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Approximating the Maximum A
y
li
 SubgraphbyAlantha NewmanSubmitted to the Department of Ele
tri
al Engineering and Computer S
ien
eon May 19, 2000, in partial ful�llment of therequirements for the degree ofMaster of S
ien
e in Computer S
ien
eAbstra
tIn this thesis, we study the maximum a
y
li
 subgraph problem: Given a dire
ted graphG = (V;E), �nd a maximum 
ardinality subset E0 � E su
h that G = (V;E0) is a
y
li
. Themaximum a
y
li
 subgraph problem is an NP-hard optimization problem for whi
h the best-known approximation guarantee is 2. We show that the maximum a
y
li
 subgraph problem
annot be approximated to within 6566 + � for any � > 0. The redu
tion is from H�astad'smaximum satis�ability of linear equations modulo 2 with three variables per equation. It isalready known that the integrality gap of two basi
 linear programming relaxations is 2, butwe formalize this here sin
e it is not re
orded elsewhere. We also study graphs in whi
h themaximum degree is 3 and show that if for any � > 0 there exists a (17=18+�)-approximationalgorithm for the maximum a
y
li
 subgraph problem in su
h graphs, then there is a Æ > 0su
h that there is a (1=2 + Æ)-approximation algorithm for the maximum a
y
li
 subgraphproblem in general graphs. We give a 89 -approximation algorithm for the maximum a
y
li
subgraph problem in graphs with maximum degree 3.Thesis Supervisor: Santosh VempalaTitle: Assistant Professor of Mathemati
s
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Chapter 1Introdu
tionMany important and pra
ti
ally motivated optimization problems are NP-hard. UnlessP = NP, we 
annot eÆ
iently �nd exa
t solutions to these problems. One option is to relaxthe requirement that the size (or 
ost) of the solution is optimal. Instead, we 
an look for asolution whose size is provably within some fa
tor of the size of an optimal solution. In thiss
enario, we want to �nd an algorithm that yields the best possible fa
tor or approximationratio. See [11℄ for an overview of approximation algorithms.1.1 The ProblemIn this paper, we explore the approximability and inapproximability of a parti
ular NP-hardoptimization problem known as the maximum a
y
li
 subgraph problem. The maximuma
y
li
 subgraph problem is de�ned as follows: Given a dire
ted graph G = (V;E), �nd amaximum 
ardinality subset E0 � E su
h that G = (V;E0) is a
y
li
. This problem is anexample of an NP-hard optimization problem for whi
h a simple approximation algorithmo�ers the best-known guarantee on the size of the solution. For any linear ordering of theverti
es, the set of forward edges or the set of ba
kward edges 
ontains at least half theedges. Ea
h set is a
y
li
. The entire set of edges, E, is an upper bound on the size of anoptimal solution. Therefore, the larger of these sets yields a 12 -approximation.An outstanding open problem is: Can we do better than half of the optimum?1.2 Overview of this ThesisIn Chapter 2, we show that it is NP-hard to approximate the maximum a
y
li
 subgraphto within 6566 + � for any � > 0. This means that if we 
ould �nd an algorithm with anapproximation guarantee of 6566 + � for some � > 0, then we 
ould solve the problem exa
tly.We give a redu
tion from 3-SAT to the maximum a
y
li
 subgraph problem to illustrate5



the idea behind the inapproximability redu
tion. We then give a redu
tion from H�astad'slinear equations modulo 2 with 3 variables per equation, whi
h, although more 
ompli
ated,yields a better inapproximability 
onstant.A 
ommon tool for �nding approximation algorithms for NP-hard optimization problemsis linear programming. In Chapter 3, we dis
uss linear programming relaxations for themaximum a
y
li
 subgraph problem. The basi
 linear programming relaxation for themaximum a
y
li
 subgraph problem has an integrality gap of 2, i.e. there is a 
lass of graphsfor whi
h the true maximum is very 
lose to half the edges, while the linear programmingrelaxation returns a fra
tional solution with value very 
lose to the size of the entire edgeset. Therefore, we 
annot use the basi
 linear programming relaxation to obtain a better-than-half approximation.In Chapter 4, we �rst investigate the maximum a
y
li
 subgraph problem restri
ted toEulerian graphs. We present a theorem due to Lov�asz and Chen [8℄ showing that the generalproblem 
an be redu
ed to this restri
ted problem. We next investigate the maximuma
y
li
 subgraph problem restri
ted to graphs with maximum degree 3, i.e. in-degree plusout-degree of any vertex in the graph is at most 3. The maximum a
y
li
 subgraph problemremains NP-hard for su
h graphs [7℄. We show that there is a 
onne
tion between theapproximability of degree-3 graphs and general graphs. In parti
ular, we show that if forany � > 0 there exists a (1718+�)-approximation algorithm for the maximum a
y
li
 subgraphproblem in degree-3 graphs, then there exists a better-than-half approximation algorithmfor the maximum a
y
li
 subgraph problem in general graphs.Finally, in Chapter 5 we show that we 
an a
tually approximate the maximum a
y
li
subgraph in degree-3 graphs to within 89 .
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Chapter 2InapproximabilityIn this 
hapter, we will des
ribe two redu
tions whi
h essentially use the same idea. The �rstredu
tion is from 3-SAT and the se
ond redu
tion is from H�astad's linear equations modulo2 with 3 variables per equation. The idea behind both redu
tions is that an assignment thatsatis�es a parti
ular 
lause 
orresponds to removing one less edge from the representative
lause gadget than an assignment that does not satisfy this 
lause.2.1 Redu
tion from 3-SATIn this se
tion we will give an approximation-preserving redu
tion from MAX-3-SAT tothe maximum a
y
li
 subgraph problem. MAX-3-SAT is de�ned as the following problem:Given a CNF formula with at most 3 variables per 
lause, �nd an assignment of the variablesthat maximizes the number of satis�ed 
lauses.2.1.1 The Constru
tionGiven a 3-SAT formula F with n variables and m 
lauses, we 
onstru
t a 
orrespondingmultigraph G using the following rules: (We assume every variable in F appears at leaston
e negated and on
e unnegated.)1. For ea
h variable x 2 F , we 
reate 2 verti
es x1 and x2. These two verti
es will formthe variable gadget for the variable x.2. For ea
h 
lause Ck 2 F , we 
reate a dire
ted 6-
y
le and label ea
h of 3 alternatingedges with a distin
t literal from the 
lause Ck. This will be the 
lause gadget for the
lause Ck.3. Ea
h 
lause gadget is linked up to the variable gadgets as follows.7



� For an edge (i; j) labeled x in a 
lause gadget, we add a dire
ted edge from vertexj to vertex x1, an edge from x1 to x2, and an edge from x2 to i.� For an edge (i; j) labeled x, we add a dire
ted edge from vertex j to vertex x2,an edge from x2 to x1, and an edge from x1 to i.Note that the graph G has 15m edges in all | 6m for the equation gadgets, 6m for
onne
ting the equation gadgets to the variable gadgets and 3m for the variable gadgets(one edge per o

urren
e).2.1.2 The ProofThe following theorem will be our starting point.Theorem 1 (H�astad [6℄) For every � > 0, it is NP-hard to tell if a given 3-SAT formulais satis�able or at most m(78 + �) of its 
lauses are satis�able.We prove:Theorem 2 The maximum a
y
li
 subgraph 
annot be approximated to within 9596 + � forany � > 0.The proof of Theorem 2 will use the lemmas below.Lemma 1 A minimal feedba
k ar
 set is a
y
li
.Proof. An a
y
li
 graph 
an be viewed as an ordering of the verti
es su
h that all thear
s are in the forward dire
tion, i.e. for ea
h ar
 (i; j), i 
omes before j in the ordering.Given a feedba
k ar
 set, 
onsider su
h an ordering for the a
y
li
 graph obtained upondeleting the feedba
k ar
 set. If the feedba
k ar
 set has any edges in the forward dire
tion,then it is not minimal (su
h an edge 
an be added to the a
y
li
 graph without 
reatingany 
y
les). Thus the feedba
k ar
 set 
onsists only of ba
kward edges and hen
e is itselfa
y
li
. 2Lemma 2 The minimum feedba
k ar
 set of G either has all the edges from xi1 to xi2 andnone of the edges from xi2 to xi1 or vi
e versa, for all i.Proof. If we in
lude any edges from xi1 to xi2 and even one edge from xi2 to xi1 in theminimum feedba
k ar
 set, then it would not be a
y
li
, whi
h is a 
ontradi
tion to Lemma1. If we don't in
lude all the edges from one of the sets in the minimum feedba
k ar
 set,then we will not have an edge from every 
y
le in the minimum feedba
k ar
 set, whi
h isalso a 
ontradi
tion. 28



X

Y

Z

X1 X2

Y1 Y2

Z1  Z2

Figure 2-1: The 
lause and variable gadgets.
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Lemma 3 The minimum feedba
k ar
 set for the graph G 
ontains 3m+ u edges, where uis the minimum number of unsatis�ed 
lauses of the formula F .Proof. The theorem will be proved as a 
onsequen
e of the following two 
laims: (i) Givenan assignment for the variables in F that results in u unsatis�ed 
lauses, we 
an 
onstru
ta Feedba
k Ar
 Set of size at most 3m+u. (ii) Conversely, given a Feedba
k Ar
 Set of size3m+ u, we 
an �nd an assignment for the variables of F su
h that no more than u 
lausesare unsatis�ed.First, we show that if we have a set of ar
s in
luding all the ar
s from xi1 to xi2 orvi
e-versa for all i, and at least one edge from ea
h of the three 4-
y
les (linking the literalsar
s to their variable gadgets) and the 6-
y
le in every gadget, then the resulting set ofedges is a Feedba
k Ar
 Set. We will do this by showing that the leftover edges form ana
y
li
 graph.If for every 
lause gadget, ea
h 4-
y
le and 6-
y
le is missing at least one edge, thenthe set of remaining edges from ea
h 
lause gadget is a
y
li
. We still need to show thatthere are no 
y
les that in
lude edges from multiple gadgets. Suppose we take a walk onthe graph G. We start the walk on some edge labeled xi and go to vertex xi1. If edge xiis not in the Feedba
k Ar
 Set, then edge (xi1; xi2) must be, whi
h means edge (xi2; xi1)is not, so all edges labeled xi are in
luded in the Feedba
k Ar
 Set. Therefore, when wetry to depart from vertex xi1 and move to a di�erent gadget, we will not be able to do so,be
ause all edges from this vertex lead to edges labeled xi, whi
h have been in
luded in theFeedba
k Ar
 Set. So the resulting graph is a
y
li
.(i) Given an assignment for the variables in F , we will show that we 
an �nd a feed-ba
k ar
 set in
luding exa
tly 3 ar
s for ea
h satis�ed 
lause and exa
tly 4 ar
s from ea
hunsatis�ed 
lause. We 
onstru
t the feedba
k set as follows. If xi is set to TRUE, then wein
lude all the ar
s from xi2 to xi1 in the feedba
k set; if it is set to FALSE, we in
lude allthe ar
s from xi1 to xi2. Then we in
lude all the ar
s in the 
lause gadgets that 
orrespondto true literals. In addition, we in
lude one ar
 
orresponding to a literal from ea
h 
lausegadget for whi
h all the literals are false. The resulting subset of ar
s is a feedba
k set bythe argument in the previous paragraph and has a total of 3m+ u ar
s.(ii) Given a feedba
k ar
 set, we now show how to 
onstru
t an assignment from it. Firstwe delete edges from the feedba
k ar
 set until it is minimal. Then we assign ea
h variablexi in F a value depending on whi
h set of edges with endpoints in fxi1; xi2g is in
luded inthe feedba
k ar
 set. If all the edges from xi2 to xi1 are in the feedba
k ar
 set, then thevariable xi is set to TRUE. Otherwise all the edges from xi1 to xi2 are in feedba
k ar
 set,and then xi is set to FALSE. 10



Every 
lause gadget that has only 3 asso
iated ar
s (i.e. ar
s in the 6-
y
le or in the4-
y
les linked to the literals in the 
lause) in the feedba
k ar
 set must have at least 1 ar
from the 6-
y
le in the feedba
k ar
 set, so at least one of the literals in the 
lause will havebeen assigned to TRUE. Thus any 
lause that is false has 4 ar
s in
luded in the feedba
kar
 set. So if the feedba
k ar
 set has 3m+ u ar
s, the assignment leaves at most u 
lausesunsatis�ed. 2Corollary 4 follows from Lemma 3 and the fa
t that G has 15m edges.Corollary 4 The Maximum A
y
li
 Subgraph for G is of size 12s + 11u where s and urepresent the number of satis�ed and unsatis�ed 
lauses, respe
tively, for an assignmentthat satis�es the maximum number of 
lauses.Proof of Theorem 2. Using Corollary 4 and the fa
t that, given a 3-SAT formulawith m 
lauses, it is NP-hard to distinguish between an assignment that satis�es (78 + �)mof the 
lauses and an assignment that satis�es m 
lauses (Theorem 1), we see that it isNP-hard to distinguish between a graph that has a maximum a
y
li
 subgraph of size12(78 + �)m + 11(18 � �)m and a graph that has a maximum a
y
li
 subgraph of size 12m.If we 
ould approximate the maximum a
y
li
 subgraph to within 9596 + �, then we 
oulddistinguish between these two 
ases. Therefore, it is NP-hard to approximate the maximuma
y
li
 subgraph to within 9596 + �. 22.2 Redu
tion from Linear Equations Modulo 2In this se
tion, we will give an approximation-preserving redu
tion from linear equationsmodulo 2 with three variables to the maximum a
y
li
 subgraph problem.2.2.1 The Constru
tionGiven a set of m linear equations on n variables, we 
onstru
t a graph G using the followingrules: (We assume all equations have the right hand size zero by negating one literal ifne
essary.)1. For ea
h variable x 2 F , we 
reate two verti
es and two edges. The verti
es are x0and x1 and the edges are (x1; x0) and (x0; x1). These verti
es and edges will form thevariable gadget.2. For ea
h 
lause Cj 2 F , we add the 
lause gadget. The 
lause gadget is shown in Fig-ure 2-2. For a literal x in the 
lause we 
reate a 4-
y
le fx2; x3; x4; x5g. We label edge(x5; x2) as x = 1 and edge (x3; x4) as x = 0. We do this for ea
h literal in the 
lause.11



Then we add the following 12 edges: (z2; x5); (z2; y3); (z4; y3); (z4; x3); (x2; z3); (x2; y5);(x4; z5); (x4; y5); (y2; z3); (y2; z5); (y4; x3); (y4; x5)3. We 
onne
t ea
h 
lause gadget to the 
orresponding variable gadgets in the followingway: For a literal x, we 
onne
t the 
orresponding 4-
y
le in the 
lause gadget to thevariable gadget by adding edges (x2; x1); (x1; x3); (x0; x5); (x4; x0). The idea is thatan edge in the 
lause gadget that 
orresponds to a variable x being set to 1 (labeledx = 1 in Figure 2-2) should be in a 
y
le with the edge in the variable gadget that
orresponds to the variable being set to 0 (labeled 0 in Figure 2-2), so that one ofthese edges is removed and the settings of the variable is determined by the remainingedge. Sin
e all 
lauses are 
onne
ted to the same variable gadget, this will maintain
onsisten
y in the variable assignments of ea
h 
lause.The resulting graph G has 36m+2n edges, 36 for ea
h 
lause gadget and 2 for ea
h variablegadget. In order to relate variable assignments to a
y
li
 subgraphs of G, we will sayremoving the edge (x1; x0) 
orresponds to setting the variable x to true, and removing theedge (x0; x1) 
orresponds to setting the variable to false.2.2.2 The ProofWe will use another theorem of H�astad for this proof:Theorem 3 (H�astad [6℄) For every � > 0, it is NP-hard to tell if a given a set of linearequations modulo 2 with 3 variables is satis�able or at most m(12 + �) of its 
lauses aresatis�able.Lemma 5 The minimum feedba
k ar
 set for the graph G 
ontains n+3m+u edges, whereu is the minimum number of unsatis�ed equations.Proof. By Lemma 1, exa
tly one edge from every variable gadget is in the minimumfeedba
k ar
 set. In addition, we need to show the following things:(i) Given a 
lause, x + y + z = 0, and an assignment that satis�es this 
lause, we willneed to remove only three edges from the 
orresponding 
lause gadget so that the subgraph
onsisting of the 
lause gadget and it three 
orresponding variable gadgets is a
y
li
. Thereare four assignments to the variables x; y; z that satisfy this 
lause. They are: ff0; 0; 0g;f0; 1; 1g; f1; 1; 0g; f1; 0; 1gg. We need to show that for any one of these assignments, if weremove the three 
orresponding edges, then the subgraph of the remaining edges from the
lause gadget and relevant variable gadgets is a
y
li
.12



First, note that any 
y
le in a 
lause gadget must 
ontain labeled edges. This is be
ausefor every non-labeled edge (i; j), i is a vertex su
h that the only in
oming edge is a labelededge, and j is a vertex su
h that the only outgoing edge is a labeled edge.We now 
onsider the four possible satisfying assignments for the 
lause x+ y + z = 0:1. fx = 0; y = 0; z = 0g. This means that all edges in Figure 2-2 labeled x = 1; y =1; z = 1 are removed. The three edges labeled x = 0; y = 0; z = 0 are not in a 
y
letogether. If they were, vertex x4 would have to be in a 
y
le, but all four of its outedges lead to edges labeled 1, whi
h are removed. Thus, the remaining set of edges isa
y
li
.2. fx = 0; y = 1; z = 1g. Then the edges labeled x = 1; y = 0; z = 0 are removed. Theremaining graph is a
y
li
, sin
e if you 
onsider the four edges going out from theedge labeled z = 1, all four of these edges lead to a vertex whose only out edge hasbeen removed.3. fx = 1; y = 0; z = 1g. Then the edges labeled x = 0; y = 1; z = 0 are removed. Ifwe 
onsider vertex x2, whi
h is the endpoint of the edge labeled x = 1, all four edgeslead to verti
es whose only out edge has been removed. So the remaining set of edgesis a
y
li
.4. fx = 1; y = 1; z = 0g. We remove edges x = 0; y = 0; z = 1. Consider vertex z4,whi
h is the endpoint of the edge labeled z = 0. All four edges leaving this vertexlead to verti
es, whose only out edge has been removed. So the remaining set of edgesis a
y
li
.(ii) Given a 
lause, x+ y + z = 0, and an assignment that does not satisfy this 
lause,we will need to remove exa
tly four edges from the 
orresponding 
lause gadget so thatthe subgraph 
onsisting of the 
lause gadget and its three 
orresponding variable gadgetsis a
y
li
. There are four assignments to the variables x; y; z that do not satisfy this 
lause.They are: ff1; 1; 1g; f0; 0; 1g; f1; 0; 0g; f0; 1; 0gg.1. fx = 1; y = 1; z = 1g. Then the edges labeled x = 1; y = 1; z = 1 remain and form a
y
le. So we must remove one of these edges and the remaining graph is a
y
li
.2. fx = 0; y = 0; z = 1g. Then the edges x = 0; y = 0; z = 1. These edges are in a 
y
le,so, again, we must remove of four edges.3. fx = 1; y = 0; z = 0g. Then the edges x = 1; y = 0; z = 0 remain and 
reate a 
y
le,so we must remove four edges. 13



4. fx = 0; y = 1; z = 0g. Then the edges x = 0; y = 1; z = 0 remain and form a 
y
le, sowe must remove four edges.(iii) For ea
h variable gadget, if we remove one of the two edges and the 
orrespond-ing edge from the 
lause gadgets representing 
lauses that 
ontain this variable, then theremaining graph does not 
ontain any 
y
le 
omposed of edges from more than one 
lausegadget. For the 
lause x + y + z = 0, 
onsider the edge (x2; x1). If a 
y
le 
ontains thisedge, it must also 
ontain the only in
oming edge to vertex x2, whi
h is the edge labeledx = 1. If these edges are 
ontained in a 
y
le with edges from another 
lause gadget, thenat vertex x1, we 
an move to another gadget. However, we will arrive at a vertex su
h thatthe only out edge 
orresponds to the edge that remains i� x has been set to 0, whi
h is notthe 
ase if the edge labeled x = 1 was present. So there 
annot be any 
y
les that use edgesfrom more than one 
lause gadget.It follows from (i),(ii), and (iii) that the minimum feedba
k ar
 set has size n+3m+u.2Corollary 6 The Maximum A
y
li
 Subgraph for G is of size n+ 33s + 32u where s andu represent the number of satis�ed and unsatis�ed 
lauses, respe
tively, for an assignmentthat satis�es the maximum number of 
lauses.Theorem 4 The maximum a
y
li
 subgraph 
an not be approximated to within 6566 for any� > 0.Proof. By Corollary 6 and by Theorem 3 it is NP-hard to distinguish between a graphthat has a maximum a
y
li
 subgraph of size n+33(12 + �)m+32(12 � �)m and a graph thathas a maximum a
y
li
 subgraph of size n+ 33m. If we 
ould approximate the maximuma
y
li
 subgraph to within 2n+652n+66 + �, then we 
ould distinguish between these two 
ases.Therefore it is NP-hard to approximate to approximate the maximum a
y
li
 subgraph towithin 2n+652n+66+�. We 
an make n arbitrarily small 
ompared to m by 
reating another set oflinear equations in whi
h ea
h original equation appears k times for some k so that we havekm 
lauses and only n variables. The ratio 2n+652n+66 is arbitrarily 
lose to 6566 as k be
omeslarge. Therefore, it is NP-hard to approximate the maximum a
y
li
 subgraph to within6566 + �. 2.
14
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Chapter 3Linear Programming RelaxationsIn this 
hapter we dis
uss linear programming relaxations for the maximum a
y
li
 subgraphproblem.3.1 Two Integer ProgramsThe maximum a
y
li
 subgraph problem 
an be viewed as maximizing the number of edgessubje
t to a 
onstraint for every 
y
le. The 
onstraint spe
i�es that the sum of the edgevariables on a 
y
le of length C is at most jCj � 1. These 
onstraints are des
ribed by thefollowing integer program:maximize Pij2E xijsubje
t to: Pij2C xij � jCj � 18ij2E xij 2 f0; 1gIt is NP-hard to solve this integer program. However, we 
an relax the requirement thatxij are in f0; 1g and repla
e it with the requirement that that 0 � xij � 1. We 
an solvethe resulting linear program in polynomial time using the Ellipsoid Algorithm be
ause ithas the following polynomial separation ora
le [5℄. Given a solution to the linear program,we 
an 
onsider the graph with ea
h edge (i; j) assigned weight 1� xij . Then we 
an �ndthe minimum weight 
y
le. If there is any 
y
le that has weight less than 1, then we havefound a 
y
le with value more than jCj � 1 whi
h is a violated 
onstraint. We refer to thislinear program as LP1.Another integer program for the maximum a
y
li
 subgraph problem has a variable forevery pair of verti
es i; j 2 V . In this program, there are only 
onstraints for 2- and 3-
y
les:maximize Pij2E xij 16



subje
t to: 8i;j xij + xji = 18i;j;k xij + xjk + xki � 28i;j xij 2 f0; 1gLemma 7 An integral solution to the above integer program represents an a
y
li
 subgraph.Proof. Consider some a
y
li
 subgraph S � E that in
ludes every edge whi
h is assigneda 1 by this integer program. If ea
h 2-
y
le in the 
omplete dire
ted graph has at most oneedge S and ea
h 3-
y
le has at most two edges in S, then we prove by indu
tion that every
y
le of length jCj � 4 has at most jCj � 1 edges in S.Consider a 4-
y
le fv1; v2; v3; v4g. Choose two non-adja
ent verti
es v1 and v3 on the 4-
y
le. Consider the 2-
y
le that 
onne
ts these two verti
es. One of these edges is in S, say(v3; v1). Then we 
annot in
lude both (v1; v2) and (v2; v3) in S, so at most three edges fromthis 4-
y
le are in S. Similarly, assume ea
h 
y
le of length at most C 
ontains at least oneedge assigned 0 by the integer program. Then 
onsider some 
y
le x = fv1; v2; � � � ; vC+1gof length C + 1 and 
hoose any two non-adja
ent verti
es on the 
y
le, vi and vj . Considerthe 2-
y
le that joins these verti
es. One of the edges, say (vi; vj) is in S. Sin
e the 
y
lefvi; vj ; vj+1; � � � vi�1g has length at most C it follows that at least one of the edges in x onthe path from xj to xi is assigned 0 by the integer program. Therefore, we 
an in
lude atmost C edges from a 
y
le of length jCj+ 1 in S. 2Again, it is NP-hard to solve this integer program. However, we 
an solve the relaxationin polynomial time using the Ellipsoid Algorithm be
ause there are only a polynomialnumber of 
onstraints [5℄. We will refer to this relaxation as LP2.3.2 Linear Program Integrality GapThe integrality gap of a linear program is de�ned as the ratio of the size of the optimalinteger solution to the size of the optimal fra
tional solution returned by the linear program.It is not known how to use a linear program to obtain an approximation ratio that is betterthan the integrality gap. In this se
tion, we will show that the integrality gap for bothLP1 and LP2 is 2 implying that these linear programs will not lead to a better-than-halfapproximation algorithm. As a basis for the 
onstru
tion, we will use the fa
t that thereexists a 
lass of undire
ted graphs with girth g and �(n � (n8 ) 1g ) edges. (See Se
tion 3.3 forthe 
onstru
tion.)Given su
h a graph G with girth plog n (we 
ould use any fun
tion that is o(log n) forthe girth), we will show that the following lemma holds:17



Lemma 8 There exists at least one dire
ted orientation of G su
h that for any ordering ofthe verti
es, the number of ba
k edges is at least (1� �) jEj2 for any � > 0.Proof. For any � > 0, we show that with non-zero probability, a dire
ted orientation ofG has at least (1� �)m2 ba
k edges for any ordering of the verti
es where m is the numberof edges in G, i.e. the size of its maximum a
y
li
 subgraph is very 
lose to half the edges.For this proof, we use a Cherno� bound found in [9℄:Theorem 5 Let X1;X2; � � � ;Xn be independent Poisson trials su
h that, for 1 � i � n,Pr[Xi = 1℄ = pi, where 0 < pi < 1. Then, for X = Pni=1Xi; � = E[X℄ = Pni=1 pi, and0 < Æ � 1, Pr[X < (1� Æ)�℄ < e��Æ22We �x an ordering of the verti
es and we 
hoose a dire
ted orientation of G at random.For ea
h edge (i; j), we dire
t the edge from i to j with probability 12 and from j to i withprobability 12 . Thus, ea
h edge is a forward edge or a ba
kward edge with equal probability.We asso
iate an indi
ator random variable Xi with the ith edge so that Xi is 1 if the ithedge is a ba
kward edge and 0 if it is a forward edge in this ordering. Thus, for all Xi,pi = 12 . X is the random variable that represents the number of ba
k edges and � = m2 , i.e.the expe
ted number of ba
k edges for a �xed ordering of the verti
es is m2 . Using Theorem5, we �nd that: Pr[X < (1� �)m2 ℄ < em�24In words, the probability that a parti
ular dire
ted orientation of the edges with respe
t toa �xed ordering of the verti
es has less than (1 � �)m2 ba
k edges is exponentially small inm for any � > 0.Now we �x the orientation of the edges and show that with non-zero probability thisdire
ted graph has 
lose to m2 ba
k edges for every ordering of the verti
es. There aren! � 2n log n orderings of the verti
es. By union bound, the probability that this dire
tedgraph has less than (1� �)m2 ba
k edges for at least one ordering of the verti
es is:� e�me24 2n log nIf this quantity is < 1, then the probability that a parti
ular orientation of the edges hasat least (1� �)m2 ba
k edges for every ordering of the verti
es will be > 0.If e�me24 2n log n < 1, then taking the log of ea
h side, we have:�m�24 + n logn < 0 ) n logn < m�24 ) � >r4n lognmLet m = �(n � (n8 ) 1g ): 18



� >r4 log n(n8 ) 1gWhen g = plog n, we need to show that � is o(1). Then for any �xed � > 0, this inequalitywill be true for large enough n. Sin
e (n8 ) 1plog n = 2plog n� 3plog n and logn = 2log log n andlog logn < plogn� 3plog n (sin
e log x < px� 3px), we have � = o(1). Thus, with non-zeroprobability, there is some dire
ted graph with girth plog n that has a maximum a
y
li
subgraph of size (1� �) jEj2 for any � > 0. 2We will refer to a dire
ted graph on n verti
es with girth plogn and maximum a
y
li
subgraph of size at least (1� �)m2 as G�n. We will use G�n to prove the following lemmas:Lemma 9 The integrality gap of LP1 is 2.Proof. For any � > 0, we 
an �nd an n su
h that G�n has an maximum a
y
li
 subgraphof size at least (1 � �)m2 . Sin
e G�n has girth at least plog n, a feasible solution for LP1is to assign ea
h edge in E the value (1 � 1plog n). Thus the solution of LP1 has size atleast jEj(1� 1plog n). The ratio of the optimal solution to the optimal fra
tional solution is1� 1plog n12 (1��) . As � de
reases, n in
reases. Thus, lim n!1 1� 1plog n12 (1��) = 2. Sin
e this ratio 
an bemade arbitrarily 
lose to 2 for large n, the integrality gap is 2. 2Lemma 10 The integrality gap of LP2 is 2.Proof. Given a maximal solution to LP1 for a graph G, we 
an 
onstru
t a solution toLP2 for G with the same obje
tive value. A solution to LP1 in
ludes an assignment forevery edge in G. The solution we will 
onstru
t will 
ontain an assignment for every pairof verti
es i; j 2 V . Let x be the maximal solution given for LP1.We extend the solution x as follows: for all (i; j) 2 E; (j; i) =2 E, we assign xji = xij .Now every 
y
le in x of length jCj has total value at most jCj � 1. This is equivalent tosaying that every 
y
le has total value at least 1, sin
e if some 
y
le has total value lessthan 1, then the 
y
le 
omposed of the 
omplementary edges must have total value morethan jCj�1. This is 
learly true of all 
y
les in E. Let E be the set of edges that are not inE but whose 
omplements are in E whose values we just added to x. Then all the 
y
les inE must also have total value at most jCj � 1. If this were not the 
ase, then some 
y
le inE would have value less than 1, whi
h means the solution x is not maximal. The last 
asewe need to 
onsider is a 
y
le 
omposed of edges from both E and E. Let A be the edges inthis 
y
le from E and a denote their total value and let B be the set of edges in this 
y
lefrom E and b denote their total value. Assume a+ b > jCj � 1 where A and B form 
y
leC. If we 
onsider the 
omplements of A and B then we have a 
y
le C with value a+ b < 1.19



The edges in B are in E and x is maximal. This means that there must be some 
y
le C 0in E 
ontaining B su
h that the set of edges C �B has total value jC 0j � 1� b and the setof its 
omplementary edges has value b. These 
omplementary edges form a 
y
le with theedges in A whi
h has value a. Both sets are in E whi
h implies that a+ b > 1.Therefore, all 
y
les in x have total value at most jCj � 1 and at least 1 so x is still avalid solution to LP1. For ea
h pair of verti
es i; j 2 V su
h that (i; j) and (j; i) are notin E, the indu
tive step will be to show that we 
an �nd an assignment for xij and xjisu
h that the resulting x is still a solution to LP1 for the graph G+ (i; j). Thus, when wehave assigned values to all pairs of verti
es not asso
iated with edges in E, we will have asolution for LP1 for the 
omplete graph. This must also be a valid solution to LP2 sin
eif every 
y
le has value at most jCj � 1 then every 2- and 3-
y
le in the 
omplete graph
omplies with the 
onstraints in LP2.Now we prove the indu
tive step: to add an assignment to x we 
hoose a pair of verti
esi; j that are not 
onne
ted by an edge in G. Let � be the length of the shortest path fromi to j and � be the length of the shortest path from j to i. Together these shortest pathsform a 
y
le in G. Therefore � + � is at least 1. We let edge (j; i) have value xji = maxf0; 1 � �g and edge (i; j) have value xij = min f1; �g = 1 � xji. If � > 1, then any 
y
lethat in
ludes edge (j; i) has total value at least 1 and edge (i; j) has value 1 so any 
y
lethat in
ludes edge (i; j) has total value at least 1. If � � 1, then any 
y
le that in
ludesedge (j; i) will have total value at least 1 and every 
y
le that in
ludes edge (i; j) will havetotal value at least �+ �, whi
h is at least 1.Sin
e we 
an 
onstru
t a solution for LP2 with the same obje
tive value as LP1 so theintegrality gap for LP2 must be the same as LP1. 23.3 Constru
ting Undire
ted Dense Graphs with High GirthIn this se
tion, we present a proof of a lemma that is due to Erdos and Sa
hs [10℄.Lemma 11 There exist undire
ted graphs with girth at least g and �(n � (n8 ) 1g ) edges.Proof. We will 
onstru
t a graph with girth g and �(n � (n8 ) 1g ) edges. First, we 
onstru
ta graph on n verti
es by 
hoosing d perfe
t mat
hings in Kn2 ;n2 uniformly at random. Sin
eea
h vertex has degree at most d, then for some vertex v there are at most dg paths oflength g that begin at this vertex. We will set dg = n8 (we will solve for d later). If wetake a random walk of length g starting from vertex v, then the probability that we returnto vertex v sometime during the walk is the number of verti
es that we rea
h{at most dg{divided by the total number of verti
es in G. Sin
e dg = n8 , the probability that we returnto vertex v after taking at most g steps is = 18 .20



We will now use the Cherno� bound de�ned in Se
tion 3.2. For ea
h vertex, we 
ande�ne an indi
ator random variable Xi. Let Xi = 1 denote that there is no 
y
le of lengthless than or equal to g that 
ontains vertex i and let Xi = 0 denote that there is some 
y
leof length at most g that 
ontains vertex i. Then pi = 78 for all i. X is the random variablerepresenting the total number of verti
es in
luded in 
y
les of length less than or equal tog and � = 7n8 . By Theorem 5, we have:Pr[X < (1� �)7n8 ℄ � e �2 7n82For any �xed �, this is very high probability, so we 
an assume that we have extremely
lose to 7n8 verti
es that are not 
ontained in 
y
les of length less than or equal to g. Theremaining set of n8 verti
es may be 
ontained in 
y
les of length less than or equal to g,but we 
an remove these verti
es and all edges adja
ent to them. This entails removing nomore than dn8 edges, so we are left with dn2 � dn8 = 3dn8 edges.Now we solve for d: dg = n8 , so d = n8 1g . Therefore jEj = 3n8 d = 3n8 (n8 1g ). So we havefound a graph with �(n � (n8 ) 1g ) edges and girth at least g. 2
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Chapter 4Restri
ted ProblemIn this 
hapter, we investigate the maximum a
y
li
 subgraph problem restri
ted to 
ertain
lasses of graphs, namely Eulerian graphs and graphs with maximum degree 3. Somewhatsurprisingly, the general problem 
an be redu
ed to these spe
ial 
ases. First, we present anapproximation-preserving redu
tion from the maximum a
y
li
 subgraph problem in generalgraphs to the maximum a
y
li
 subgraph problem restri
ted to Eulerian graphs. Then weuse this redu
tion to give an approximation-preserving redu
tion from the maximum a
y
li
subgraph problem in general graphs to the maximum a
y
li
 subgraph problem in graphswith maximum degree 3.4.1 Eulerian GraphsThis redu
tion is due to L�azl�o Lov�asz and Fang Chen [8℄.Theorem 6 If for any Æ > 0, there exists a (12 + Æ)-approximation algorithm for the maxi-mum a
y
li
 subgraph problem in Eulerian graphs, then there exists a (12+ Æ8)-approximationalgorithm for the maximum a
y
li
 subgraph problem in general graphs.Proof. We will say a graph G is �-far from Eulerian if there is a v 2 V for whi
h d+(v)or d�(v) > (12 + �)d(v). If 8� > Æ ) � > Æ8 , then we 
an make at least an � (or Æ8) gain atea
h vertex (by pla
ing the greater of the in and out edges in the a
y
li
 subgraph) untilthe graph is less the �-far from Eulerian.If 8� < Æ ) � < Æ8 , we will add a new vertex v� to G to obtain a new graph G + v�.To the vertex v� we will atta
h in edges and out edges from and to ea
h vertex in G forwhi
h jd+(v) � d�(v)j > 0, thus making G + v� Eulerian. Let OPT (G) denote the size ofthe maximum a
y
li
 subgraph of G. Then:22



d(v�) =Xv2G jd+(v)� d�(v)j �Xv2G 2�d(v) � 2�Xv2G d(v) � 4�jEjSin
e jEj2 � OPT (G), we have, jEj � 2OPT (G). Thus:4�jEj � 8�OPT (G)) d(v�) � 8�OPT (G)If we have a (12 + Æ){approximation for G+ v�, then:OPT (G+ v�) � OPT (G) + 12d(v�) ) OPT (G+ v�)� d(v�) �(12 + Æ)OPT (G + v�)� d(v�) �(12 + Æ)OPT (G) + (12 + Æ)12d(v�)� d(v�) � (12 + Æ)OPT (G) � 34d(v�) �(12 + Æ)OPT (G) � 6�OPT (G) � (12 + Æ � 6�)OPT (G)Sin
e 8� < Æ ) � < Æ8 : (12 + Æ � 6�) > (12 + Æ � 68Æ) = (12 + Æ4)So in either 
ase, we 
an get at least (12 + Æ8) of the optimal solution for an arbitrary graphgiven a (12 + Æ)-approximation algorithm for Eulerian graphs. 24.2 Degree-3 GraphsThe maximum a
y
li
 subgraph problem remains NP-hard even for graphs with maximumdegree 3 [7℄. (For graphs with maximum degree 2, the problem is easy.) In this se
tion, wegive an approximation-preserving redu
tion from the maximum a
y
li
 subgraph problemfor Eulerian graphs to the maximum a
y
li
 subgraph problem for graphs with maximumdegree 3.Theorem 7 If for any � > 0, there exists a (1718 + �)-approximation algorithm for themaximum a
y
li
 subgraph problem in graphs with maximum degree 3, then there existssome Æ > 0 su
h that there is a (12 + Æ)-approximation algorithm for the maximum a
y
li
subgraph problem in general graphs.To prove this theorem we will �rst introdu
e the following lemmas.Lemma 12 Given an Eulerian graph G = (EG; VG) we 
an 
onstru
t a 3-regular graphG0 = (EG0 ; VG0) with jEG0 j = 9jEGj � 9jVGj su
h that the size of the minimum feedba
k ar
set in G is the same size as the minimum feedba
k ar
 set in G0.23



Proof. Sin
e G is Eulerian, we will use d(v) to denote both the in- and out-degree ofvertex v for this proof. The �gure below shows a vertex v in G before we add any verti
esor edges.
v

The 
onstru
tion of G0 is as follows: we �rst pla
e a vertex in the middle of ea
h edge of G.
v

The number of verti
es is now jVGj + jEGj. Then for ea
h vertex v 2 VG, we mat
h ea
hin
oming edge with a distin
t outgoing edge by adding an edge from the vertex pla
ed onthe in
oming edge to the vertex pla
ed on the outgoing edge. (Sin
e G is Eulerian, we willalways be able to �nd su
h a mat
hing.)
v

All of the jEGj new verti
es now have in- and out-degree 2. We want to repla
e theverti
es from VG with a new set of verti
es in whi
h ea
h vertex has in- and out-degree 2so that the entire graph will be 4-regular and Eulerian. Consider vertex v 2 VG. We builda binary tree from v to the d(v) new verti
es pla
ed on the outgoing edges.
24



v

This requires d(v) � 2 new verti
es. We 
an see this by the following reasoning: let p bethe highest power of 2 not greater than d(v). For a binary tree that 
onne
ts p verti
es tov, we need p2 + p4 + : : :+2 = d(v)� 2 new verti
es or verti
es that are internal nodes on thebinary tree. For ea
h of the remaining d(v)� p verti
es, we will 
onne
t two verti
es to oneof the p leaves thus adding just one internal vertex for ea
h of these verti
es. Therefore, wehave a total of d(v) � p+ p� 2 = d(v)� 2 internal or new verti
es on the binary tree.We also build a binary tree from v to the d(v) new verti
es pla
ed on the in
omingedges. Then we mat
h ea
h vertex from the in
oming binary tree with a distin
t vertexfrom the outgoing binary tree by adding an edge from the former to the latter.
v

We build these two binary trees and mat
h their verti
es as we just des
ribed for all verti
esv 2 VG. The total number of new verti
es needed to build these two binary trees for vertexv is 2d(v) � 4. The total number of new verti
es needed to build two binary trees for allv 2 VG is therefore Pv2VG 2d(v) � 4 = 2jEGj � 4jVGj.We now have a 4-regular Eulerian graph with (jEGj+ jVGj)+ (2jEGj� 4jVGj) = 3jEGj�3jVGj verti
es. We are not yet �nished 
onstru
ting G0 sin
e we want G0 to be a 3{regulargraph, but we will 
all this intermediate graph G00. The last step in the 
onstru
tion of G0is to stret
h ea
h vertex in the 
urrent graph into an edge so that G0 is 3{regular.
After the �nal step in the 
onstru
tion of G0, jEG0 j = 3(3jEGj � 3jVGj) = 9jEGj � 9jVGj.25



We will use the following de�nition later on in the proof.De�nition 1 A blue edge is an edge (i; j) su
h that vertex i has in-degree 2 and vertex jhas out-degree 2.Note that the edges in G0 that 
orrespond to verti
es in G00 are blue edges.We will now show that this redu
tion preserves the size of minimum feedba
k ar
 set,i.e. the size of the minimum feedba
k ar
 set of G0 is equal to the size of the minimumfeedba
k ar
 set of G. Spe
i�
ally, we will show that given a feedba
k ar
 set in G, we 
an
onstru
t a feedba
k ar
 set in G0 of the same size. Conversely, given a feedba
k ar
 set inG0, we 
an 
onstru
t a feedba
k ar
 set in G of size at most the size of the feedba
k ar
 setin G0.(i) Suppose F is a feedba
k ar
 set of G. We will 
onstru
t F 0, a feedba
k ar
 set of G0.For ea
h edge eij 2 F , we add to F 0 the blue edge from EG0 that 
orresponds to the vertexused to subdivide edge eij in the �rst stage of the 
onstru
tion of G0. Then jF 0j = jF j andEG0 � F 0 is a
y
li
 by the following proof.Assume EG0 � F 0 is not a
y
li
. Note that every blue edge 
orresponds to an originaledge, to an original vertex, or to a vertex on a binary tree in G00. If we take a walk on thegraph G0 starting from a blue edge 
orresponding to an edge eij in G (i.e. to a vertex usedto subdivide an edge in the �rst step of the 
onstru
tion) we will either follow a path onthe binary tree leading to a blue edge 
orresponding to edge ejk or we will walk dire
tly toedge ejk for some k. Therefore, if we �nd a 
y
le in G0, the set of edges in that 
y
le that
orrespond to edges in EG are still present in G implying that there is a 
y
le in G, whi
his a 
ontradi
tion to the fa
t that F is a feedba
k ar
 set.(ii) Suppose F 0 is a feedba
k ar
 set in G0. Assume all edges in F 0 are blue edges. If theyare not, we 
an repla
e them with blue edges adja
ent to the non-blue edges and obtaina feedba
k ar
 set of equal or smaller size. Then for every edge in F 0 that 
orresponds toan edge in EG, add the 
orresponding edge in EG to F . Then EG � F is a
y
li
 by thefollowing proof.Assume EG � F is not a
y
li
. Then 
onsider some 
y
le in EG � F . The blue edges
orresponding to ea
h edge eij in the 
y
le are still in EG0 � F 0. Sin
e EG0 � F 0 is a
y
li
,at least one of the edges used to 
onne
t verti
es that we pla
ed in the middle of the edgesin EG must have been removed. But this is a 
ontradi
tion, be
ause these edges are notblue edges, and we 
onverted F 0 to a feedba
k ar
 set that 
ontained only blue edges. 2Corollary 13 A maximum a
y
li
 subgraph in G of size S 
orresponds to a maximuma
y
li
 subgraph in G0 of size S + 8jEGj � 9jVGj.26



Proof. Given a maximum a
y
li
 subgraph in G of size S, we 
an �nd a feedba
k ar
set in G of size EG � S. Therefore, we 
an �nd a feedba
k ar
 set in G0 of size EG � S.There will be S+8jEGj� 9jVGj edges remaining in EG0 and these edges make up an a
y
li
subgraph of G0. 2Lemma 14 We 
an 
onvert an a
y
li
 subgraph of G0 of size at least (1718 + �)MAS(G0) toan a
y
li
 subgraph of G of size at least (12 + Æ)MAS(G) for some 
onstants �; Æ > 0.Proof. Let MAS(G) denote the size of the maximum a
y
li
 subgraph of G. We assumethat MAS(G) is at least �EG for some �xed � < 1 (we will explain � later). If MAS(G)is less than �EG, then we 
an �nd an a
y
li
 subgraph in G with at least half the edges ofG thereby obtaining a (12 + �)-approximation for some � > 0.Say we are given an �-approximation algorithm for 3-regular graphs. We 
an takean Eulerian graph G and 
onvert it a 3-regular graph G0 using the 
onstru
tion des
ribedpreviously. Then we 
an �nd an a
y
li
 subgraph S0 forG0 that is of size at least �MAS(G0).By Corollary 13 we have:�MAS(G0) = �(MAS(G) + 8EG � 9VG)To �nd an a
y
li
 subgraph S of G given S0, we remove all edges from S0 that do not
orrespond to blue edges representing original edges of G. There are at most 8EG � 9VGsu
h edges, sin
e EG of the edges in G0 
orrespond to edges in G. So when we remove theseedges from S0, we are left with a set S of size at least:�(MAS(G) + 8EG � 9VG)� (8EG � 9VG) = �MAS(G) + (8� � 8)EG + (9� 9�)VGSin
e EG � MAS(G)� , 8�� 8 < 0, and VG � EGd > MAS(G)d , where d is the average degree ofG, we have:�MAS(G) + (8� � 8)EG + (9� 9�)VG � �MAS(G) + (8�� 8)MAS(G)� + (9� 9�)MAS(G)dAnd: �+ 8�� � 8� + 9d � 9�d > �+ 8�� � 8� > 12 ) �+ 8�� > 12 + 8�Sin
e � < 1: � > (�+16)(�+8) 12 > 1718
27



Therefore, if we found a (1718+Æ)-approximation for 3-regular graphs, then we 
ould �nd some� su
h that the above inequality is true. IfMAS(G) � �EG, then we 
ould use the redu
tionand the (1718+Æ)-approximation algorithm for degree-3 graphs to �nd a (12+�){approximationfor Eulerian graphs, whi
h would by Theorem 6 lead to a (12 + �8)-approximation for generalgraphs. 2Theorem 8 There is no PTAS for the maximum a
y
li
 subgraph in degree-3 graphs unlessP = NP.Proof. If we have an �-approximation for the maximum a
y
li
 subgraph in degree-3graphs, then we will get a (� + 8(��1)� )-approximation for Eulerian graphs. Therefore, if� = 1� � and if � � 12 , then:�+ 8(��1)� = 1� �� 8�� � 1� 17�Thus, if we 
an �nd a (1� �){approximation for the maximum a
y
li
 subgraph in degree-3graphs, then we 
an �nd a (1� Æ)-approximation for Eulerian graphs, where Æ = 17�, whi
himplies that we 
an �nd a PTAS for Eulerian Graphs. This implies that we 
an �nd a PTASfor general graphs, whi
h is a 
ontradi
tion, sin
e the maximum a
y
li
 subgraph problemfor general graphs does not admit a PTAS. (See Chapter 2 for a proof of this.) 2
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Chapter 5Algorithms for Degree-3 GraphsIn [1℄ an algorithm that returns an a
y
li
 subgraph of size 23 jEj is given for graphs withmaximum degree 3 and an algorithm that returns an a
y
li
 subgraph of size 1318 jEj is givenfor 3-regular graphs. In this 
hapter, we show that the maximum a
y
li
 subgraph problemin graphs with maximum degree 3 
an be approximated to within 89 of optimal using simple
ombinatorial methods.5.1 AssumptionsGiven a graph G with maximum degree 3 for whi
h we want to �nd an a
y
li
 subgraph S,we 
an assume the following in any algorithm:(i) All verti
es have total degree exa
tly 3. If there is any vertex v su
h that d+(v) =d�(v) = 1, then we 
an remove the vertex and treat the adja
ent edges as one edge. Thusan edge in the modi�ed graph may represent a path in the original graph. If we ever addan edge representing a path to S, then we are really adding all the edges in the path to S.If we do not add this edge to S, then we 
an remove any one edge from the path and addthe rest of the edges on the path to S. If for any vertex d+(v) = 0 or d�(v) = 0, we 
anadd all edges adja
ent to v to S.(ii) G has no 2- or 3-
y
les, sin
e we 
an treat both optimally. For 2-
y
les, 
onsiderthe 2 adja
ent non-
y
le edges. If they are both in edges, or both out edges, then we 
anbreak the two 
y
le by removing an arbitrary edge. If one is out and the other is in, thenone of the edges in the 2-
y
le is 
onsistent with the dire
tion of a possible 
y
le 
ontainingboth of the two non-
y
le edges, so we 
an remove this edge. For 3-
y
les, if we 
ontra
tedthe 3-
y
le, we would get a new vertex of degree 3. If this vertex is a sour
e or a sink, thenwe 
an remove an arbitrary edge from the 3-
y
le. Otherwise, we remove an edge from the3-
y
le, so that the path to or from the single in or out edge is broken.29



5.2 Algorithm 1We will now 
onsider the 
ase where G has no blue edges. See Se
tion 4.2 for the de�nitionof a blue edge. If there are no blue edges, then we 
an �nd the maximum a
y
li
 subgraphin polynomial time. For our algorithm, we will use the following lemma:Lemma 15 If G has maximum degree 3 and 
ontains no blue edges, then all 
y
les in Gare edge disjoint.Proof. Assume that there are some 2 
y
les in G that have an edge (or a path) in
ommon. First 
ase: assume that these two 
y
les have an isolated edge (i; j) in 
ommon,i.e. edge (i; j) belongs to both 
y
les, but edges (a; i) and (j; b) ea
h belong to only oneof these 
y
les. Then vertex i must have in-degree 2 and vertex j must have out-degree2. Thus, edge (i; j) is a blue edge, whi
h is a 
ontradi
tion. Se
ond 
ase: assume thesetwo 
y
les have a path fi; � � � ; jg and that this path is maximal, i.e. edge (a; i) and (j; b)ea
h belong to only one of these 
y
les. Vertex i must have in-degree 2 and vertex j musthave out-degree 2. Therefore, one of the edges on the path must be a blue edge, whi
h is a
ontradi
tion. 2.Sin
e all the 
y
les in a graph with no blue edges are edge disjoint, we 
an �nd themaximum a
y
li
 subgraph of su
h a graph in polynomial time. Given a graph G 
ontainingno blue edges, the following is an algorithm to �nd the maximum a
y
li
 subgraph of G:Algorithm 1:Step 0. Let S={},G'=G.Step 1. While G' is not a
y
li
, do:Step 1a. Find a 
y
le in G'.Step 1b. Remove an edge in this 
y
le from G'.Step 1
. Remove the rest of the edges in this 
y
le from G' andadd them to S.Step 2. Add the remaining edges to S.Step 3. Output S.5.3 Algorithm 2If G has blue edges, then the problem is NP-hard. For this 
ase, we will give the following89 -approximation algorithm. See Se
tion 5.1 for an explanation of Step 1a.30



Algorithm 2:Step 0. Let S={}, G'=G.Step 1. While there are still blue edges in G', do:Step 1a. Optimally treat any 2- and 3-
y
les.Step 1b. Find a blue edge e in G'.Step 1
. If e is 
ontained in a 
omponent with exa
tly 9edges then:Solve for the maximum a
y
li
 subgraph ofthis 
omponent exa
tly.Else: Remove the four edges neighboring e from G'and add them to S.Step 1d. Contra
t any verti
es with in-degree and out-degree 1.Step 2. If G' is a
y
li
, then add all edges in G' to S. If G' is nota
y
li
, then sin
e it 
ontains no blue edges, useAlgorithm 1 to find the maximum a
y
li
 subgraph of G' andadd it to S.Step 3. Un
ontra
t every edge added to S that was 
ontra
ted in Step4. For every 
ontra
ted edge that was removed from G' andnot added to S, remove any edge from the 
orresponding pathin G and add the remaining edges to S.Step 4. Output S.Theorem 9 Algorithm 2 is an 89 -approximation for the maximum a
y
li
 subgraph problemin graphs with maximum degree 3.Proof. We will show that for ea
h iteration of Step 1 through Step 5 of the algorithm,for every edge we remove, we 
ontra
t or add to S a total of at least 8 edges. Edges thatwe 
ontra
t will be added to S in Step 3.Consider a blue edge (i; j) in G. There must be four distin
t verti
es within distan
e 1from i and j (sin
e there are no 2- or 3-
y
les). So there are 6 verti
es that are at no morethan one edge away from vertex i or vertex j (in
luding verti
es i and j). Therefore, theremust be at least 3�62 = 9 edges in this neighborhood. If there are exa
tly 9 edges, thenwe have found a 
onne
ted 
omponent and Algorithm 2 will solve this 
omponent exa
tly.Otherwise, if there are more than 9 edges in the neighborhood of edge (i; j) (i.e. there
ould be as many as 12 edges) then for ea
h of the 4 distin
t verti
es that are exa
tly oneedge away from i or j, we 
an either 
ontra
t this vertex, or we 
an add two more edges31



to S (whi
h would let us add more than 8 edges to S in this round). Thus, for every oneedge we remove from G, we add at least 8 edges to S whi
h proves that Algorithm 2 is a89 -approximation algorithm. 2
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