clockwise direction, we always encounter at least as many even-1’s as odd-1’s.

62

String Folding Algorithm(S).

Input: A loop L(S) ∈ {0, 1}∗ and a starting point p.

Output: A folding of the string S on the 2D square lattice.

1. Lay p and p + 1 and their adjacent vertices as shown in Figure 4-13.

Let i = j = 1.

2. Iteration: Consider BE(i) and BO(j). There are four cases.

(i) ℓE(i) = 1 and ℓO(j) = 1: Fold BE(i), BE (i+1), BO(j), and BO(j+1)

as in Figures 4-14(a) and 4-15(a). Set i = i + 2 and j = j + 2. The idea is to

make sure there are three contacts: one between the ith even-1 and jth odd-1,

one between the i + 1th even-1 and jth odd-1, and one between the i + 1th

even-1 and j + 1th odd-1.

(ii) ℓE(i) ≥ 3 and ℓO(j) ≥ 3: Fold BE(i), BE (i+1), BO(j), and BO(j+1)

as in Figures 4-14(b) and 4-15(b). Set i = i + 2 and j = j + 2. The idea is

that same as in case (a), except we must move the segments BE(i) and BO(j)

out of the way if either ℓE(i) ≥ 3 or ℓO(j) ≥ 3.

(iii) ℓE(i) = 1 and ℓO(j) ≥ 3: Fold BE(i), BO(j), and BO(j + 1) as in

Figures 4-14(c) and 4-15(c). Set i = i + 1 and j = j + 2. The idea is to make

sure there are two contacts: one between the ith even-1 and the jth odd-1 and

one between the ith even-1 and the j + 1th odd-1.

(iv) ℓE(i) ≥ 3 and ℓO(j) = 1: Fold BE(i), BE (i + 1), and BO(j) as in

Figure 4-14(d) and in the mirror image of Figure 4-15(c). Set i = i + 2 and

j = j + 1. The idea here is the same as in case (c) except here there are two

contacts for the jth odd-1 and one contact for the ith and i + 1th even-1.

3. Repeat Step 2 while BE(i) and BO(j) do not overlap.

4.3.2 Analysis

Theorem 10. Given a binary string S, the String Folding Algorithm finds a

folding with at least M2[S]/3 contacts, i.e. a 1
3
-approximation.

Proof. Without loss of generality, assume there are k more case (c) folds than case

(d) folds, where k ≥ 0. We will count how many contacts the odd-1’s are involved

in. (If there are more case (d) folds than case (c) folds, we would count how many

contacts the even-1’s are involved in.) Consider the folding of a string S found by

the algorithm. Let i∗ and j∗ be the value of i and j during the last iteration of

the algorithm. Then O[p + 1, p + 2, . . . j∗] denotes the number of odd-1’s that are

guaranteed to be used in some contact(s). How many odd-1’s are not necessarily in

63

p

Figure 4-13: Placement of vertices p − 2, . . . p + 1.

(a)

(b)

(c) (d)

Figure 4-14: Case (a), (b), (c), and (d) folds.

(a)

(b)

(c)

Figure 4-15: Foldings for higher values of ℓE(i) ≥ 5 and ℓO(j) ≥ 5.

any contacts? The odd-1’s in the string p − 2, p− 3, . . . i∗ are not necessarily used in

any contacts. By Lemma 2, we have:

O[p − 2, p − 3, . . . i∗] ≤ E [p − 2, p − 3, . . . i∗]

O[S] = O[p + 1, p + 2, . . . j∗] + O[p − 2, p − 3, . . . i∗]

Combining equations (4.3) and (4.3), we have:

64

O[S] ≤ O[p + 1, p + 2, . . . j∗] + E [p − 2, p − 3, . . . i∗]

We assumed that there are k more case (c) folds than case (d) folds. Let’s pair up

each case (d) fold with a case (c) fold and call each of these pairs a (c-d)-fold. Thus, the

number of odd-1’s used in case (a), case (b), or (c-d) folds is O[p+1, p+2, . . . j∗]−2k

and 2k odd-1’s are used in unpaired case (c) folds, since each case (c) fold uses two

odd-1’s. The number of even-1’s used in case (a), case (b), or case (c-d) folds is also

O[p+1, p+2, . . . j∗]−2k, since in these folds the number of even-1’s used is the same

as the number of odd-1’s. Then there are k even-1’s used in the extra case (c) folds.

Thus,

E [p − 2, p − 3, . . . i∗] = O[p + 1, p + 2, . . . j∗] − k

Combining (4.3) and (4.3), we have:

O[S] ≤ (O[p + 1, p + 2, . . . j∗]) + (O[p + 1, p + 2, . . . j∗] − k)

Equation (4.3) can be rewritten as:

O[p + 1, p + 2, . . . j∗] ≥ O[S]

2
+

k

2
(4.3)

If we consider the subset of the odd-1’s in the string p + 1, p + 2, . . . j∗ involved in

case (a), case (b), or (c-d) folds, we note that there are at least four contacts for every

three odd-1’s. (i.e. In case (a) and case (b) folds, we have three contacts for every

two odd-1’s, and in case (c-d) folds, we have four contacts for every three odd-1’s.)

In the unpaired case (c) folds, we have at least one contact for every odd-1. Thus,

the number of contacts we have is at least:

4

3
(O[p + 1, p + 2, . . . j∗] − 2k) + 2k (4.4)

Using equation (4.3), we have that the quantity in equation (4.4) is at least:

(
O[S]

2
− 3k

2
)
4

3
+ 2k =

2O[S]

3
(4.5)

Recall that O[S] = E [S] by assumption, which implies that M2[S] = 2O[S].

65

Therefore, the number of contacts that the algorithm achieves is at least M2[S]/3.

The algorithm runs in O(n) time where n is the number of vertices in L(S). We

can find point p in O(n) time. Finding BE(i) and BO(i) and folding these blocks

takes time proportional to the size of the blocks, but since each vertex is included in

only one of the blocks, the total time it takes to find all the blocks and fold them is

Θ(n).

4.4 A Linear Program for String Folding

We present an integer program for the 2D string folding problem and analyze the

upper bounds given by its respective linear programming relaxation. Our formulation

is similar to those studied previously in [GHL], which appears to contain the only other

description of this problem as an integer program. However, we are able to analyze

the strength of our linear programming relaxation, which has not been considered

previously for this problem.

The main idea behind this linear program is to use the assignment constraints

discussed in Section 3.1.1. Let I be the set of indices for the vertices in a given string

S of length n, i.e. I = {1, . . . , n}. Let V be the set of lattice points on a 2D square

lattice; let VO and VE be the two bipartite sets of lattice points. Then we have a

variable xiv for each i ∈ I, v ∈ V . This variable xiv = 1 if vertex i is placed on

lattice point v. Since the square lattice is bipartite, we arbitrarily label one of the

bipartitions “odd” and the other set “even”. We will refer to these sets as VO and

VE , respectively. We will let O (E) denote the set of odd (even) indices in the string

S We break down E and O further as follows: HO is the set of indices of odd-1’s in

S, HE is the set of indices of even-1’s in S.

Since vertices in the string with odd (even) indices can only be placed on odd

(even) lattice points, we have the following constraints that require that each vertex

in the string is assigned to some lattice point in an integral solution.

∑

v∈VO

xiv = 1, ∀i ∈ O,

∑

v∈VE

xjw = 1, ∀j ∈ E .

We also require that each lattice point be occupied by at most one vertex. This

requirement will be met in an integral solution if we use the following constraint:

66

∑

i∈O
xiv ≤ 1, ∀v ∈ VO

∑

j∈E
xjw ≤ 1, ∀w ∈ VE .

Additionally, we need to enforce that in an integral solution, adjacent vertices in the

string occupy adjacent lattice points. In an integral solution, the following constraint

ensures that for any vertex assigned to a lattice point, the neighboring vertex with

lower index is assigned to a neighboring lattice point. We denote the set of lattice

points adjacent to lattice point v as δ(v). We call these constraints connectivity

constraints.

∑

w∈δ(v)

xi−1,w ≥ xiv ∀i ∈ I \ {n}, v ∈ V (4.6)

∑

w∈δ(v)

xi+1,w ≥ xiv ∀i ∈ I \ {n}, v ∈ V (4.7)

We use the variable h(v,w) to record the number of contacts made across edge (v, w),

i.e. h(v,w) = 1 if there is an odd-1 on lattice point V and an even-1 on lattice point

w. We also introduce additional constraints called backbone constraints. We have a

variable E−
ivw for each vertex i ∈ I and each edge (v, w) in the lattice. In an integral

solution, the variable E−
ivw = 1 if vertex i is on lattice point v and vertex i − 1 is on

lattice point w. Similarly, the variable E+
ivw = 1 if vertex i is on lattice point v and

vertex i + 1 is on lattice point w.

∑

w∈δ(v)

E+
ivw =

∑

w∈δ(v)

E−
ivw = xiv, ∀i ∈ O, v ∈ VO (4.8)

∑

v∈δ(w)

E+
j−1,vw =

∑

v∈δ(w)

E−
j+1,vw = xjw, ∀j ∈ E , w ∈ VE

Lemma 11. Backbone constraints (4.8) imply the connectivity constraints (4.6) and

(4.7).

Proof. From the backbone constraints, we have:

xiv =
∑

w∈δ(v)

E−
ivw.

67

For each variable xi−1,w, we also have:

xi−1,w =
∑

u∈δ(w)

E+
i−1,wu.

This last constraint implies that xi−1,w ≥ E+
i−1,wv, since v ∈ δ(w). Note that E+

i−1,wv =

E−
ivw. For each of terms in the first constraint in this proof, we can obtain the

inequality xi−1,w ≥ E−
ivw. Thus, we have the desired inequality:

xiv ≤
∑

w∈δ(v)

xi−1,w.

We can repeat this argument to derive constraint (4.7).

IPFOLD:

max
∑

(v,w)∈E

h(vw)

subject to :
∑

v∈VO

xiv = 1, ∀i ∈ O

∑

v∈VE

xjw = 1, ∀j ∈ E

∑

i∈O
xiv ≤ 1, ∀v ∈ VO

∑

j∈E
xjw ≤ 1, ∀w ∈ VE

∑

w∈δ(v)

E+
ivw =

∑

w∈δ(v)

E−
ivw = xiv, ∀i ∈ HO, v ∈ VO

∑

v∈δ(w)

E+
j−1,vw =

∑

v∈δ(w)

E−
j+1,vw = xjw, ∀j ∈ HE , w ∈ VE

∑

i∈HO

E−
ivw +

∑

i∈HO

E+
ivw + h(v,w) ≤

∑

i∈HO

xiv, ∀v ∈ VO

∑

j∈HE

E−
j+1,vw +

∑

j∈HE

E+
j−1,vw + h(v,w) ≤

∑

j∈HE

xjw, ∀v ∈ VE

E±
ivw, xiv, xjw, h(vw) ∈ {0, 1} ∀i ∈ O, j ∈ E , (v,w) ∈ E.

We relax the integrality constraint for the above integer program to obtain:

0 ≤ E±
ivw, xiv, xjw, h(vw) ≤ 1, ∀i ∈ O, j ∈ E , (v, w) ∈ E.

68

For a specified input string S, we refer to the optimal value of the resulting linear

program as LPFOLD(S).

Lemma 12. For any string S, the optimal solution for LPFOLD(S) is at most 2 ·
min{O[S], E [S]} + 2.

Proof. The optimal solution for the linear program is
∑

(v,w)∈E h(vw). Without loss of

generality, we assume O[S] ≤ E [S]. The last constraint in the linear program can be

rewritten as follows:

h(vw) ≤
∑

i∈HO

xiv −
∑

i∈HO

E−
ivw −

∑

i∈HO

E+
ivw.

Summing over all the edges, we have:

∑

(v,w)∈E

h(vw) ≤
∑

(v,w)∈E

∑

i∈HO

xiv −
∑

(v,w)∈E

∑

i∈HO

E−
ivw −

∑

(v,w)∈E

∑

i∈HO

E+
ivw.

The first sum is upper bounded by 4O[S]. To show this, first we note that:

∑

v∈VO

xiv = 1.

If we sum over all edges, as opposed to all odd vertices, note that each odd vertex

v ∈ VO is an endpoint in at most 4 edges. Thus, we have:

∑

(v,w)∈E

xiv =
∑

v∈VO

∑

w∈δ(v)

xiv =
∑

w∈δ(v)

∑

v∈VO

xiv =
∑

w∈δ(v)

1 ≤ 4,

∑

(v,w)∈E

∑

i∈HO

xiv =
∑

i∈HO

∑

(v,w)∈E

xiv ≤
∑

i∈HO

4 = 4O[S].

Now we analyze the following sum:

∑

(v,w)∈E

∑

i∈HO,i6=1

E−
ivw =

∑

i∈HO,i6=1

∑

(v,w)∈E

E−
ivw.

Each variable E−
ivw is associated with a unique odd vertex, i.e. the odd vertex v. We

have the following constraints for each odd vertex:

∑

w∈δ(v)

E−
ivw = xiv ∀i ∈ HO, v ∈ VO.

69

Thus, we can rewrite the sum as follows:

∑

i∈HO,i6=1

∑

(v,w)∈E

E−
ivw =

∑

i∈HO,i6=1

∑

v∈VO

∑

w∈δ(v)

E−
ivw =

∑

i∈HO,i6=1

∑

v∈VO

xiv =
∑

i∈HO,i6=1

1 = O[S]−1.

Note that:

∑

(v,w)∈E

E−
ivw =

∑

(v,w)∈E

E+
ivw.

Thus,

∑

i∈HO,i6=1

∑

(v,w)∈E

E−
ivw =

∑

i∈HO ,i6=n

∑

(v,w)∈E

E+
ivw = O[S] − 1.

Therefore, we have:

∑

(v,w)∈E

h(vw) ≤ 4O[S] − (O[S] − 1) − (O[S] − 1) ≤ 2O[S] + 2.

So the maximum value of the objective function is M2[S] = 2·min{O[S], E [S]}+2.

Theorem 13. LPFOLD(S) ≤ 3 · IPFOLD(S).

Proof. According to Lemma 10, we can always achieve a folding with value M2[S]/3.

We have IPFOLD(S) ≤ M2[S] and M2[S]/3 ≤ IPFOLD(S). This implies the lemma.

4.5 Gap Examples

In this section, we examine the gaps between our upper bounds and the integral

optimal values for the 2D folding problem.

4.5.1 Gap for 2D Combinatorial Bound

First, we examine the upper bound for the 2D folding problem presented in Section

4.2. Recall that the upper bound on the number of contacts possible for a folding

of the string S is M2[S] = 2 · min{O[S], E [S]} + 2. How good is this bound? In the

previous section, we saw that OPT/M2[S] ≥ 1/3 for any string S. In this section,

we describe a string S for which OPT/M2[S] = 1/2 + o(1). Thus, this upper bound

cannot be used to obtain an approximation factor better than 1
2
.

Let Ŝ = {0}4k2{01}k{0}8k2{1000}k{0}4k2
for an integer k > 0. We will show that

no folding of Ŝ has more than (1 + o(1))M2[Ŝ]/2 contacts.

70

Theorem 14. No folding of Ŝ on the 2D square lattice results in more than (1 +

o(1)) min{O[S], E [S]} contacts.

Note that for the string Ŝ, there are k even-1’s and k odd-1’s. Thus, k = M2[Ŝ]/2

for the string Ŝ. So we need to show that no folding contains more than (1 + o(1))k

contacts. To prove Theorem 14, we consider two strings S1 and S2 such that Ŝ = S1S2.

Let S1 = {0}q{01}k{0}q and let S2 = {0}q{1000}k{0}q, where q = 4k2. All the 1’s in

S1 are even-1’s and all the 1’s in S2 are odd-1’s. Note that since all the 1’s in S1 are

even-1’s, no folding of Ŝ contains a contact between a pair of 1’s from S1. Similarly,

no folding of Ŝ contains a contact between a pair of 1’s from S2, since all the 1’s in S2

are odd-1’s. Thus, we can assume that all contacts are comprised of an even-1 from

S1 and an odd-1 from S2. Therefore, it suffices to show that no folding of Ŝ results

in more than (1 + o(1))k contacts between the two strings S1 and S2.

Figure 4-16: The string S1 = {0}q{01}k{0}q is the ”even string”.

Figure 4-17: The string S2 = {0}q{1000}k{0}q is the ”odd string”.

Since we are only concerned with contacts between the strings S1 and S2, we focus

on foldings of these two strings rather than on foldings of Ŝ. Note that for any folding

of Ŝ, there is a folding of S1 and S2 that has at least as many contacts as the folding

of Ŝ. This is because S1 and S2 are substrings of Ŝ. Thus, proving that no folding

of the two strings S1 and S2 results in more than (1 + o(1))k contacts would prove

Theorem 14.

Suppose that for each of the strings S1 and S2, we color one side red and the other

side blue. A contact is a red-red contact if the red sides face each other in the contact,

or a red-blue contact if one red side faces a blue side in the contact. Some examples

of red-red contacts are illustrated in Figure 4-18. There are four types of contacts if

we always consider the color of the S1 string first: red-red, red-blue, blue-red, and

blue-blue. We now show that it is only possible to have one type of contact between

S1 and S2 in any folding. In other words, if some contact is a red-red contact, then

all the contacts must be red-red contacts. Thus, we only have to consider foldings in

which all contacts are of one type. If an odd-1 is involved in two contacts, both must

71

Figure 4-18: Some red-red contacts.

Figure 4-19: These two contacts are each of a different type.

be with even-1’s on the same side of the odd-1. For example, we can ignore contacts

such as those shown in Figure 4-19.

Lemma 15. In any folding of Ŝ, all contacts between S1 and S2 are of the same type.

Proof. Assume for the sake of contradiction that there is some folding of S1 and S2

with at least two different types of contacts (of the four possible types). Let c1 be a

red-red contact and c2 be a blue-blue contact, as shown in Figure 4-20. Suppose c1

is a contact between x1 and y1 where x1 is an even-1 in S1 and y1 is an odd-1 in S2.

Similarly, c2 is a contact between x2 and y2, where x2 is an even-1 in S1 and y2 is an

odd-1 in S2.

Then there is a closed path from y1 to y2 along S2, from y2 to x2, from x2 to x1

along S1 and from x1 back to y1. Note that the farthest distance between any two

1’s is 2k − 1 in S1 and 4k − 1 in S2. Thus, the total length of this closed path is no

more than 6k. However, as shown in Figure 4-20, at least one of the substrings of 0’s

at the end of S1 or S2 is enclosed by this path. The number of 0’s in this substring is

4k2. But this is a contradiction, because the maximum number of lattice points that

can fit an enclosed area of perimeter 6k is 9k2/4. We obtain the same contradiction

for the other possible arrangement of a red-red and a blue-blue contact as shown in

72

S

S2

1

x1

2y y1

x2

Figure 4-20: One way to connect a red-red and a blue-blue contact.

Figure 4-21. Furthermore, we obtain the same contradiction for any arrangement of

a red-red contact and a red-blue contact or a red-red contact and a blue-red contact.

This can be verified by inspecting the two cases (which are similar to the two possible

arrangements of a red-red and a blue-blue contact) corresponding to each of these

pairs of different types of contacts.

Now we consider the case in which all contacts are of the same type. Without loss

of generality, we assume they are all red-red.

Lemma 16. There are at most (1 + o(1))k red-red contacts between S1 and S2.

Proof. We will show that the average number of contacts per even-1 cannot exceed

(1 + o(1)). We note that if an even-1 has two contacts, then its two contacts much

be perpendicular to each other since both are red-red contacts.

We will use the following notions in our proof. First, we assume that the contacts

are ordered consecutively in a folding of S1 and S2. We begin folding S1 and S2 by

considering a specific endpoint for each of these strings. Then the even-1 in S1 and

the odd-1 in S2 that are closest to these endpoints and that make a contact are in the

first contact. The next closest even-1 in S1 and the next closest odd-1 in S2 that make

a contact are in the second contact, etc. Note that consecutive contacts, e.g. the two

contacts involving x in Figure 4-22, may involve the same odd-1 or same even-1.

Next, we associate an orientation with each contact. A contact can have orien-

tation up, down, right, or left. For example, in Figure 4-22, say that the horizontal

contact involving the even-1 labeled x is the first contact in the folding, and the ver-

tical contact involving x is the second, etc. Then the first contact has orientation up

and the second contact has orientation left. A horizontal contact has orientation up

if the next contact is above it and down if the next contact is below it. A vertical

73

S1

S2

x1

y2

x2

y1

Figure 4-21: Another way to connect a red-red and a blue-blue contact.

x

Figure 4-22: The arrows indicate the orientation of each contact.

contact has orientation left if the next contact is to its left and right if the next con-

tact is to its right. Note that the orientation of a contact is only well-defined if the

next even-1 or the next odd-1 in the string are involved in a contact.

Let x be the first even-1 to have two contacts. Without loss of generality, assume

that the first of these contacts is oriented up. The two possibilities for this situation

are shown in Figure 4-23. First, we consider case (a) in Figure 4-23. Say that x has

an up and a left contact as in case (a). If the next even-1 also has two contacts, then

its second contact will have a down orientation as shown in Figure 4-24(a). If the

next even-1 has only one contact, but the next next even-1 has two contacts, then

its second contact will have a down orientation, as shown in Figure 4-24(b). In other

words, consider the next even-1 (call it y) after x that has contacts with two odd-1’s.

If all the even-1’s between x and y have at least one contact, then the orientation of

y’s contacts makes a counter-clockwise turn. If some even-1 between x and y does

not have any contacts, then the second contact of y may have a left orientation. So

in this case, we are not in a downward orientation (i.e. we have not made a counter-

clockwise turn), but we do not have more than one contact per even-1 on average for

74

(a)

x

x
(b)

x

x

Figure 4-23: x is the first even-1 in the folding with two contacts.

the set of even-1’s between x and y.

x

(a)

y
(b)

y x

Figure 4-24: y is the next even-1 after x to have two contacts.

If the next even-1 after x has only one contact, it can have a left or a down

orientation, but it cannot have an up orientation. In order for a contact to have an

up orientation, we need to make a clockwise turn. However, for every clockwise turn,

there will be two even-1’s with no contacts. To see this, consider Figure 4-25. Now

suppose r and s make a contact as shown in Figure 4-25. Note that r can be in the

same situation as x is in in Figure 4-23(a) or (b). If r is in case (a) and we make

another clockwise turn and then go back to case (a), etc., then we will average less

than 1 contact for each even-1. If r is in the same position as x in Figure 4-23(b),

then we can make a counter-clockwise turn so that the next two even-1’s will have

two contacts each. But in this case, we will average only one contact per even-1 over

the course of a counter-clockwise and clockwise turn.

Next, we consider case (b) in Figure 4-23(b). If x is in case (b), then the even-1

that follows x will have one contact as shown in the first figure in Figure 4-23(b) or

it will have two contacts and be in the same position as x is in in case (a). Thus, if

we start from case (b), we can get only one more contact than if we were to start in

case (a).

Therefore, the only way to fold the string so that a constant fraction of the even-

75

Figure 4-25: If the orientation of the contacts makes a clockwise turn, then two
even-1’s have no contacts.

1’s are contained in more than one contact is to have more counter-clockwise turns

than clockwise turns. In this case, the string forms a “spiral”, as shown in Figure

4-26. Every time we make a counter-clockwise turn in this configuration, we can

have an even-1 with two contacts. How many counter-clockwise turns can we make?

After completing the first four counter-clockwise turns in the spiral, we have four

even-1’s with two contacts each. Then, one out of the next five even-1’s has two

contacts, then one out of next six, one out of the next seven, etc. Thus, the total

number of even-1’s with two contacts each is
√

2k. The total number of contacts is

k + Θ(1) +
√

2k = (1 + o(1))k.

Theorem 14 follows from Lemmas 15 and 16.

Figure 4-26: A “spiral” configuration of Ŝ.

76

4.5.2 LP Integrality Gap

We show that the integrality gap for the linear programming relaxation in Section 4.4

is at least 2 − ǫ for any ǫ > 0. We demonstrate this gap using the same string that

demonstrates a gap for the combinatorial bound in Section 4.5.1. Let the string Ŝ =

{0}q{01}k{0}2q{1000}k{0}q, where k is a positive integer and q = 4k2. In Theorem

14, it is shown that no folding of Ŝ has more than (1 + o(1))O[S] contacts. However,

we can construct a fractional solution for LP2 for which the objective function is

2O[S] − 4.

In Figure 4-27, we show how to fold the string Ŝ fractionally. Each vertex is placed

on a single lattice point, except the three vertices directly following the vertex labeled

y and the three vertices directly following the vertex labeled z. These six vertices are

fractionally folded, so that the string is allowed to cross itself, which cannot happen

in an integral folding.

y

z

Figure 4-27: Let S1 = {01}k and let S2 = {0001}k. The string splits in half at points
y and z, which allows the string to cross itself, something not allowed in an integral
solution.

77

4.6 Discussion and Open Problems

The main open problem related to this chapter is to find an algorithm for the 2D

string folding problem with an approximation ratio greater than 1
3
. Possible ways

to design such a new algorithm include rounding the linear programming relaxation,

develop new combinatorial methods, or find strengthened upper bounds.

There is no evidence that the combinatorial upper bound given in Equation (4.1)

cannot be used to obtain an algorithm with an approximation guarantee as high as
1
2
. In fact, for any particular string, it does not seem hard to find a folding in which

the number of contacts is at least half of this upper bound. Thus, intuitively, it seems

that one should be able to design an approximation algorithm in which the number

of contacts is at least half of this upper bound. We formalize this intuition with the

following conjecture.

Conjecture 17. For every binary string, there is a folding in which the number of

contacts is at least half of the combinatorial upper bound in Equation (4.1).

This conjecture can be settled in the affirmative if we could find an algorithm

achieving the stated number of contacts. It would be disproved if one could find a

family of strings in which the optimal number of contacts is asymptotically less than

half of the combinatorial upper bound.

Another question to address is, can the methods used in the String Folding

Algorithm be used to improve the approximation guarantee? It is easy to show

that there is a family of strings for which the algorithm achieves no more than 1
3

of

the combinatorial upper bound, i.e. let S = 11111 . . .1001001001001 . . . such that

the substring containing consecutive 1’s contains as many 1’s as in the substring

containing 0’s. If the starting point of the 2D folding algorithm is the point between

these two substrings, then the algorithm outputs a folding in which the number of

contacts is 1
3

of the combinatorial upper bound. However, if we use a different starting

point, namely a starting point in the middle of the first substring, the approximation

ratio will be at least 3
8

since we will only use case (a) and case (b) folds. (Note that

there is also a simple folding for this string with an approximation guarantee of 1
2
:

place the first substring so that the first half is adjacent to the second half and do

the same for the second substring.)

Jothi and Raghavachari implemented a variation of the String Folding Algo-

rithm in which they tested all possible starting points in our 2D folding algorithm.

Experimentally, they are unable to find a string for which this algorithm has an ap-

proximation ratio of less than 3
8

with respect to the combinatorial upper bound [JR].

They pose the following conjecture.

Conjecture 18. [JR] Given a binary string S of length n, if the String Folding

Algorithm is run n times with each of n possible choices of a starting point p, the

number of contacts in the best resulting folding is at least 3
8

of the combinatorial upper

bound.

78

Chapter 5

3D String Folding

5.1 Introduction

In this chapter, we consider the string folding problem on the three-dimensional (3D)

square lattice, i.e. the 3D version of the string folding problem discussed in Chapter

4. The string folding problem is defined in Section 4.1. We will review it here, but

for a precise problem statement, we refer the reader to Section 4.1.

The 3D string folding problem is a simple combinatorial problem. The input to

the string folding problem is a string: a path graph in which each vertex except the

two endpoints has degree exactly two and each end vertex has degree one. Each

vertex in the string is labeled 1 or 0. Throughout this chapter, we will refer to such

a path graph as a string S in {0, 1}∗.
We will fold the string on the 3D square lattice, which is a graph in the (x, y, z)-

plane in which the vertices are all points with integral coordinates. The edges connect

pairs of vertices that are at distance one. We say a vertex from the string is placed

on a lattice point (x, y, z) if that vertex is assigned to lattice point (x, y, z). A folding

of such an input string corresponds to placing the vertices of the graph on a lattice

subject to the following three constraints:

(i) Each lattice point can have at most one vertex placed on it.

(ii) Each vertex must be placed on some lattice point.

(iii) Adjacent vertices in the string must be placed on adjacent lattice points.

For example, suppose vertex i and i+1 are adjacent in the input graph. On a 3D

79

square lattice, if vertex i is placed on lattice point (x, y, z), then vertex i + 1 must be

placed on one of six possible lattice points: (x ± 1, y, z), (x, y ± 1, z), or (x, y, z ± 1).

There are many possible valid foldings for an input string. We are interested in

finding certain types of foldings. With respect to a particular folding of an input

string, we say a pair of vertices forms a contact if they are not adjacent on the string,

they are both labeled 1, and they are placed on neighboring lattice points. The goal

of the string folding problem is to find a folding of the input string that maximizes

the number of contacts.

Figure 5-1 shows a 3D folding for a string. Throughout the figures in this chapter,

vertices labeled 1 are denoted by black dots and vertices labeled 0 are denoted by

white or unfilled dots.

z=0

z=1

x

y z

Figure 5-1: In this folding, all contacts are formed on or between the 2D planes z = 0
(lower) and z = 1 (upper). Black dots represent 1’s and white dots represent 0’s.

5.1.1 Background

Berger and Leighton proved that the 3D string folding problem is NP-hard [BL98].

On the positive side, Hart and Istrail gave a simple algorithm with an approximation

guarantee of 3
8
OPT − Θ(

√
OPT) [HI96]. This algorithm uses their 1

4
-approximation

algorithm for the 2D string folding as a subroutine and is described in Section 4.2.

Improving on the approximation guarantee of 3
8

for the 3D folding problem has been

an open problem for almost a decade.

80

5.1.2 Organization

We use some of the combinatorial methods from Chapter 2 to obtain a slightly im-

proved approximation guarantee of 3
8
+ǫ for the 3D folding problem, where ǫ is a small

positive constant. First, we present a new 3D folding algorithm in Section 5.2. Our

algorithm produces a folding with 3
8
OPT − Θ(1) contacts, improving the absolute

approximation guarantee of 3
8
−O(1√

OPT
) for Hart and Istrail’s algorithm. In Section

5.3, we show that if the input string is of a certain special form, we can modify our

algorithm to yield 3
4
OPT −O(δ(S)) contacts, where δ(S) is the number of transitions

in the input string S from sequences of 1’s in odd positions in the string to sequences

of 1’s in even positions. In Section 5.3.2, we reduce the general 3D folding problem to

the special case above, yielding a folding algorithm producing .439 · OPT − O(δ(S))

contacts. This reduction is based on a simple combinatorial theorem about binary

strings discussed in Section 2.2. In Section 5.4, we present a different combinatorial

algorithm that achieves .375 · OPT + Ω(δ(S)) contacts. Finally, we combine these

two algorithms removing the dependence on δ(S) in the approximation guarantee and

obtain an algorithm with a slightly improved approximation guarantee of .37501 for

the 3D folding problem.

5.2 A Diagonal Folding Algorithm

We will use the same notation as we did for the 2D folding problem (defined in Section

4.2). For the 3D problem, Hart and Istrail used a simple combinatorial upper bound

on the optimal number of contacts possible in any folding [HI96]. The 3D square

lattice is a bipartite graph and a string is a bipartite graph. Therefore, when placed

on the lattice, each vertex with an even index in the string can only be adjacent to a

vertex with an odd index in the string and vice versa. We refer to vertices with even

(odd) indices labeled 1 as even-1’s (odd-1’s).

Let S ∈ {0, 1}∗ be an input string for the folding problem. Let E [S] denote the

number of even-1’s in S and let O[S] denote the number of odd-1’s in S. Even-1’s can

only have contacts with odd-1’s and vice versa. In any folding of an input string, each

vertex (except for the two endpoints) has two vertices that are adjacent to itself on

the string and on the lattice. Since each lattice point has six neighbors, each vertex

can have at most four contacts. Let M3[S] denote the maximum number of contacts

possible for a string S. The maximum possible number of contacts in any folding of

S is:

M3[S] ≤ 2 · min{E [S],O[S]} + 4. (5.1)

We now present an algorithm that produces a folding with at least 3
8
OPT −Θ(1)

contacts in the worst case, thereby improving the absolute approximation guarantee

81

of the algorithm of Hart and Istrail [HI96] (see Section 4.2). Our algorithm is based

on diagonal folds. The algorithm guarantees that contacts form on and between two

adjacent 2D planes. Each point in the 3D lattice has an (x, y, z)-coordinate, where

x, y, and z are integers. We will fold the string so that all contacts occur on or

between the planes z = 0 and z = 1. The Diagonal Folding Algorithm is

described below and illustrated in Figure 5-1.

Diagonal Folding Algorithm

Input: a binary string S.

Output: a folding of the string S.

1. Let k = min{O[S], E [S]}.

2. Divide S into two strings such that SO contains at least half the odd-1’s and SE
contains at least half the even-1’s. We can do this by finding a point on the string
such that half of the odd-1’s are on one side of this point and half the odd-1’s are
on the other side. One of these sides contains at least half of the even-1’s. We call
this side SE and the remaining side SO. Then we replace all the even-1’s in SO with
0’s and replace all the odd-1’s in SE with 0’s.

3. Place the first odd-1 in SO on lattice point (1, 1, 1) and the next odd-1 in SO on
lattice point (2, 2, 1) and so on. For the first k

4 of the odd-1’s in SO, place the
ith odd-1 on lattice point (i, i, 1). Then place the (k/4 + 1) odd-1 on lattice point
(k/4− 1, k/4+1, 1). For the first k

4 − 1 of the even-1’s in SE , place the ith even-1 on
lattice point (i, i+1, 1). Use the dimensions z ≥ 1 to place the strings of 0’s between
consecutive odd-1’s in SO and the strings of 0’s between consecutive even-1’s in SE .

4. Place the (k/4 + 2) odd-1 in SO on lattice point (k/4 − 2, k/4 + 1, 0). Then place
the (k/4 + i) odd-1 in SO on lattice point (k/4 − i + 1, k/4 − i + 2, 0). Place the
(k/4) even-1 in SE on lattice point (k/4 − 1, k/4 − 1, 0). Place the (k/4 + i) even-1
in SE on lattice point (k/4− i− 1, k/4− i− 1, 0). Use the dimensions z ≤ 0 to place
the strings of 0’s between consecutive 1’s in SO or SE .

Lemma 19. The Diagonal Folding Algorithm produces a folding with at least
3
8
OPT − O(1) contacts.

Proof. Without loss of generality, we assume that k = O[S]. Consider the ith odd-1

from the first half of SO. It is placed on lattice point (i, i, 1). In Step 2, this odd-1

forms contacts with the even-1’s on the lattice points (i, i+1, 1) and (i−1, i, 1). In Step

3, it forms a contact with the lattice point (i, i, 0). Thus, each odd-1 from the first half

of SO has three contacts. Now consider an odd-1 with an index k/4+i, where i ranges

from 3 and k
4
. Each such odd-1 is placed on lattice point (k/4−i+1, k/4−i+2, 0). In

Step 3, it forms contacts with even-1’s on the lattice points (k/4− i+1, k/4− i+1, 0)

and (k/4−i+2, k/4−i+2, 0). In Step 2, it forms a contact with the even-1 on lattice

82

Figure 5-2: In this string, there are two switches.

point (k/4− i + 1, k/4 + i + 2, 1). Thus, it also has 3 contacts. By (5.1), we see that

an upper bound on the number of contacts is OPT ≤ 4O[S] = 4k + 2. We obtain

3 contacts for k
2
− 3 of the odd-1’s. Thus, the number of contacts in the resulting

folding is at least 3
8
OPT − 9.

5.3 Improved Diagonal Folding Algorithms

As the number of 1’s placed on the diagonal in the Diagonal Folding Algorithm

increases, the length of the diagonal of the resulting folding (i.e. the length equals
1
2
min{O[S], E [S]}) increases in a direction parallel to the line x = y. The height of the

folding may also increase depending on the maximum distance between consecutive

odd-1’s in SO or consecutive even-1’s in SE . However, regardless of the input string,

the resulting folding has the same constant width in the direction parallel to the line

x = −y. In other words, the resulting folding can be enclosed in a box of infinite height

and depth and constant width. Therefore, this third direction is relatively unused

and leaves room which we take advantage of in our improved folding algorithms.

We will take advantage of this unused space by modifying the Diagonal Fold-

ing Algorithm. We say a switch is a transition from a sequence of consecu-

tive odd-1’s to a sequence of consecutive even-1’s. For example, for the string

S = 100100010101101101011, δ(S) = 2 since there are two transitions (underlined)

from a maximal sequence of consecutive odd-1’s to a sequence of even-1’s. We denote

the number of switches in a string S by δ(S).

In this section, we present two algorithms with the following approximation guar-

antees:

(i) .375OPT + δ(S)
256

,

(ii) .439OPT − 16δ(S).

The first approximation guarantee is preferred when there are many switches in the

string S, i.e. the value of δ(S) is large. And the second approximation guarantee

is preferred when there are few switches in the string S, i.e. the value of δ(S) is

small. These two algorithms lead to an approximation guarantee that is independent

of δ(S). For any input string S, we output the folding from the algorithm that

results in the most contacts for that string. The output guarantee of this combination

of the two algorithms is lowest if the two approximation guarantees are equal, i.e.
3
8
OPT + δ(S)

256
= .439OPT − 16δ(S), which occurs when δ(S) = .0039990237OPT ,

yielding an approximation guarantee of at least .37501562.

83

Theorem 20. There is a linear time algorithm for the 3D folding problem that outputs

a folding with at least .37501 · OPT − O(1) contacts for any input string S.

In Section 5.3.1, we give an algorithm for the 3D string folding problem that has

an approximation guarantee of 3
4
OPT − 16δ(S) − O(1) for a special class of strings.

In Section 5.3.2, we show how to apply this algorithm to any string to obtain a factor

.439− 16δ(S) approximation algorithm. To apply this algorithm, we show that given

any input string S, we can find a subsequence that belongs to the special class of

strings. This subsequence will contain at least a .5857-fraction of the vertices in the

original input string. Thus, we obtain an algorithm with an approximation guarantee

of 3
4
· (.5857)OPT − 16δ(S) − O(1) = .439OPT − 16δ(S) − O(1). Finally, in Section

5.4, we give an algorithm for the 3D string folding problem with an approximation

guarantee of 3
8
OPT + δ(S)

256
.

5.3.1 An Algorithm for a Special Class of Strings

We will now give an algorithm that has an approximation guarantee of 3
4
OPT −

16δ(S)−O(1) for a special class of strings. First we will describe this class of strings.

We define consecutive odd-1’s (consecutive even-1’s) to be odd-1’s (even-1’s) that

are not separated by even-1’s (odd-1’s). For example, in the string 101000110001101,

there is a sequence of three consecutive odd-1’s followed by two consecutive even-1’s

followed by two consecutive odd-1’s. A string S belongs to the special class of strings

if it can be divided into two substrings, SO and SE such that SO is odd-monotone and

SE is even-monotone.

Definition 21. A string SO is called odd-monotone (even-monotone) if every maxi-

mal sequence of consecutive even-1’s (odd-1’s) is immediately preceded by at least as

many consecutive odd-1’s (even-1’s).

For example, the string 10101100011 is odd-monotone and the string 010001010110

1101011 is even-monotone.

Theorem 22. Let S = SOSE such that SO is an odd-monotone string and SE is an

even-monotone string and O[SO] = E [SE] and E [SO] = O[SE]. Then there is a linear

time algorithm that folds the string S achieving 3
4
OPT − 16δ(S) − O(1) contacts.

The main idea behind the algorithm referred to in Theorem 22 is to partition the

elements in SO and SE into main-diagonal elements and off-diagonal elements. We

then use the Diagonal Folding Algorithm to fold the main-diagonal elements

along the direction x = y and the off-diagonal elements into branches along the

direction x = −y. All 1’s will make three contacts except for a constant number

of 1’s—for each switch in the strings SO and SE—sacrificed to align the off-diagonal

branches and a constant number of 1’s for each repetition of the Diagonal Folding

Algorithm. This yields the claimed number of 3
4
OPT − O(δ(S)) − O(1) contacts.

84

z=1

z=0

Figure 5-3: . If the strings SO and SE are odd-monotone and even-monotone, respec-
tively, then we can divide the vertices in SO and SE into main-diagonal elements and
off-diagonal elements. The main-diagonal elements are denoted by solid lines and the
off-diagonal elements are denoted by dotted lines.

85

z=0

z=1

Figure 5-4: The Diagonal Folding Algorithm is used on the main-diagonal
elements (bold) and the off-diagonal elements.

To precisely define main-diagonal and off-diagonal elements, we use additional

notation. We use 0k and 1k (for some integer k ≥ 0) to refer to the strings consisting

of k 0’s and k 1’s, respectively. By writing S = Ek for some integer k, we mean that

S is of the form S = 02i0+1102i1+1102i2+1102i3+1 . . . 02ik−1+110ik for integers ij ≥ 0, and

all the 1’s in S are even-1’s. Likewise, we write S = Ok to refer to a string of the

same form where all 1’s are odd-1’s, i.e. S = 102i1+1102i2+1 102i3+1 . . . 02ik−1+110ik .

So we can express any string SE as SE = Ea1Ob1Ea2Ob2 . . . EakObk for k = δ(SE) and

integers ai and bi. If SE is even-monotone, then ai ≥ bi for all i. We can express any

string SO as SO = Oc1Ed1Oc2Ed2 . . .OcℓEdℓ for ℓ = δ(SO) and integers ci and di. If

SO is even-monotone, then ci ≥ di for all i.

Definition 23. For an odd-monotone string SO = Oc1Ed1Oc2Ed2 . . .OcℓEdℓ, the first

set of ci − di odd-1’s in each block, i.e. the elements Oc1−d1Oc2−d2 . . .Ocℓ−dℓ, are the

main-diagonal elements and the remaining elements Od1Ed1Od2Ed2 . . . OdℓEdℓ are the

off-diagonal elements in SO.

For even-monotone strings, we define main-diagonal and off-diagonal elements

analogously. In our modified algorithm, it will be useful to have SE and SO in a

86

special form. Two sets of off-diagonal elements in SO, OdiEdi and Odi+1Edi+1, are

separated by ci+1 − di+1 odd-1’s that are main-diagonal elements. We want them

to be separated by a number of main-diagonal elements that is a multiple of eight.

This will guarantee that the off-diagonals used to fold the off-diagonal elements are

regularly spaced so that none of the off-diagonal folds interfere with each other. We

will use the following simple lemma.

Lemma 24. For any odd-monotone string SO it is possible to change at most 8δ(SO)

1’s to 0’s so that the resulting string S ′ is of the form S ′ = Oa1E b1Oa2E b2 . . .Oak ,

where ai − bi is a positive multiple of eight for 1 ≤ i < k.

Proof. Suppose that SO initially is of the form

SO = Oα1Eβ1Oα2Eβ2 . . .Oαℓ .

First, we convert all Eβi with βi ≤ 8 into 0’s. This will merge some maximal sequences

of odd-1’s, yielding a string of the form

Oa1Eγ1Oa2Eγ2 . . .Oak

with k ≤ ℓ. For each i, we then convert (γi−ai)mod 8 even-1’s of Eγi into 0’s, yielding

a string of the desired form.

We note that there is an analogous version of Lemma 24 for even-monotone strings.

Additionally, we want the number of even-1’s deleted from SO to equal the number

of odd-1’s deleted from SE . In other words, we want the number of main-diagonal

elements in each of the strings to be equal. Without loss of generality, assume that

number of even-1’s deleted (i.e. changed to 0’s) in SO is greater than the number of

odd-1’s deleted in SE . Then, starting from the end of SE , we simply delete consecu-

tive odd-1’s until the number of deleted elements in each string is equal. With this

preparation, we can now state our folding algorithm.

Proof of Theorem 22: By the correctness of the Diagonal Folding Algo-

rithm, it suffices to consider whether some off-diagonals intersect each other. The

first step of the algorithm ensures that all off-diagonal branches are spread apart by

multiples of eight on the main-diagonal. Thus, neighboring branches do not intersect.

Furthermore, branches off the upper (z = 1) plane do not intersect with branches

off the lower (z = 0) place due to Step 4. Changing the plane when the main diag-

onal has a length ≡ 2 mod 4 ensures that branches on the upper plane will follow

diagonals x = −y + 8k for some k, and branches on the lower plane follow diagonals

x = −y + 8k + 4 for some k. Thus, branches are at least four lattice points apart,

showing that the folding is non-intersecting.

It remains to analyze the number of contacts produced by the folding. The Diag-

onal Folding Algorithm produces three contacts for almost every 1 in the string

87

Off-Diagonal Folding Algorithm

Input: A binary string S = SOSE , such that SO is odd-monotone, SE is even-
monotone, O[SO] = E [SE] and E [SO] = O[SE].

Output: A folding of the string S.

1. Change at most 8δ(S) 1’s to 0’s in SO and SE to yield the form specified in

2. Change at most 8δ(S) 1’s to 0’s in SO and SE so that for each maximal block of
odd-1’s (even-1’s) and following maximal block of even-1’s (odd-1’s) in SO (SE), the
number of odd-1’s (even-1’s) and even-1’s (odd-1’s) differ by a multiple of eight (see
Lemma 24).

3. Run Diagonal Folding Algorithm on main-diagonal elements along the direc-
tion x = y and change from plane z = 0 to z = 1 when the length of the main
diagonal equals 4 · ⌊O[SO]/8⌋ + 2.

4. Run Diagonal Folding Algorithm on the off-diagonal elements along the di-
rection x = −y. The off-diagonal elements attached to the main-diagonal elements
on the plane z = 1 are folded along the diagonals x = −y + 8k. The off-diagonal

elements attached to the main-diagonal elements on the plane z = 0 are folded along
the diagonals x = −y + 8k + 4. (See Figure 5-5.)

S. So it suffices to bound the number of 1’s in S that do not receive three contacts.

The following is an exhaustive list: (i) the up to 8δ(S) 1’s changed into 0’s in Step 2;

(ii) a constant number of 1’s at the ends of the main-diagonal (see Lemma 19) and

because we fold over at a length ≡ 2 mod 4 in Step 3; (iii) in Step 4, for each of

the at most δ(S) off-diagonal branches: at most three 1’s at the end of each branch

(by Lemma 19), and at most five 1’s to connect the off-diagonal branch to the main-

diagonal (see Figure 5-5). So in summary, up to 16δ(S) + O(1) 1’s might not receive

three contacts, so that we obtain 3O[S] − 16δ(S) − O(1) ≥ 3
4
OPT − 16δ(S) − O(1)

contacts.

5.3.2 Relating Folding to String Properties

We will now show how to apply the algorithm for the special class of strings from

the previous section to the general string folding problem. The main idea is given

a string, find a long subsequence that has the special form required by the Off-

Diagonal Folding Algorithm. If we can keep most of the elements, then using

this algorithm, we would get very close to the performance guarantee of 3
4
OPT −

16δ(S) − O(1) contacts.

Thus, the combinatorial problem that we want to solve is the following: given a

string S ∈ {0, 1}∗ such that E [S] = O[S], we want to divide the string into two sub-

88

z=0

z=1

Figure 5-5: Folding the off-diagonal elements in Step 4 of the Off-Diagonal Fold-

ing Algorithm. The main-diagonal elements are represented by the dashed lines
on the main diagonal. The off-diagonal elements are represents by the solid lines on
the off-diagonals. This figure shows how the repetitions of the Diagonal Folding

Algorithm on the off-diagonals interleave and thus so not interfere with each other.
The closeup gives an example of how the off-diagonal folds are connected to the main
diagonal.

strings such that one contains an even-monotone subsequence and the other contains

an odd-monotone subsequence and the number of 1’s contained in these monotone

subsequences is as large as possible, since the 1’s in these subsequences are the 1’s

that will have contacts in the Off-Diagonal Folding Algorithm.

Given a string S ∈ {0, 1}∗, we will treat it as a loop L(S) by attaching its end-

points. In other words, we are only going to consider foldings of the string that place

the first and last element of S on adjacent lattice points. (If S has odd length, we

can add a 0 to the end of the string and fold this string instead of S; a folding of this

augmented string will yield a valid folding of the original string.)

Lemma 25. Let L(S) ∈ {0, 1}∗ be a loop, and k = min{O[S], E [S]}. Then it is

possible to change some 1’s in L(S) to 0’s so that there is a partition L(S) = SOSE

89

with SO and SE odd- and even-monotone, respectively, O[SO] = E [SE], E [SO] = O[SE],

and O[SO] + O[SE] ≥ (2 −
√

2)k. Furthermore, this partition can be constructed in

linear time.

Proof. We first apply Lemma 2 from Chapter 2 to cut the string into two substrings.

This lemma states that we can always find a vertex p ∈ L(S) such that as we start in

that position and go clockwise, we encounter at least as many odd-1’s as even-1’s and

as we go in the counter-clockwise direction, we encounter at least as many even-1’s as

odd-1’s. We cut the loop L(S) at such a point p and then make another cut in L(S)

at a point such that the number of 1’s in each of the two resulting strings is equal.

We refer to these strings as SO and SE , respectively. Note that in these two strings,

the number of odd-1’s in one string equals the number of even-1’s in the other and

vice versa, i.e. O[SO] = E [SE] and E [SO] = O[SE].

Now we have two substrings SO and SE . The substring SO has the property that

every suffix (or prefix–depending on how you view the string) has at least as many

odd-1’s as even-1’s and SE has the property that every suffix has at least as many

even-1’s as odd-1’s.

We want to change the minimum number of 1’s to 0’s in SO and SE so that the

resulting substrings are odd-monotone and even-monotone, respectively, and O[SO] =

E [SE] and E [SO] = O[SE], since these are the conditions required by Theorem 22.

Consider a binary string S ′
E corresponding to the subsequence of 1’s in SE in which

each odd-1 is replaced by an a and each even-1 is replaced by a b. The problem

of changing the minimum number of 1’s to 0’s in SE so that the resulting string

is odd-monotone is equivalent to finding the longest block-monotone subsequence in

the string S ′
E . A subsequence is block-monotone if every block of a’s is immediately

followed by a block of at least as many b’s. (For the string SO, we have the same

problem stated with a’s and b’s inverted: we want to find the longest subsequence in

which every block of b’s is immediately followed by a block of at least as many a’s.)

By Lemma 6, we can furthermore choose these subsequences such that O[S ′
O] = E [S ′

E]

and E [S ′
O] = O[S ′

E] after the transformation.

Lemma 25 implies that every 3D folding instance can be converted into the case

required by Theorem 22 by converting not too many 1’s into 0’s. We obtain the

following corollary of Lemma 25 and Theorem 22.

Corollary 26. There is a linear time algorithm for the 3D folding problem that

generates at least .439 · OPT − 16δ(S) − O(1) contacts.

Proof. Given an input string S, first obtain SO and SE with Lemma 25. Note that

the number of switches does not increase from S to SOSE . Since the number of 1’s

is reduced by a factor of (2 −
√

2), the optimal number of contacts might also have

been decreased by that factor. Applying Theorem 22 to SO and SE therefore leads to

a folding with at least 3
4
(2−

√
2)OPT − 16δ(S)−O(1) > .439 ·OPT − 16δ(S)−O(1)

contacts.

90

5.4 Another 3D String Folding Algorithm

In this section, we give a case-based algorithm that has an approximation guarantee

of .375 + O(δ(S)). Consider the substrings SO and SE of the loop L(S) such that

O[SO] = E [SE] and E [SO] = O[SE]. We can do this by cutting the loop L(S) at

the point p chosen according to Lemma 2 in Chapter 2 and cutting L(S) at a point

so that the two resulting substrings have an equal number of 1’s. Furthermore, in

this section, we can assume that O[SO] = E [SO]. If we have O[SO] > E [SO], then

the algorithms we describe below will have strictly better approximation ratios than

what we prove.

We will consider the following modified version of the string SO. For every se-

quence of consecutive even-1’s, we turn all but one of them into a 0. For example,

we would transform the string 1101011 into 1100001. Abusing notation, we will from

now on refer to this modified string as SO. We will divide the even-1’s in SO into the

following disjoint categories. Suppose each of these categories has δ1k, δ2k, δ3k, and

δ4k even-1’s respectively, where k = O[S]. Without loss of generality, we assume that

δ1 + δ2 + δ3 + δ4 ≥ δ/2, i.e. half the switches occur in SO.

Each even-1 in SO falls in exactly one of the following categories:

1. Even-1’s in blocks of 1’s of length at least ten or in a block of 1’s of length

nine that begins with an odd-1.

2. Even-1’s in blocks of 1’s of length at least two and at most nine that begin or

end with an even-1.

3. Even-1’s in blocks of length one.

4. Even-1’s in blocks of length at least three and at most seven that begin and

end with an odd-1.

For each of the four cases above, we will show how to slightly modify the Diagonal

Folding Algorithm so that it gives an approximation guarantee of 3
8

+ ciδi for

some constant ci. In the Diagonal Folding Algorithm, one way to account for

contacts is to attribute 3
2

of a contact to each odd-1 on the main diagonal and 3
2

of a

contact to each even-1 on the main diagonal. The main idea behind the modifications

of the algorithm is to fold the string so that some odd-1’s may no longer be on the

main diagonal (thus losing 3
2

contacts per odd-1) but form more than 3
2

contacts

per odd-1 with neighboring even-1’s (making use of the switches). In some of the

modifications (such as Case 2) we do not actually remove any of the odd-1’s from the

main diagonal; due to the nature of the switches, we can still get O(1) contacts per

switch. We will first prove a lemma that we will use in several of the cases.

91

Lemma 27. Suppose we delete (i.e. change 1’s to 0’s) i odd-1’s in SO. Then we can

re-divide S into substrings SO and SE so that we again have E [SE] = O[SO]. If we

run the Diagonal Folding Algorithm on these new strings SE and SO, we will

obtain a folding with at least 3
2
(O[S] − i) contacts on the main diagonal.

Proof. We use Lemma 2 from Chapter 2 to choose s1 so that O[Si] ≥ E [Si] for all

i = 1, . . . n, where Si = s1 . . . si. If we define S̃i := snsn−1 . . . si, then again by Lemma

2 we have E [S̃i] ≥ O[S̃i] for all i = 1, . . . n.

If we remove i odd-1’s from SO, then the main diagonal fold of SO would be much

shorter than that of SE . However, if we move si = si+j for some j so that once again

O[SO] = E [SE], then the number of odd-1’s in SO is at least O[S]−i

2
. Thus, we obtain

at least 3
2
(O[S] − i) contacts on the main diagonal.

a

b

c

Figure 5-6: Cases 1 and 2. The first figure shows a folding for even-1’s in Case 1. At
point a, the folding for a block of 1’s of length nine that starts with an odd-1 begins.
Note that three odd-1’s are not placed on the main diagonal, but five contacts – in
addition to those that will be formed on the main diagonal – are obtained. At point
b, a block of 1’s of length 13 is folded. Here, five odd-1’s are not placed on the main
diagonal, but eight additional contacts are formed off the main diagonal. At point c,
a block of 1’s of length 11 is folded. It is basically the same folding as used for blocks
of length nine. The second figure shows even-1’s in Case 2. For at least half of the
blocks of 1’s of length at least two and at most nine that begin or end with an even-1,
we can get an extra contact by placing an even-1 adjacent to an odd-1 on the main
diagonal.

Case 1

Lemma 28. There is a modification of the Diagonal Folding Algorithm with

approximation guarantee at least 3
8

+ δ1
40

.

92

Proof. An even-1 in Case 1 occurs in a block of 1’s of length at least ten or in a block

of 1’s of length nine beginning with an odd-1. Suppose we have a block of 11 1’s

that begins with an odd-1, which will give the worst case approximation ratio. Then

we fold this block as in Figure 5-6 starting at the point labeled c. Note that three

odd-1’s from SO that would be on the main diagonal in the Diagonal Folding

Algorithm are not placed on the main diagonal. Thus, the main diagonal will be

shorter – at least 3δ1k
5

shorter, because for every five even-1’s in Case 1, we take at

least three odd-1’s off the main diagonal. By Lemma 27 we can then assume that the

length of the main diagonal is:

1

2

(
O[S] − 3δ1O[S]

5

)
.

For every odd-1 in SO on the main diagonal, we obtain three contacts. For every

three odd-1’s in SO off the diagonal (corresponding to five even-1’s in Case 1), we

obtain five contacts. Thus, the approximation guarantee is:

(
3

2

(
O[S] − 3δ1O[S]

5

)
+

5δ1O[S]

5

)
1

4O[S]
=

3

8
− 9δ1

40
+

δ1

4
=

3

8
+

δ1

40
.

Case 2

Lemma 29. There is a modification of the Diagonal Folding Algorithm with

approximation guarantee at least 3
8

+ δ2
32

.

Proof. An even-1 in Case 2 is in a block of 1’s of length at least two and at most

nine that begins or ends with an even-1. In this case, the main diagonal will remain

the same length as in the Diagonal Folding Algorithm. We will obtain extra

contacts by placing even-1’s from SO next to odd-1’s on the main diagonal. This is

shown in Figure 5-6.

For at least half of the blocks (in SO) of 1’s of length at least two and at most nine

that begin or end with even-1’s, we can get an extra contact by placing an even-1

adjacent to an odd-1 on the main diagonal. We may only be able to do this for half

of the blocks, because the folding in Figure 5-6 will work only for an even-1 followed

immediately by an odd-1 or an odd-1 followed immediately by an even-1, but does not

allow alternating between these two cases. Among these types of blocks, the worst

case is a block of eight 1’s that begins or ends with an even-1. Such a block uses four

even-1’s from Case 2. If all the Case 2 even-1’s fell in this category, we could get an

extra contact for half of them, which is one per eight switches. This ratio is better

for block lengths other than eight. In particular, note that a block of length nine that

begins with an even-1 must also end with an even-1, so we always get a contact for

one of the two ends of such a block. In summary, we get the following approximation

93

guarantee:

(
3O[S]

2
+

δ2O[S]

8

)
1

4O[S]
=

3

8
+

δ2

32
.

Case 3

(i)

(ii)

(iii)

(iv)

Figure 5-7: Case 3.

Lemma 30. There is a modification of the Diagonal Folding Algorithm with

approximation guarantee at least 3
8

+ δ3
32

.

Proof. An even-1 in Case 3 is in a block of length 1. Thus, substrings containing such

an even-1 look like: 1001001, 100001001, etc. In other words, an even-1 in Case 3 is

in a substring 10q110q21 where q1 and q2 are both positive even integers. Consider

the string 10i10q110q210j1 where i and j are odd integers, i.e. the first two 1’s and

last two 1’s in the string are odd-1’s and the middle 1 is an even-1. (We can assume

for now that there is no even-1 between the first two odd-1’s or the last two odd-1’s

because as we will discuss later, if there are two Case 3 even-1’s that share an odd-1 as

a neighbor, our folding will only use one of these even-1’s.) We will use four different

modifications of the Diagonal Folding Algorithm based on the values of i and

j. We name these types of even-1’s as follows: (i) i ≥ 3, j ≥ 3; (ii) i = 1, j = 1; (iii)

i ≥ 3, j = 1; (iv) i = 1, j ≥ 3. See Figure 5-7 for illustrations of the foldings for each

of these types. We now distinguish two cases: first, if more than half of the Case 3

even-1’s are of type (i),(ii) or (iii), and second, if more than half are of type (iv).

Suppose that more than half of the Case 3 even-1’s are of types (i)-(iii). The

foldings for these three types can be used consecutively (as opposed to the folding of

(iv), which cannot be applied right after itself). However, we can only guarantee a

contact for half of the even-1’s in these three types because we may have, for example,

94

10i10q110q21001001, i.e. two even-1’s that are both adjacent to the same odd-1. In

this case, we can only get an extra contact for one such even-1.

We note that the approximation guarantee obtained is a linear combination of the

approximation guarantees for the three types, weighted by their relative frequency.

The worst case therefore occurs if half the of Case 3 even-1’s are of a single type,

(i),(ii) or (iii). Since they change the length of the main diagonal, types (i) and (ii)

are worse than (iii).

Since types (i) and (ii) either remove an odd-1 from the main diagonal (type (ii))

or result in some even-1’s from SE not having contacts on the main diagonal (type

(i)), they are worse than type (iii). Both of these types have the same approximation

guarantee. We will just analyze the case when half the Case 3 even-1’s are type (i).

The folding modification for this type changes the length of the main diagonal to at

least:

1

2

(
O[S] +

δ3O[S]

4

)
.

This is because we assumed that at least half of the Case 3 even-1’s are of types

(i)-(iii) and we can use half of these even-1’s. For each even-1 in Case 3, we lose 1

odd-1 on the main diagonal and we gain 2 contacts per even-1 off the main diagonal.

Therefore, the approximation guarantee is:

(
3

(
1

2

(
O[S] +

δ3O[S]

4

)
− δ3O[S]

4

)
+

2δ3O[S]

4

)
1

4O[S]
=

3

8
+ δ3

(
3

8
− 3

4
+

1

2

)
1

4O[S]
=

3

8
+

δ3

32
.

In the other case, when more than half of Case 3 even-1’s are of type (iv), per

type (iv) even-1 we obtain 2 contacts and one odd-1 is not used on the main diagonal.

Therefore, in this case the approximation guarantee is better than 3
8

+ δ3
32

.

Case 4

Lemma 31. There is a modification of the Diagonal Folding Algorithm with

approximation guarantee at least 3
8

+ δ4
24

.

Proof. In Case 4, even-1’s occur in blocks of length at least 3 and at most 7 that

begin and end with an odd-1. Consider all the odd-1’s that occur in blocks of length

at least 3 and at most 7 and that begin and end with an odd-1. Note that the number

of such odd-1’s is at least 4δ4
3

since the ratio of odd-1’s to even-1’s in this case is at

least 4 to 3. To deal with Case 4, we will cut the loop L(S) into two pieces in a

particular way. Previously, we cut the loop L(S) into two pieces to secure certain

properties. Here, we will cut the loop L(S) into two pieces in the following (different)

95

way: Let s0 be an element in SO that divides SO into two parts, each containing half

the odd-1’s of Case 4 (i.e. odd-1’s that are in blocks with Case 4 even-1’s). This will

be one of the new points at which we cut L(S). Then we find another point such that

one string contains at least half the odd-1’s and the other string contains at least half

the even-1’s. For these new strings, let us call them S ′
O and S ′

E , note that now S ′
E

contains at least half of the O[S] odd-1’s that were in blocks with the Case 4 even-1’s.

Thus, we can apply the Case 2 folding to S ′
E , i.e. S ′

E now contains blocks of 1’s that

begin with odd-1’s. This gives the following the approximation guarantee:

(
3O[S]

2
+

1

4

4δ4O[S]

3

1

2

)
1

4O[S]
=

3

8
+

δ4

24
.

Lemma 32. We can modify the Diagonal Folding Algorithm to create a folding

with 3
8
OPT + δ(S)

256
− O(1) contacts for any binary string S.

Proof. Setting all the approximation guarantees equal, we have:

δ1

40
=

δ2

32
=

δ3

32
=

δ4

24
.

Using the fact that δ1 + δ2 + δ3 + δ4 = δ
2
, we obtain that when δ1 ≥ 5δ

32
, we should use

the Case 1 modification. This implies that the approximation guarantee for the four

cases is at least:

3

8
+

5δ

32

1

40
=

3

8
+

δ

256
.

5.5 Discussion

We have described an algorithm for the 3D string folding problem that slightly im-

proves on the previously best-known algorithm to yield an approximation guarantee

of .37501. The contribution of this algorithm is not so much the actual gain in the ap-

proximation ratio, but the demonstration that the previously best-known algorithm

is not optimal, even though there have been no improvements for almost a decade.

Our algorithm capitalizes on combinatorial properties of the string rather than using

purely geometric ideas. New geometric ideas are most likely necessary to improve the

approximation guarantee significantly.

In conclusion, improvement on the 2D algorithm does not immediately lead to

an improvement for the 3D case because it might be the case that the 2D folding

is asymmetric and therefore cannot be “layered”. Thus, despite the fact that the

first algorithm of Hart and Istrail [HI96] for the 3D problem used their 2D algorithm

96

as a subroutine, improving the approximation ratios for the two problems seems to

present different difficulties.

97

98

Chapter 6

Linear Ordering

6.1 Introduction

Vertex ordering problems comprise a fundamental class of combinatorial optimization

problems that, on the whole, is not well understood. For the past thirty years, com-

binatorial methods and linear programming techniques have failed to yield improved

approximation guarantees for many well-studied vertex ordering problems such as the

linear ordering problem and the traveling salesman problem. Semidefinite program-

ming has proved to be a powerful tool for solving a variety of cut problems, as first

exhibited for the maximum cut problem [GW95]. Since then, semidefinite program-

ming has been successfully applied to many other problems that can be categorized as

cut problems such as coloring k-colorable graphs [KMS98], maximum-3-cut [GW04],

maximum k-cut [FJ97], maximum bisection and maximum uncut [Ye01, HZ01, YZ03],

and correlation clustering [CGW03], to name a few. In contrast, there is no such com-

parably general approach for approximating vertex ordering problems.

In this chapter, we focus on a well-studied and notoriously difficult combinatorial

optimization problem known as the linear ordering problem. Given a complete di-

rected weighted graph, the goal of the linear ordering problem is to find an ordering

of the vertices that maximizes the weight of the forward edges. A vertex ordering is

defined as a mapping of each vertex i ∈ V to a unique label ℓ(i). An edge (i, j) ∈ A is

a forward edge with respect to an ordering if ℓ(i) < ℓ(j). Without loss of generality,

we can assume that the labels are integers chosen from the range {1, 2, . . . , n}, where

n = |V |.
Although the problem is NP-hard [Kar72], it is easy to estimate the optimum

to within a factor of 1
2
: In any ordering of the vertices, either the set of forward

99

Figure 6-1: The maximum acyclic subgraph of the graph on the left is shown with a
corresponding optimal vertex ordering.

edges or the set of backward edges accounts for at least half of the total edge weight.

It is not known whether the maximum can be estimated to a better factor using a

polynomial-time algorithm. Approximating the problem to within better than 65
66

is

NP-hard [NV01].

The linear ordering problem is also known as the maximum acyclic subgraph

problem. Given a weighted directed graph, the maximum acyclic subgraph problem

is that of finding the maximum weight subgraph that contains no cycles. The forward

edges in any linear ordering comprise an acyclic subgraph and a topological sort of

an acyclic subgraph yields a linear ordering of the vertices in which all edges in the

acyclic subgraph are forward edges.

6.1.1 Background

Improving upon the best-known approximation guarantee of 1
2

for the linear ordering

problem has been an open problem since the 1970’s—from the inception of the field

of approximation algorithms. It is one of the most fundamental graph optimization

problems for which no non-trivial approximation algorithm is known. Another prob-

lems that falls into this category is, for example, the vertex cover problem. Given an

undirected graph, the vertex cover problem is to find a minimum cardinality subset

of the vertices such that every edge in the graph has at least one endpoint in this set

of vertices. The vertices in any minimal matching has size at most twice the size of

the minimum vertex cover. No better approximation factor is known and there is a

gap between this approximation ratio and the best known hardness of 1.36 [DS02].

A major open problem is to close the gap between the best-known approximation

guarantee of 1
2

and the best-known hardness of 65
66

for the linear ordering problem.

Combinatorial methods have failed to yield algorithms with a constant-factor approx-

imation guarantee of more than 1
2
. The goal of most approaches for improving the

approximation guarantee for an NP-hard maximization problem is to find a good

upper bound on the value of an optimal solution. For a directed graph, G = (V, A), a

trivial bound on the size of an optimal linear ordering is the total edge weight, which

is |A| if the graph is unweighted. This is the upper bound used in the combinatorial

100

factor 1
2
-approximation algorithm in which a arbitrary ordering of the vertices is con-

sidered, and either the set of forward edges or the set of backward edges is selected.

At least one set contains at least half the total edge weight. Thus, the “all edges”

or “total edge weight” bound can be no more than twice as large as optimal. The

major open problem is to find an efficiently computable bound that is strictly less

than twice the value of an optimal solution for all graphs.

Linear programming formulations are often used to compute upper bounds on the

optimal values of instances of NP-hard maximization problems. A classical integer

program for the linear ordering problem has a variable xij for each edge (i, j) in the

graph.

max
∑

ij∈A

wijxij

∑

ij∈C

xij ≤ |C| − 1 ∀ cycles C ∈ A

xij ∈ {0, 1}.

In a solution for this integer program, at least one edge (i, j) in each cycle C has value

xij = 0. Thus, a solution comprised of all edges (i, j) such that xij = 1 corresponds

to an acyclic subgraph. The linear programming relaxation is obtained by relaxing

the constraint that the xij variables are integral.

max
∑

ij∈A

wijxij (6.1)

∑

ij∈C

xij ≤ |C| − 1 ∀ cycles C ∈ A

0 ≤ xij ≤ 1.

This linear programming relaxation has an exponential number of constraints. How-

ever, there is a simple polynomial-time separation oracle, so the upper bound it

provides can be computed in polynomial time. The separation oracle is as follows:

Given a solution {xij} to the linear program, let yij = 1−xij . Find the shortest cycle.

If the shortest cycle C ′ has value less than 1, then the total value of the xij variables

corresponding to the cycle C ′ is greater than |C ′| − 1.

There is another well-studied linear programming relaxation for this problem. It is

a relaxation of the following integer program in which there is a variable xij for every

pair of vertices i, j ∈ V , i.e. there is a variable for every edge in the complete graph

on n vertices. If for a pair of vertices i, j ∈ V , there is no edge (i, j) in the graph,

then the edge weight wij = 0. This integer program has a constraint for each directed

2-cycle and each directed 3-cycle in the complete directed graph on the vertices of

101

the input graph G = (V, A). This integer program is due to Potts [Pot80]. Integer

solutions correspond to acyclic subgraphs. A proof of this can be found in [New00].

In contrast to the previous linear program (6.1), the linear programming relaxation

of this integer program has a polynomial number of constraints.

max
∑

i,j∈V

wijxij (6.2)

xij + xji = 1 ∀i, j ∈ V

xij + xjk + xki ≤ 2 ∀i, j, k ∈ V

0 ≤ xij ≤ 1.

Both of these relaxations, (6.1) and (6.2), have the same optimal value [NV01].

The quality of a linear programming relaxation in terms of the upper bound it provides

is usually measured by the integrality gap. The integrality gap is the maximum ratio

of the optimal fractional solution to the optimal integral solution taken over all graphs

with non-negative edge weights. For example, if there is a graph with a maximum

acyclic subgraph of half the edges for which the optimal value of a linear programming

relaxation is all of the edges, then this example would demonstrate that the integrality

gap of this relaxation is 2.

The integrality gap of both of these relaxations is 2−ǫ for any ǫ > 0 [NV01, New00].

Since the gap is arbitrarily close to 2, in the worst case the upper bound provided by

these linear relaxations is no better than the “all edges” bound. Thus, it is unlikely

that these relaxations can be used to approximate the problem to within a factor

greater than 1
2
. The graphs used to demonstrate these integrality gaps are random

graphs in which each edge in the complete undirected graph on n vertices is chosen

with uniform edge probability of approximately 2
√

log n/n and then randomly directed.

For sufficiently large n, such a random graph has a maximum acyclic subgraph close

to half the edges with high probability. However, each of the polyhedral relaxations

studied provide an upper bound for these graphs that is asymptotically close to all

the edges, which exceeds the integral optimal by a factor arbitrarily close to 2.

6.1.2 Organization

We first discuss a new semidefinite programming relaxation for the linear ordering

problem. A vertex ordering for a graph G = (V, E) with n vertices can be fully

described by a series of n− 1 cuts. We use this simple observation to relate cuts and

orderings and to relate cut and ordering semidefinite programs. This and other ideas

behind the development of our semidefinite programming relaxation are thoroughly

discussed in Chapter 3.

Next we show that for sufficiently large n, if we choose a random directed graph on

n vertices with uniform edge probability p = d
n

(i.e. every edge in the complete undi-

102

rected graph on n vertices is chosen with probability p and then directed randomly),

where d = ω(1), with high probability, the bound provided by our semidefinite pro-

gram for this graph will be no more than 1.64 times the integral optimal. In particular,

the graphs used in [NV01] to demonstrate integrality gaps of 2 for the widely-studied

polyhedral relaxations fall into this category of random graphs, i.e. each edge in these

graphs is chosen with probability 2
√

log n/n. The main idea is that our semidefinite

relaxation provides a “good” bound on the value of an optimal linear ordering for a

graph if it has no small roughly balanced bisection. With high probability, a random

graph with uniform edge probability contains no such small balanced bisection. These

results are also presented in [New04].

6.2 Relating Cuts and Orderings

The techniques we apply to study efficiently computable upper bounds for the lin-

ear ordering problem are based on semidefinite programming techniques applied by

Goemans and Williamson to the maximum cut problem [GW95]. We discuss their

methods and the connections between cut problems and vertex ordering problems.

6.2.1 Relaxations for Cut Problems

Given an undirected weighted graph G = (V, E), the maximum cut (maxcut) prob-

lem is to find a bipartition (S, S) of the vertices that maximizes the weight of the

edges crossing the partition. The maxcut problem is one of Karp’s original NP-

complete problems [Kar72]. Because it is unlikely that there exist efficient algorithms

for such NP-hard optimization problems, a common approach is to find an efficient

ρ-approximation algorithm. A ρ-approximation algorithm is a polynomial time al-

gorithm that produces a solution with value at least ρ times that of an optimal

solution. In 1976, Sahni and Gonzales [SG76] gave a 1
2
-approximation algorithm

for the maxcut problem. Their greedy algorithm iterates through the vertices in an

arbitrary order and adds vertex i to S or S depending on which placement maxi-

mizes the weight of the edges crossing the cut so far. For nearly twenty years, 1
2

was the best constant factor approximation known. Linear programming relaxations

have been studied in order to find improved bounds on the value of an optimal so-

lution [Bar83, BGM85, BM86, PT95], but the bounds provided by these relaxations

were shown to be larger than the optimal by a factor of 2 in the worst case [Pol92].

In 1993, Goemans and Williamson used a semidefinite programming relaxation to

obtain a breakthrough .87856-approximation algorithm for the maxcut problem [GW95].

The goal of their algorithm is to assign each vertex i ∈ V a vector vi ∈ {1,−1} so as

to maximize the weight of the edges (i, j) such that vi 6= vj. Integer solutions for the

following quadratic program correspond to integer solutions for the maxcut problem

in which each vertex i in S is assigned vi = 1 and each vertex i in S is assigned

103

vi = −1. That is, an edge (i, j) such that vi = 1 and vj = −1, contributes value wij

to the objective function and an edge (i, j) such that vi = vj contributes 0 to the

objective function.

max
1

2

∑

i<j

wij(1 − vi · vj) (6.3)

vi ∈ {1,−1} ∀i ∈ V.

A semidefinite programming relaxation is obtained by relaxing the constraint that

vi ∈ {1,−1} to the constraint vi ∈ Rn and adding the constraints that the vectors vi

are unit vectors and that the matrix of dot products vi · vj is positive semidefinite.

max
1

2

∑

i<j

wij(1 − vi · vj) (6.4)

vi · vi = 1 ∀i ∈ V

vi ∈ Rn ∀i ∈ V.

Goemans-Williamson gave an algorithm for the maxcut problem in which they

first solve this semidefinite programming relaxation, then choose a random hyperplane

r ∈ Rn, and finally place a vertex i in S if r · vi < 0 and in S if r · vi ≥ 0. The

expected value of the edges crossing such a cut is at least .87856 of optimal [GW95].

A closely related graph optimization problem for which Goemans and Williamson

also gave a radically improved approximation guarantee is the maximum directed cut

(dicut) problem. Given a directed weighted graph G = (V, A), the dicut problem is to

find a bipartition of the vertices—call these disjoint sets S1 and S2—that maximizes

the weight of the directed edges (i, j) such that vertex i is in set S1 and vertex j is in

set S2. In 1993, the best-known approximation guarantee for the dicut problem was
1
4
. This approximation factor can be achieved by randomly assigning the vertices to

either S1 or S2. The expected weight of the edges (i, j) such that i falls in S1 and j

falls in S2 is 1
4

the total edge weight.

Goemans and Williamson gave a greatly improved .79607-approximation algo-

rithm for the dicut problem. Solutions for the following quadratic program corre-

spond to dicuts, i.e. only edges (i, j) such that vi = −1 and vj = 1 contribute weight

wij to the objective function.

104

max
∑

i<j

wij

(1 − vi · vj + vi · v0 − vj · v0)

4
(6.5)

vi ∈ {1,−1} ∀i ∈ V ∪ {0}.

The semidefinite relaxation that Goemans and Williamson use for their algorithm

is obtained by replacing the requirement that vi be integral with the constraint that

the vectors vi are unit vectors in Rn+1 and the matrix of dot products vi ·vj is positive

semidefinite.

max
∑

i<j

wij

(1 − vi · vj + vi · v0 − vj · v0)

4
(6.6)

vi · vi = 1 ∀i ∈ V ∪ {0}
vi ∈ Rn+1 ∀i ∈ V ∪ {0}.

6.2.2 A Relaxation for the Linear Ordering Problem

We can generalize the semidefinite programming relaxation for the dicut problem

[GW95] to obtain a new semidefinite programming relaxation for the linear ordering

problem. The development of this semidefinite relaxation is discussed thoroughly in

Chapter 3. We describe a vertex ordering using n + 1 unit vectors for each vertex.

Each vertex i ∈ V has n + 1 (n = |V |) associated unit vectors: v0
i , v

1
i , v

2
i , . . . v

n
i . In

an integral solution, we enforce that v0
i = −1, vn

i = 1 and that vh
i and vh+1

i differ for

only one value of h, 0 ≤ h < n. This position h denotes vertex i’s position in the

ordering. For example, suppose we have a graph G that has four vertices, arbitrarily

labeled 1 through 4. Consider the vertex ordering in which vertex i is in position i.

An integral description of this vertex ordering is:

{v0
1, v1

1, v2
1, v3

1, v4
1} = {−1, 1, 1, 1, 1},

{v0
2, v1

2, v2
2, v3

2, v4
2} = {−1,−1, 1, 1, 1},

{v0
3, v1

3, v2
3, v3

3, v4
3} = {−1,−1,−1, 1, 1},

{v0
4, v1

4, v2
4, v3

4, v4
4} = {−1,−1,−1,−1, 1}.

This representation of an ordering can be viewed as a generalization of the dicut

semidefinite program. If we fix an h, and consider the set of vectors {vh
i } in an integral

solution, which corresponds to an actual vertex ordering. If we plug these vectors into

the dicut semidefinite program (6.5), then the value of the objective function on this

105

set of vectors is exactly the weight of the forward edges crossing the cut obtained by

partitioning the first h vertices and the last n − h vertices in the ordering.

In an integral solution, we can enforce that for each vertex i, the vectors vh
i and

vh+1
i differ for only one value of h between 1 and n, by setting (vh

i − vh−1
i) · (vℓ

j −
vℓ−1

j) ≥ 0. Consider the first value of h such that vh−1
i = −1 and vh

i = 1. Then

(vh
i − vh−1

i) = 2. If there is any other values of j, ℓ such that vℓ
j = −1 and vℓ−1

j = 1,

then (vh
i − vh−1

i) · (vℓ
j − vℓ−1

j) = −4, which violates the constraint.

We also enforce that the sum of the dot products of the v
n
2
i vectors sum to 0:∑

i,j∈V v
n
2
i · v

n
2
j = 0. For the sake of convenience and without loss of generality, we

assume that n is even, possibly by adding a dummy vertex. If n is even, then in an

integral solution, exactly half of the vectors in the set {v
n
2
i } are 1 and exactly half are

-1. So the sum of the vectors in this set, i.e.
∑

i∈V v
n
2
i , is 0.

The set of constraints below form an integer quadratic program for the linear

ordering problem based on the description of an ordering using unit vectors. A set

of vectors {vh
i , vh−1

i , vℓ
j , v

ℓ−1
j } contributes value wij to the objective function exactly

when vh−1
i = vℓ−1

j = −1 and vh
i = vℓ

j = 1, i.e. when vertex i is in position h in the

ordering and vertex j is in position ℓ in the ordering.

max
1

4

∑

ij∈A

∑

1≤h<ℓ≤n

wij(v
h
i − vh−1

h) · (vℓ
j − vℓ−1

j)

(P) (vh
i − vh−1

i) · (vℓ
j − vℓ−1

j) ≥ 0 ∀i, j ∈ V, h, ℓ ∈ [n] (6.7)

vh
i · vh

i = 1 ∀i ∈ V, h ∈ [n]

v0
i · v0 = −1 ∀i ∈ V

vn
i · v0 = 1 ∀i ∈ V

∑

i,j∈V

v
n
2
i · v

n
2
j = 0

vh
i ∈ {1,−1} ∀i, h ∈ [n].

Let G = (V, A) be a directed graph. By P (G), we denote the optimal value of the

integer quadratic program P on the graph G. We obtain a semidefinite programming

relaxation for the linear ordering problem by relaxing the last constraint in (P) to:

vh
i ∈ Rn2+1. We denote the optimal value of the relaxation of P on the graph G as

PR(G). There are many additional inequalities that we can add, but we will focus

on the relaxation of (P) since the corresponding relaxation is strong enough to prove

the results in this chapter. Additional constraints are discussed in Chapter 3.

6.2.3 Cuts and Uncuts

Suppose we have a directed graph G = (V, A) and we are given a set of unit vectors

{vi} ∈ Rn+1, 0 ≤ i ≤ n. We define the forward value of this set of vectors as

the value obtained if we compute the value of the dicut semidefinite programming

106

relaxation [GW95, FG95] using these vectors. Specifically, the forward value for this

set of vectors is:

1

4

∑

ij∈A

wij(v0 + vi) · (v0 − vj) =
1

4

∑

ij∈A

wij(1 − vi · vj + v0 · vi − v0 · vj). (6.8)

In an integral solution for the dicut problem, there will be edges that cross the cut

in the backward direction, i.e. they are not included in the dicut. For a specified

set of unit vectors, we can view the vectors as having backward value. We define the

backward value of the set of vectors {vi} as:

1

4

∑

ij∈A

wij(v0 − vi) · (v0 + vj) =
1

4

∑

ij∈A

wij(1 − vi · vj − v0 · vi + v0 · vj). (6.9)

This can be obtained by replacing vi by −vi for i 6= 0 in the forward value. The

difference between the forward and backward value of a set of vectors {vi} is:

1

2

∑

ij∈A

wij(vi · v0 − vj · v0). (6.10)

Lemma 33. If a directed unweighted graph G = (V, A) has a maximum acyclic

subgraph of (1
2

+ δ)|A| edges, then there is no set of unit vectors {vi} such that the

difference between the forward and backward value of this set of vectors exceeds 2δ|A|.

Proof. We show that given a unit vector solution {vi} to the semidefinite program

which maximizes the objective function (6.10), we can find an integral solution (i.e.

an actual cut) in which the difference of forward and backward edges crossing the

cut is exactly equal to the objective value. If the difference of an actual cut exceeds

2δ|A|, e.g. suppose it is (2δ+ ǫ)|A|, then we can find an ordering with (1
2
+δ+ ǫ/2)|A|

forward edges, which is a contradiction. This ordering is found by taking the cut that

yields (2δ+ǫ)|A| more forward than backward edges and ordering the vertices in each

of the two sets greedily so as to obtain at least half of the remaining edges.

Suppose we have a set of unit vectors {vi} such that the value of equation (6.10)

is at least (2δ + ǫ)|A| = β|A|. We show that we can find an actual cut such that the

difference between the forward and the backward edges is at least β|A|. Note that

v0 · vi is a scalar quantity since v0 is a unit vector that without loss of generality is

(1, 0, 0, . . .). Thus, our objective function can be written as 1
2

∑
ij∈A wij(zj−zi) where

1 ≥ zi ≥ −1. This results in the following linear program. We claim that there is an

optimal solution to the following linear program that is integral.

107

max
1

2

∑

ij∈A

wij(zj − zi) (6.11)

−1 ≤ zi ≤ 1, ∀i ∈ V.

To show this, note that we are optimizing a linear objective function over a poly-

tope that is the cube with vertices in {−1, 1}n. The vertices of the polytope are

integral and so there is always an optimal solution that is integral. Thus, the integral

solution obtained must have difference of forward and backward edges that is equal

to the objective value (6.11).

By Lemma 33, if a directed graph has a maximum acyclic subgraph close to half

the total edge weight, then there are no cuts that have a high difference of forward

and backward value. We will show that if PR(G) is large, i.e. if the linear ordering

semidefinite programming value for a graph G is large, then the backward value for

all sets of vectors {vh
i } for each fixed h is small. If a maximum acyclic subgraph of

G is close to half the edges, the the forward value for all sets of vectors will also be

small by Lemma 33. In particular, the sum of the forward and backward value across

defined by the vectors {v
n
2
i } will be small. In other words, the value of the maxcut

semidefinite program (6.4) evaluated at the vectors {v
n
2
i } will be small. By constraint∑

i,j∈V v
n
2
i · v

n
2
j = 0, these vectors are very “spread out”. Thus, we can show that if

PR(G) is large, then in expectation, a random hyperplane will find a cut with small

edge weight crossing it such that at least a constant fraction of the vertices are on

each side of the cut.

We will also find a discussion of the following problem useful. Consider the prob-

lem of finding a balanced partition of the vertices of a given graph (i.e. each partition

has size n
2
) that maximizes the weight of the edges that do not cross the cut. This

problem is referred to as the max-n
2
-uncut problem by Halperin and Zwick [HZ01].

Below is an integer quadratic program for the max-n
2
-uncut problem.

max
∑

ij∈A

wij

(1 + vi · vj)

2

(T)
∑

i,j∈V

vi · vj = 0

vi · vi = 1 ∀i ∈ V

vi ∈ {1,−1} ∀i ∈ V.

We obtain a semidefinite programming relaxation for the max-n
2
-uncut problem by

relaxing the last (integrality) constraint to: vi ∈ Rn, ∀i. We denote the value of the

relaxation of T on the graph G as TR(G).

108

Lemma 34. Let G = (V, A) be an unweighted graph and let ǫ, δ be positive constants.

Suppose the maximum acyclic subgraph of G is (1
2

+ δ)|A|. If PR(G) ≥ (1 − ǫ)|A|,
then TR(G) ≥ (1 − 2ǫ − 2δ)|A|.

Proof. For each edge ij ∈ A, using constraint (6.7), we have:

∑

1≤h<ℓ≤n

(vh
i − vh−1

i) · (vℓ
j − vℓ−1

j) ≤ (6.12)

∑

1≤h≤n
2

,1≤ℓ≤n
2

(vh
i − vh−1

i) · (vℓ
j − vℓ−1

j) + (6.13)

∑

n≥h> n
2
,n≥ℓ> n

2

(vh
i − vh−1

i) · (vℓ
j − vℓ−1

j) + (6.14)

∑

1≤h≤n
2
,n≥ℓ> n

2

(vh
i − vh−1

i) · (vℓ
j − vℓ−1

j). (6.15)

For each edge, we refer to the quantity (6.12) as the forward value for that edge with

respect to PR(G). The same term summed instead over h > ℓ is referred to as the

backward value of the edge with respect to PR(G). We can simplify the terms above.

Let vi = v
n
2
i .

aLL
ij =

∑

1≤h≤n
2
,1≤ℓ≤n

2

(vh
i − vh−1

i) · (vℓ
j − vℓ−1

j) = (vi + v0) · (vj + v0),

aRR
ij =

∑

n
2
<h≤n, n

2
<ℓ≤n

(vh
i − vh−1

i) · (vℓ
j − vℓ−1

j) = (v0 − vi) · (v0 − vj),

aLR
ij =

∑

1≤h≤n
2
, n
2
≤ℓ≤n

(vh
i − vh−1

i) · (vℓ
j − vℓ−1

j) = (vi + v0) · (v0 − vj),

aRL
ij =

∑

n
2
<h≤n,1≤ℓ≤n

2

(vh
i − vh−1

i) · (vℓ
j − vℓ−1

j) = (v0 − vi) · (v0 + vj).

Lemma 35.
∑

ij∈A
1
4
(aRR

ij + aLL
ij + aLR

ij + aRL
ij) = |A|.

Proof. For every edge ij ∈ A, we have:

aLL
ij + aRR

ij + aLR
ij + aRL

ij = 4.

By definition, we have PR(G) ≤
∑

ij∈A
1
4
(aLL

ij + aRR
ij + aLR

ij). By assumption,

PR(G) ≥ (1 − ǫ)|A|, so we have:

109

...

a

a

a

aij
RR

ij
LR

ij
RL

ij
LL

Figure 6-2: Summing aLR
ij over all the edges results in the forward value and summing

aRL
ij over all the edges results in the backward value.

∑

ij∈A

1

4
aRL

ij ≤ ǫ|A|.

The above inequality says that the backward value of the vectors {vi} (i.e. quantity

(6.9)) is at most the backward value of PR(G). By Lemma 33, the difference of the

edges crossing the cut in the forward direction and the edges crossing the cut in the

backward direction is at most 2δ|A|.

∑

ij∈A

1

4
(aLR

ij − aRL
ij) ≤ 2δ|A|.

This implies that the forward value cannot exceed the backward value by more than

2δ|A|. Thus, we can bound the forward value as follows:

∑

ij∈A

1

4
aLR

ij ≤ (ǫ + 2δ)|A|.

This implies that if we sum the quantity 1
4
(aLL

ij + aRR
ij) over all edges in A, then the

total value of this sum is at least (1 − 2ǫ − 2δ)|A|.

∑

ij∈A

1

4
(aLL

ij + aRR
ij) =

∑

ij∈A

1 + vi · vj

2
.

Thus, we have:

∑

ij∈A

1 + vi · vj

2
≥ (1 − 2ǫ − 2δ)|A|.

110

6.3 Balanced Bisections of Random Graphs

A bisection of a graph is a partition of the vertices into two equal (or with cardinality

differing by one if n is odd) sets. We use a related definition in this section.

Definition 36. A γ-bisection of a graph for γ ≤ 1
2

is the set of edges that cross a cut

in which each set of vertices has size at least γn.

Suppose we choose an undirected random graph on n vertices in which every edge

is present with probability p = d
n
. The expected degree of each vertex is d and the

expected number of edges is dn
2

. We call such a class of graphs Gn,p.

Lemma 37. For any fixed positive constants ǫ, γ, if we choose a graph G ∈ Gn,p on

n vertices for a sufficiently large n with p = d
n

and d = ω(1), then every γ-bisection

contains at least (1 − ǫ)γ(1 − γ)nd edges with high probability.

Proof. We use the principle of deferred decisions. First, we choose a γn, (1 − γ)n

partition of the vertices. Thus γ(1 − γ)n2 edges from the complete graph on n

vertices cross this cut. Then we can choose the random graph G by picking each edge

with probability p = d
n
. The expected number of edges from G crossing the cut is

µ = (γ(1− γ)n2)(d
n
) = γ(1− γ)dn. For each edge in the complete graph that crosses

the cut, we have the indicator random variable Xi such that Xi = 1 if the edge crosses

the cut and Xi = 0 if the edge does not cross the cut. Let X =
∑

Xi, i.e. X is the

random variable for the number of edges that cross the cut. By Chernoff Bound, we

have:

Pr[X < (1 − ǫ)γ(1 − γ)dn)] < e−
ǫ2γ(1−γ)dn

2 .

We can union bound over all the possible γ-bisections. There are less than 2n ways

to divide the vertices so that at least γn are in each set. Thus, the probability that

the minimum γ-bisection of G is less than a (1 − ǫ) fraction of its expectation is:

Pr[min γ-bisection(G) < (1 − ǫ)γ(1 − γ)nd] <
2n

e
ǫ2γ(1−γ)dn

2

.

Let d = ω(1). Then for any fixed positive constants γ, ǫ, this probability will be

arbitrarily small for sufficiently large n.

111

6.4 A Contradictory Cut

In this section, we prove our main theorem. Suppose we choose a directed random

graph on n vertices in the following way: we include every edge in the complete

undirected graph with probability p = d
n
. Then we randomly direct each edge. We

call this class of graphs ~Gn,p. Note that if we randomly choose a graph from ~Gn,p, the

underlying undirected graph is randomly chosen from Gn,p.

Theorem 38. For sufficiently large n, d = ω(1), and p = d
n
, if we randomly choose

a graph ~G ∈ ~Gn,p, then with high probability, the ratio PR(~G)/P (~G) ≤ 1.64.

We divide the proof of Theorem 38 into two cases: (i) when d = o(n) and (ii)

when d = Ω(n). The proof of both cases is similar. As stated above, we choose a

directed graph ~G from ~Gn,p since the linear ordering problem is defined for directed

graphs. However, in our proof, we really only rely on properties of the underlying

undirected graph, which we refer to as G (chosen from Gn,p).

The main idea behind the proof is that since with high probability, every γ-

bisection of random graph is very close to γ(1− γ)dn edges, we can weight the edges

in the complete graph in such a way so that with high probability, every γ-bisection

of the complete graph has negative weight. We refer to this weighted graph as Gw.

Then we can show that if the value PR(~G) is “high”, we can use a random hyperplane

to find a γ-bisection of the weighted graph Gw that is non-negative for some constant

γ > 0.

Let E represent the edges in the complete undirected graph Kn for some fixed

n. Let A ⊆ E represent the edges both in the directed graph ~G and the underlying

undirected graph G, which is chosen at random from Gn,p. Let ǫ1 be a small positive

constant whose value can be arbitrarily small for sufficiently large n. We weight the

edges in E as follows:

wij = − n

(1 − ǫ1)d
if ij ∈ A, (6.16)

wij = 1 if ij ∈ E − A. (6.17)

We refer to this weighted graph as Gw. If we choose a random 1
2
-bisection of Gw,

the expected contribution of the edges from A to the bisection is roughly −n2

4
. The

expected contribution of the edges from E−A is roughly n2

4
− dn

4
. Thus, in expectation,

the bisection should have a negative value.

Lemma 39. Let γ > 0 be a fixed positive constant. If Gw is chosen on n vertices,

for sufficiently large n, then with high probability every γ-bisection of Gw has negative

weight.

112

Proof. By Lemma 37 with high probability a γ-bisection of G has at least (1−ǫ1)γ(1−
γ)nd edges. Thus, with high probability the total weight of the edges in the minimum

γ-bisection of Gw is at most:

|E − A| + |A|
(
− n

(1 − ǫ1)d

)
=

γ(1 − γ)n2 − (1 − ǫ1)γ(1 − γ)nd + (1 − ǫ1)γ(1 − γ)nd

(
− n

(1 − ǫ1)d

)
=

γ(1 − γ)

(
n2 − (1 − ǫ1)nd + (1 − ǫ1)nd

(
− n

(1 − ǫ1)d

))
=

γ(1 − γ) (−(1 − ǫ1)nd) < 0.

If the value of PR(~G) is high, i.e. at least (1 − ǫ1)|A| for some small constant

ǫ1 > 0, and the maximum acyclic subgraph is (1
2

+ 2δ)|A|, then by Lemmas 33 and

34, we have TR(G) ≥ (1 − 2ǫ − 2δ)|A|. Let ǫ2 = 2ǫ + 2δ.

To prove our next lemma, we use the following theorem from [GW95]. The quan-

tity W stands for the weight of the edges cut by a random hyperplane and E[W]

stands for the expected value of the edge weight cut by a random hyperplane.

Theorem 2.7 [GW] Let W− =
∑

i<j w−
ij , where x− = min(0, x). Then

{E[W] − W−} ≥ α

{
1

2

∑

i<j

wij(1 − vi · vj) − W−

}
.

We will apply this theorem to the graph Gw and show if the value of TR(G) is

high, i.e. TR(G) ≥ (1 − ǫ2)|A|, and if ǫ2 < .36, then the expected weight cut by a

random hyperplane is non-negative. Moreover, the expected weight is βn2, where β

is a small positive constant. Thus, at least
√

βn vertices appear on each side. So

setting γ =
√

β, we will be able to prove the lemma.

Lemma 40. Let γ > 0 be a small fixed constant (e.g. γ = .01). For sufficiently large

n, choose a graph G ∈ Gn,p, for p = d
n

where d = ω(1). Let Gw be the weighted graph

obtained by weighting each edge in G with edge weight − n
(1−ǫ1)d

and each remaining

edge in the complete graph on n vertices with edge weight 1.

Let {vi}, i ∈ V be a set of unit vectors that satisfy the following constraints:

∑

i,j∈V

vi · vj = 0 (6.18)

113

∑

ij∈A

1 + vi · vj

2
≥ (1 − ǫ2)|A|. (6.19)

If ǫ2 < .36, then we can find a γ-bisection of Gw with a strictly positive value.

Proof. We use Goemans-Williamson’s random hyperplane algorithm to show that we

can find a cut that is roughly balanced and has a strictly positive value. Let W

represent the total weight of the edges that cross the cut obtained from a random hy-

perplane. Let W− denote the sum of the negative edge weights, i.e. W− = −|A| n
(1−ǫ1)d

.

Applying Theorem 2.7 from [GW], we have:

E[W] ≥ α

{
1

2

∑

i<j

wij(1 − vi · vj) − W−

}
+ W−

≥ α

∑

i<j:wij>0

wij

1 − vi · vj

2
+

∑

i<j:wij<0

|wij|
1 + vi · vj

2

 + W−.

To bound E[W], we need to determine the values of three quantities:

(i)
∑

i<j:wij>0 wij
1−vi·vj

2
,

(ii)
∑

i<j:wij<0 |wij|1+vi·vj

2
,

(iii) W−.

By definition W− = −|A| n
(1−ǫ1)2d

, so we know quantity (iii). We will now compute

quantities (i) and (ii). First, we will compute quantity (i), i.e. we want to calculate the

value of
∑

i<j:wij>0
1−vi·vj

2
, which is equal to quantity (i) since all edges with positive

edge weight have weight 1.

By condition (6.18), we have that
∑

i,j∈V vi·vj = 0 and therefore
∑

i<j

1−vi·vj

2
= n2

4
.

By condition (6.19), we have that
∑

i<j:wij<0
1−vi·vj

2
≤ ǫ2|A|.

∑

i<j:wij>0

1 − vi · vj

2
=

∑

i<j

1 − vi · vj

2
−

∑

i<j:wij<0

1 − vi · vj

2

≥
∑

i<j

1 − vi · vj

2
− ǫ2|A|

=
n2

4
− ǫ2|A|.

114

Thus, quantity (i) is at least n2

4
− ǫ2|A|. By constraint (6.19), quantity (ii) is at

least (1 − ǫ2)|A| n
(1−ǫ1)d

. Now we have:

E[W] ≥ α

{
(
n2

4
− ǫ2|A|) +

n

(1 − ǫ1)d
(1 − ǫ2)|A|

}
− n

(1 − ǫ1)d
|A|.

For large enough n, we can choose ǫ1 to be arbitrarily small. (Recall that ǫ1 is a

small positive constant such with high probability the minimum γ-bisection of G for

some fixed positive constant γ has at least (1− ǫ1)γ(1− γ)2nd edges.) Let us assume

that |A| = (1 ± ǫ)dn, where d = ω(1) and d = o(n) and ǫ is an arbitrarily small

positive constant. With exponentially high probability, the number of edges in A is

(1 − ǫ)dn
2

≤ |A| ≤ (1 + ǫ)dn
2

. This can be seen using one application of a Chernoff

Bound. The expected weight of the edges cut by a random hyperplane, E[W], can

be bounded from below by a value arbitrarily close to the following (i.e. because ǫ

and ǫ1 can be made arbitrarily small):

(
3α

4
− 1

2
− αǫ2

2
)n2 − o(n2) ≥ (.1585 − αǫ2

2
)n2 − o(n2). (6.20)

If the value of ǫ2 is such that the quantity on line (6.20) is strictly greater than βn2

for some positive constant β, then we will have a contradiction for sufficiently large

n. Note that if this value is at least βn2, then each side of the cut contains at least√
βn vertices, so it is a

√
β-bisection. So we have:

(.1585 − αǫ2

2
)n2 ≥ βn2 ⇒ (.1585 − αǫ2

2
) ≥ β.

This value will be strictly positive (i.e. greater than .00035) as long as ǫ2 < .36.

Thus, it must be the case that ǫ2 > .36. Setting γ =
√

.00035 > .01, there must

be a γ-bisection of positive value if ǫ2 < .36. This contradicts Lemma 39: For any

fixed constant γ > 0 and for sufficiently large n, every γ-bisection of Gw has negative

weight.

To conclude the proof, we need to prove the case when d = Ω(n), i.e. d = cn for

some constant c < 1. In this case, we will weight the edges in Gw differently, but the

idea is the same. We weight the edges as follows:

wij =
c − 1

c
if ij ∈ A, (6.21)

wij = 1 if ij ∈ E − A. (6.22)

With these edge weights, we can modify Lemma 39 to show that with high proba-

115

bility, every γ-bisection of Gw has weight no more than ǫ1n
2 for some arbitrarily small

positive constant ǫ1 and sufficiently large n. We again apply Theorem 2.7 [GW95].

We need to compute the quantities (i), (ii), and (iii) denoted above. First, note that

quantity (i) is the same as above. Namely,

∑

i<j:wij>0

wij

1 − vi · vj

2
=

n2

4
− ǫ2|A|.

Next we compute quantity (ii):

∑

i<j:wij<0

|wij|
1 + vi · vj

2
= (1 − ǫ2)|A|(1 − c)

c
.

Next we compute quantity (iii). We have W− = |A| (c−1)
c

. Thus, we have:

E[W] ≥ α

{
(
n2

4
− ǫ2|A|) +

(1 − c)

c
(1 − ǫ2)|A|

}
+

(c − 1)

c
|A|

= α

{
3n2

4
− ǫ2n

2

2
− cn2

2

}
− n2

2
+

cn2

2

=

(
3α

4
− ǫ2α

2
− cα

2
− 1

2
+

c

2

)
n2.

With high probability, all γ-bisections are arbitrarily small, i.e. ǫ1n
2 for an arbi-

trarily small positive constant ǫ1. Thus, we have:

(
3

2
− 1

α
+ c(

1

α
− 1)

)
< ǫ2.

The quantity on the left is minimized when c = 0. Thus, ǫ2 > .36.

We now prove our main theorem.

Proof of Theorem 38: We fix very small positive constants γ, ǫ1 and choose suf-

ficiently large n. We choose a random undirected graph G from Gn,p and randomly

direct each edge to obtain the graph ~G. We weight the edges of the undirected graph

Kn as discussed previously (we use weights (6.16) and (6.17) for d = ω(1), o(n) and

(6.21) and (6.22) for d = Θ(n)) and obtain Gw. By Lemma 39, the minimum γ-

bisection of Gw is negative with high probability. Thus, with high probability, if we

116

solve the linear ordering semidefinite program and obtain PR(~G), then equation (6.19)

holds for the set of vectors {vi = v
n
2
i } only when ǫ2 > .36.

Suppose the maximum acyclic subgraph of ~G, i.e. P (~G) is (1
2

+ δ)|A| for some

positive constant δ. Then for the set of vectors {vi = v
n
2
i }, the value of PR(~G) is

upper bounded by:

PR(~G) ≤
∑

ij∈A

1

4
(aLL

ij + aRR
ij + aLR

ij).

By Lemma 40: ∑

ij∈A

1

4
(aLL

ij + aRR
ij) =

∑

ij∈A

1 + vi · vj

2
≤ .64|A|.

By Lemma 33, the difference between forward and backward measured according to

the {vi} vectors is: ∑

ij∈A

1

4
(aLR

ij − aRL
ij) ≤ (2δ)|A|.

Thus, ∑

ij∈A

1

4
(aLR

ij) ≤ (.18 + δ)|A|.

So we can upper bound the value of PR(~G) by (.82+δ)|A|. Thus, with high probability,

for the graph ~G, we have:

PR(~G)

P (~G)
≤ .82 + δ

.5 + δ
≤ .82

.5
= 1.64.

6.5 Discussion and Conjectures

In this chapter and in Chapter 3, we make a connection between cuts and vertex

orderings of graphs in order to obtain a new semidefinite programming relaxation

for the linear ordering problem. We show that the relaxation is “good” on random

graphs chosen with uniform edge probability ω(1)
n

, i.e. if we choose such a graph at

random, then with high probability, the ratio of the semidefinite programming bound

to the integral optimal is at most 1.64.

In [HZ01], Halperin and Zwick give a .8118-approximation for a related problem

that they call the max n
2
-directed-uncut problem. Given a directed graph, the goal

of this problem is to find a bisection of the vertices that maximizes the weight of the

edges that cross the cut in the forward direction plus the weight of the edges that do

not cross the cut. We note that a weaker version of Theorem 38 follows from their

117

...

Figure 6-3: This graph demonstrates the worst integrality gap that we are aware of
for the semidefinite programming relaxation for the linear ordering problem (P). For
a 3-cycle with five isolated vertices, the gap is about 2.25.

.8118-approximation algorithm. This is because their semidefinite program for the

max n
2
-directed uncut problem is the sum over all edges of terms aLL

ij , aRR
ij , and aLR

ij .

(To obtain their .8118-approximation, they use a semidefinite program that includes

the triangle inequalities (3.12).) If for some directed graph G = (V, A), PR(G) has

value at least (1− ǫ)|A|, then the value of their semidefinite programming relaxation

also has at least this value. Thus, if ǫ is arbitrarily small, we can obtain a directed

uncut of value close to .8118 of the edges, which is a contradiction for a random graph

with uniform edge probability. With high probability, the largest directed uncut of a

random directed graph is arbitrarily close to 3
4

of the edges. In this chapter, our goal

was to give a self-contained proof of this theorem.

We would like to comment on the similarity of this work to the work of Poljak

and Delorme [DP93] and Poljak and Rendl [PR95] on the maxcut problem. Poljak

showed that the class of random graphs with uniform edge probability could be used

to demonstrate an integrality gap of 2 for several well-studied polyhedral relaxations

for the maxcut problem [Pol92]. These same graphs can be used to demonstrate an

integrality gap of 2 for several widely-studied polyhedral relaxations for the linear

ordering problem [NV01]. The similarity of these results stems from the fact that the

polyhedral relaxations for the maxcut problem are based on odd-cycle inequalities and

the polyhedral relaxations for the linear ordering problem are based on cycle inequal-

ities. Poljak and Delorme subsequently studied an eigenvalue bound for the maxcut

problem that is equivalent to the bound provided by the semidefinite programming

relaxation used in the Goemans-Williamson algorithm [GW95]. Despite the fact that

random graphs with uniform edge probability exhibit worst-case behavior for sev-

eral polyhedral relaxations for the maxcut problem, Delorme and Poljak [DP93] and

Poljak and Rendl [PR95] experimentally showed that the eigenvalue bound provides

a “good” bound on the value of the maxcut for these graphs. This experimental

evidence was the basis for their conjecture that the 5-cycle exhibited a worst-case

integrality gap of 0.88445 for the maxcut semidefinite relaxation [DP93, Pol92]. The

gap demonstrated for the 5-cycle turned out to be very close to the true integrality

gap of .87856 [FS].

For the semidefinite relaxation of the integer program (P), the worst-case inte-

grality gap of which we are aware is for the graph that contains a directed 3-cycle and

isolated vertices. (This was discovered in a joint effort with Prahladh Harsha.) For

118

example, for a graph G made up of a directed 3-cycle with five isolated vertices, the

optimal value PR(G) is about 2.25. As the number of isolated vertices increases, the

value of PR(G) seems to increase. It was too difficult computationally to run graphs

with more than eight vertices.

In closing, we conjecture that our semidefinite programming relaxation provides

a “good” bound on the optimal value of a linear ordering for all graphs.

Conjecture 41. The integrality gap of the semidefinite programming relaxation of

(P) is at most 2 − ǫ for some positive constant ǫ.

119

120

Bibliography

[ABD+97] Richa Agarwala, Serafim Batzoglou, Vlado Dancik, Scott E. Decatur, Mar-

tin Farach, Sridhar Hannenhalli, S. Muthukrishnan, and Steven Skiena.

Local rules for protein folding on a triangular lattice and generalized

hydrophobicity in the HP model. Journal of Computational Biology,

4(2):275–296, 1997. Extended abstract also appeared in proceedings of

RECOMB 1997 and proceedings of SODA 1997.

[Ali95] Farid Alizadeh. Interior point methods in semidefinite programming with

applications to combinatorial optimization. SIAM Journal on Optimiza-

tion, 5:13–51, 1995.

[Bar83] Francisco Barahona. The max-cut problem in graphs not contractible to

K5. Operations Research Letters, 2:107–111, 1983.

[BGM85] Francisco Barahona, Martin Grötschel, and Ali Ridha Mahjoub. Facets

of the bipartite subgraph polytope. Mathematics of Operations Research,

10:340–358, 1985.

[BKRV00] Avrim Blum, Goran Konjevod, R. Ravi, and Santosh Vempala. Semi-

definite relaxations for minimum bandwidth and other vertex-ordering

problems. Theoretical Computer Science, 235:25–42, 2000. Extended ab-

stract appear in proceedings of STOC 1998.

[BL76] Kellogg S. Booth and George S. Lueker. Testing the consecutive ones

property, interval graphs, and graph planarity using PQ tree algorithms.

Journal of Computer and System Sciences, 13:335–379, 1976.

[BL98] Bonnie Berger and Tom Leighton. Protein folding in the hydrophobic-

hydrophilic (HP) model is NP-complete. Journal of Computational Biol-

ogy, 5(1):27–40, 1998. Extended abstract in Proceedings of Second Annual

International Conference on Research in Computational Molecular Biology

(RECOMB), pages 30–39, New York, 1998.

[BM86] Francisco Barahona and Ali Ridha Mahjoub. On the cut polytope. Math-

ematical Programming, 36:157–173, 1986.

121

[BS97] Bonnie Berger and Peter Shor. Tight bounds for the maximum acyclic

subgraph problem. Journal of Algorithms, 25(1):1–18, 1997. Extended

abstract in Proceedings of Symposium on Discrete Algorithms (SODA),

pages 236–243, San Francisco, 1990.

[BV04] Dimitris Bertsimas and Santosh Vempala. Solving convex programs by

random walks. Journal of the ACM, 51(4):540–556, 2004.

[CGP+98] Pierluigi Crescenzi, Deborah Goldman, Christos H. Papadimitriou, An-

tonio Piccolboni, and Mihalis Yannakakis. On the complexity of protein

folding. Journal of Computational Biology, 5(3):423–465, 1998. Extended

abstract appear in proceedings of STOC 1998.

[CGW03] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering

with qualitative information. In Proceedings of the 44th Annual IEEE

Symposium on Foundations of Computer Science (FOCS), pages 524–533,

Boston, 2003.

[CHN03] Robert D. Carr, William E. Hart, and Alantha Newman. Discrete op-

timization models for protein folding. Technical report, Sandia National

Laboratories, Albuquerque, New Mexico, 2003.

[CS98] Benny Chor and Madhu Sudan. A geometric approach to betweeness.

SIAM Journal on Discrete Mathematics, 11:511–523, 1998.

[CW58] Hollis B. Chenery and Tsunehiko Watanabe. International comparisons

of the structure of production. Econometrica, 26(4):487–521, 1958.

[Dil85] Kenneth A. Dill. Theory for the folding and stability of globular proteins.

Biochemistry, 24:1501, 1985.

[Dil90] Kenneth A. Dill. Dominant forces in protein folding. Biochemistry,

29:7133–7155, 1990.

[dlV83] W. Fernandez de la Vega. On the maximum cardinality of a consistent set

of arcs in a random tournament. Journal of Combinatorial Theory, Series

B, 35:328–332, 1983.

[DP93] Charles Delorme and Svatopluk Poljak. The performance of an eigenvalue

bound in some classes of graphs. Discrete Mathematics, 111:145–156, 1993.

Also appeared in Proceedings of the Conference on Combinatorics, Mar-

seille, 1990.

[DS02] Irit Dinur and Shmuel Safra. On the importance of being biased. In

Proceedings of the 34th Annual Symposium on the Theory of Compututing

(STOC), pages 33–42, 2002.

122

[FG95] Uriel Feige and Michel X. Goemans. Approximating the value of two

prover proof systems with applications to MAX-2-SAT and MAX DICUT.

In Proceedings of the Third Israel Symposium on Theory of Computing and

Systems, pages 182–189, 1995.

[FJ97] Alan Frieze and Mark R. Jerrum. Improved approximation algorithms for

MAX-k-Cut and MAX BISECTION. Algorithmica, 18:61–77, 1997.

[FS] Uriel Feige and Gideon Schechtman. On the optimality of the random

hyperplane rounding technique for MAX-CUT. Random Structures and

Algorithms. To appear.

[GHL] Harvey J. Greenberg, William E. Hart, and Guiseppe Lancia. Opportuni-

ties for combinatorial optimization in computational biology. INFORMS

Journal of Computing. To appear.

[GKK74] Fred Glover, Ted Klastorin, and Darwin Klingman. Optimal weighted

ancestry relationships. Management Science, 20:B1190–B1193, 1974.

[GLS81] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid

method and its consequences in combinatorial optimization. Combinator-

ica, 1:169–197, 1981.

[GLS88] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Al-

gorithms and Combinatorial Optimization. Springer-Verlag, Berlin, 1988.

[GW95] Michel X. Goemans and David P. Williamson. Improved approximation

algorithms for maximum cut and satisfiability problems using semidefinite

programming. Journal of the ACM, 42:1115–1145, 1995.

[GW04] Michel X. Goemans and David P. Williamson. Approximation algorithms

for MAX-3-CUT and other problems via complex semidefinite program-

ming. STOC 2001 Special Issue of Journal of Computer and System Sci-

ences, 68:442–470, 2004.

[HI96] William E. Hart and Sorin Istrail. Fast protein folding in the hydrophobic-

hydrophilic model within three-eighths of optimal. Journal of Computa-

tional Biology, 3(1):53–96, 1996. Extended abstract appeared in proceed-

ings of STOC 1995.

[HR94] Refael Hassin and Shlomi Rubinstein. Approximations for the maximum

acyclic subgraph problem. Information Processing Letters, 51(3):133–140,

1994.

[HZ01] Eran Halperin and Uri Zwick. A unified framework for obtaining improved

approximation algorithms for maximum graph bisection problems. In Pro-

ceedings of Eighth Conference on Integer Programming and Combinatorial

Optimization (IPCO), pages 210–225, Utrecht, 2001.

123

[JR] Raja Jothi and Balaji Raghavachari. Protein folding in the hydrophobic-

hydrophilic model: How good is theory in practice? In preparation.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Com-

plexity of Computer Computations, pages 85–104. Plenum Press, New

York, 1972.

[Kar84] Narendra Karmarker. A new polynomial-time algorithm for linear pro-

gramming. Combinatorica, 4:373–395, 1984.

[Kha79] Leonid G. Khachiyan. A polynomial algorithm in linear programming.

Doklady Akademiia Nauk SSR, 244:1093–1096, 1979.

[KMS98] David R. Karger, Rajeev Motwani, and Madhu Sudan. Improved graph

coloring via semidefinite programming. Journal of the ACM, 45(2):246–

265, 1998.

[KO69] Bernhard Korte and Walter Oberhofer. Zur triangulation von input-

output matrizen. JahrBücher für National Ökonomie und Statistik,

182:398–433, 1969.

[MPP99] Giancarlo Mauri, Antonia Piccolboni, and Giulio Pavesi. Approximation

algorithms for protein folding prediction. In Proceedings of the 10th ACM-

SIAM Symposium on Discrete Algorithms (SODA), pages 945–946, 1999.

[New00] Alantha Newman. Approximating the maximum acyclic subgraph. Mas-

ter’s thesis, Massachusetts Institute of Technology, Cambridge, MA, June

2000.

[New02] Alantha Newman. A new algorithm for protein folding in the HP model.

In Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 876–884, San Francisco, 2002.

[New04] Alantha Newman. Cuts and Orderings: On semidefinite relaxations for the

linear ordering proble. In Proceedings of the 7th International Workshop

on Approximation Algorithms for Combinatorial Optimization Problems

(APPROX), Cambridge, 2004.

[NR04] Alantha Newman and Matthias Ruhl. Combinatorial problems on strings

with applications to protein folding. In Proceedings of the 6th Latin Amer-

ican Theoretical Informatics Conference, pages 369–378, Buenos Aires,

2004.

[NV01] Alantha Newman and Santosh Vempala. Fences are futile: On relaxations

for the linear ordering problem. In Proceedings of the Eighth Conference

on Integer Programming and Combinatorial Optimization (IPCO), pages

333–347, 2001.

124

[Pat96] Gabor Pataki. Cone-LP’s and semidefinite programs: Geometry and a

simplex-type method. In Proceedings of the Fifth Conference on Integer

Programming and Combinatorial Optimization (IPCO), pages 162–174,

Vancouver, 1996.

[Pol92] Svatopluk Poljak. Polyhedral and eigenvalue approximations of the max-

cut problem. Sets, Graphs and Numbers, Colloqiua Mathematica Societatis

Janos Bolyai, 60:569–581, 1992.

[Pot80] Chris Potts. An algorithm for the single machine sequencing problem

with precedence constraints. Mathematical Programming Study, 13:78–87,

1980.

[PR95] Svatopluk Poljak and Franz Rendl. Computing the max-cut by eigenval-

ues. Discrete Applied Mathematics, 62(1–3):249–278, September 1995.

[PT95] Svatopluk Poljak and Zsolt Tuza. Maximum cuts and large bipartite sub-

graphs. DIMACS Series in Discrete Mathematics and Theoretical Com-

puter Science, 20:181–244, 1995.

[SG76] Sartaj Sahni and Teofilo Gonzalez. P-complete approximation problems.

Journal of the ACM, 23(3):555–565, 1976.

[Spe87] Joel Spencer. Ten Lectures on the Probabilistic Method. SIAM, Philadel-

phia, 1987.

[Tho95] Bo Vincent Thomsen. The Archaeological Seriation Problem–a case study

in combinatorial optimization. Master’s thesis, University of Copenhagen,

Copenhagen, Denmark, December 1995.

[Ye01] Yinyu Ye. A .699-approximation algorithm for max-bisection. Mathemat-

ical Programming, 90(1):101–111, 2001.

[YN76] D.B. Yudin and A.S. Nemirovskii. Informational complexity and effective

methods of solution for convex extramal problem. Ekonomika i Mater-

naticheski Metody, 12:357–369, 1976.

[YZ03] Yinyu Ye and Jiawei Zhang. Approximation of dense-n/2-subgraph

and the complement of min-bisection. Journal of Global Optimization,

25(1):55–73, 2003.

125

