A New Algorithm for Protein Folding in the HP Model

Alantha Newman *

Abstract

We consider the problem of protein folding in the HP model
on the two-dimensional square lattice. This problem is
combinatorially equivalent to folding a string of 0’s and 1’s so
that the string forms a self-avoiding walk on the lattice and
the number of adjacent pairs of 1’s is maximized. We present
a linear-time 1/3-approximation algorithm for this problem,
improving on the previous best approximation factor of 1/4.
The approximation guarantee of this algorithm is based on
an upper bound presented by Hart and Istrail [6] and used in
all previous papers that address this problem. We show that
this upper bound cannot be used to obtain an approximation
factor better than 1/2.

1 Introduction

In this paper, we study the problem of folding a string
of 0’s and 1’s on the two-dimensional (2D) square
lattice. The goal is to find a folding of the string
that forms a self-avoiding walk on the lattice and
maximizes the number of adjacent pairs of 1’s, also
called contacts. For example, suppose we are given the
string 101010101001010101. Then the folding shown in
Figure 1 results in eight pairs of adjacent 1’s or eight
contacts (shown by the dotted lines), the most possible
for this string. The 1’s are denoted by black dots and
the 0’s are denoted by white or unfilled dots.

Figure 1: An optimal the

101010101001010101.

folding for string

~ *Laboratory for Computer Science, MIT, Cambridge,
MA 02139. Supported in part by NSF Grant CCR-
9912342 and NSF Career Award CCR-9875024. Email:
alantha@theory.lcs.mit.edu

1.1 Background

The widely-studied HP model was introduced by Dill
[4, 5]. A protein is a chain of amino acid residues. In
the HP model, each amino acid residue is classified as
an H (hydrophobic or non-polar) or a P (hydrophilic or
polar). An optimal conformation for a string of amino
acids in this model is one that has the lowest energy,
which is achieved when the maximum number of H-H
contacts (i.e. pairs of H’s that are adjacent in the folding
but not in the string) are present. The protein folding
problem in the hydrophobic-hydrophilic (HP) model on
the 2D square lattice is combinatorially equivalent to
the problem we just described: we are given a string
of P’s and H’s (instead of 0’s and 1’s) and we wish to
maximize the number of adjacent pairs of H’s (instead
of 1’s). An informative discussion on the HP model and
its applicability to protein folding is contained in the
paper by Hart and Istrail [6].

The protein folding problem in the HP model on
the 2D square lattice is NP-hard [3] as is the problem
on the 3D square lattice [2]. On the positive side, Hart
and Istrail gave a 1/4-approximation for the problem on
the 2D square lattice and a 3/8-approximation for the
problem on the 3D square lattice [6]. Mauri, Piccolboni,
and Pavesi gave a different approximation algorithm
for the problem on the 2D square lattice [7]. Their
algorithm also has an approximation ratio of 1/4, but
they argue that in practice the performance of their
algorithm surpasses its worst-case guarantee. Improving
on the factor of 1/4 has been an open problem in
computational biology for several years.

In related work, Agarwala et al. gave approxima-
tions for the problem on the 2D and 3D triangular lat-
tices [1]. They suggest that the triangular lattice is a
more realistic lattice for protein folding because it does
not have the “parity problem”, i.e. in the square lattice,
two residues must be an odd distance (of at least three)
apart to be in contact with each other in any folding.
They argue that this is not the case for foldings of real
proteins.

1.2 Our Results

In this paper, we present a 1/3-approximation for the
protein folding problem in the HP model on the 2D
square lattice. We describe our linear-time algorithm in

Section 2. In Section 3, we show that the upper bound
discussed in Section 2 cannot be used to obtain an
approximation factor better than 1/2. Specifically, we
describe a string for which the optimal folding achieves
only half of this upper bound.

2 A %-Approximation Algorithm

We now present a 1/3-approximation algorithm for
the problem of folding a string of 0’s and 1’s on the
2D square lattice so as to maximize the number of
contacts. In Section 2.1, we introduce some notation.
In Section 2.2, we discuss the upper bound that we use
to obtain the 1/3-approximation. In Section 2.3, we
state some assumptions and lemmas that are useful for
our algorithm. In Section 2.4, we state the algorithm
itself, and in Section 2.5 we analyze the approximation
guarantee and the running time.

2.1 Some Notation

For a string S € {0,1}" such that S = s; ... sy, we refer
to a 1 in an odd position (i.e. a 1 with index 4 for odd
i) as an odd-1 and a 1 in an even position as an even-1.
We call each 0 or 1 in the string an element. For any
substring s of S,i.e. s =s;...s; for some j < k, we let
&[s] denote the number of even-1’s in s and O[s] denote
the number of odd-1’s in s.

2.2 An Upper Bound

On the square lattice, an even-1 can only be adjacent
to odd-1’s and vice versa, i.e. two even-1’s or two odd-
1’s cannot be adjacent to each other. Each element in
the string except for those at the two endpoints of the
string, can have at most two topological neighbors, i.e.
elements that are adjacent in the folding but are not
adjacent in the string. Thus, an upper bound M on the
total number of pairs of adjacent 1’s or contacts is:

M =2+ min(E[S], O[S])

This upper bound was used in [6] and [7]. In those
papers, it was shown that for every binary string, there
exists a folding in which either half of the odd-1’s or half
of the even-1’s have at least one contact on average,
resulting in a 1/4-approximation. The approximation
guarantee of 1/3 for our algorithm is obtained by
showing that at least 2/3 of the odd-1’s or 2/3 of the
even-1’s average at least one contact each. In Section
3, we describe a string for which the optimal folding
achieves only one contact on average for the minimum
of the odd-1’s and even-1’s, which is 1/2 of this upper
bound.

2.3 Preliminaries
Without loss of generality, we make the following as-

sumptions about any binary string S that we wish to
fold.

(i) The length of S is even (we can pad S with an extra
0 if this is not already the case).

(ii) The number of odd-1’s is equal to the number of
even-1’s. If one appears more than the other, say
O[S] > £[S], we can turn an arbitrarily chosen
subset of O[S] — £[S] odd-1s into 0’s.

Note that neither of these assumptions changes the
value of the upper bound, since (min(O[S],&[S]) re-
mains the same. For the sake of convenience, we con-
sider folding a loop rather than a string. That is, given a
string (which has even length by the assumption above),
we connect the first and last elements so that s; and s,
are adjacent in the loop. Note that the upper bound
stated in Section 2.2 is also a valid upper bound for the
number of contacts that can be obtained by folding a
loop. Since the loop is closed, we need to demarcate
which 1’s are odd-1’s and which are even-1’s. It suffices
to choose any 1, call it an odd-1, call every 1 an even
distance away from this 1 an odd-1, and call the rest of
the 1’s even-1’s.

LEMMA 2.1. Let S be a string such that if we join the
endpoints, we obtain the loop L. Then a folding of
L resulting in aM contacts also yields at least aM
contacts for S.

Proof. Consider any folding of L with k contacts. Any
string that is obtained by disconnecting two adjacent
elements of L can assume the same configuration as
this folding. So this configuration also yields at least
k contacts for such a string. O

The following combinatorial observation plays a key
role in the algorithm.

LEMMA 2.2. In any loop L that contains an equal num-
ber of odd-1’s and even-1’s, there is an element p = s;
such that if we go around L in one direction (i.e. clock-
wise or counter-clockwise) starting at s; to any point
sj, then O[s;sit1-..5;] > E[siSiy1-..5;], and if we go
around L in the other direction from s;_1 to any point
Sk, then 5[8i_18i_2 PN Sk] Z O[Si_lsi_g ... Sk].

Proof. Let S = s; ...s, be some even length string such
that joining the endpoints results in the loop L. Let
f(G) = O[s1...85] — E[s1...5;]. In other words, f(j)
is the number of odd-1’s minus even-1’s in the string
$1...8;. Then let j* be a point such that f(j*) is
minimum. For example, in Figure 2, the function f(j)
is shown for the string 110101101011 and j* = 6 for

orMNw

orMNw

=~ :

12345678 9101112 12345678 9101112
i i

N
N

Figure 2: The graph of the function f(j) for the string
s = 110101101011 and the string s’ = 101011110101.

this string. Note that we can always assume j* is even
since there is always an even j* where f(j) is minimum.
To see this, assume j* is odd. Then if s;+4q = 1, it
must be that f(j* + 1) < f(j*) and if s;+41 = 0, then
f(G*+1) = f(j*). So we can assume j* is even.

Now consider the string s ...s! such that s =
sjr+1 and sy = sj+492, etc. Note that since j* is
even, j* + 1 is odd. Thus, s} is an odd-1 in both the
string S and the new string s} ...sl,. For the string
in Figure 2, we have sj...s), = 101011110101. The
function f(j) for this new string s’ is always positive.
Thus, O[sysy...s5] > E[s1sy...s5] for any s} in this
new string. If we consider the reverse string s, ...s],
then it is always the case that &[s;s;_;...s5] >
Olspsy_1 --- 8] for any point s%. Thus, if we start at
point s7 and go through s} and s3, etc., to any point s,
it is always the case that O[s}s...s;] > E[sysy...s5].
And if we start at point s, and go through s!,_; and
8y,_2, €tc., to any point s}, it is always that case that
E[sn8n_1---8j] > O[sy8n—1...8}]. Thus, the theorem
is true when p=}. O

Using Lemma 2.2, without loss of generality, we
assume that for any loop L, if we start at point p and
move in the clockwise direction, we will see at least as
many odd-1’s as even-1’s, and vice versa for the counter-
clockwise direction. Let the i** odd-1 be the it* odd-1
found if we start at point p + 1 and go along L in the
clockwise direction. Let the it even-1 be the i*" even-1
found if we start at point p — 2 and move along L in
the counter-clockwise direction. Define B (%) to be the
substring from the element directly following the i — 1t*
odd-1 up to and including the i** odd-1. And define
Bg(i) to be the substring from the element directly
following the i — 1** even-1 up to and including the
it" even-1. Let the length of Bp(i) be £o(i) + 1 and
the length of Bg(i) be £g(i) + 1. Note that £¢(i) and
Lo (i) are always odd integers. For example, given the
loop corresponding to the string S = 11010110100011,
where p = s7, we have that Bo(1) = 01, Bp(2) = 0001,
Bn(3) = 11. We also have that Bg(1) = 01, Bg(2) = 01,
and Bg(3) = 11. See Figure 3 for an illustration.

Figure 3: Moving clockwise from p, we have the sub-
strings Bo(1), Bo(2), etc. Moving counter-clockwise
from p, we have the substrings Bg(1), Beg(2), etc.

2.4 The Algorithm

We now describe our algorithm. Our goal is to find a
folding of a given string so as to maximize the number
of pairs of adjacent 1’s. Using Lemma 2.1, we assume
that we are given a loop to fold. Using Lemma 2.2, we
find a point p, such that if we go around the loop L in
the clockwise direction from p, we always see at least
as many odd-1’s as even-1’s and if go around L in the
counter-clockwise direction, we always see at least as
many even-1’s as odd-1’s.

1. Start: Lay p and p + 1 and their adjacent elements
as shown in Figure 4. Let i = j = 1.

p-1 p
p—2 p+1

Figure 4: Placement of elements p —2,...p+ 1.

2. Tteration: Consider Bg (i) and Bo(j). There are four
cases.

(a) Lg(i) =1 and £o(j) = 1: Fold Bg(i), Be(i +
1), Bo(j), and Bo(j + 1) as in Figures 5(a) and 6(a).
Set i =i+ 2 and j = j + 2. The idea is to make sure
there are 3 contacts: one between the i** even-1 and
jth 0dd-1, one between the i 4+ 1** even-1 and jt* odd-1,
and one between the i + 1t* even-1 and j + 1t* odd-1.

(b) £g(i) > 3 and £o(j) > 3: Fold Be(i), Be(i +
1), Bo(j), and Bo(j + 1) as in Figures 5(b) and 6(b).
Set i =i+ 2 and j = j 4+ 2. The idea is that same as in
case (a), except we must move the segments B¢ (i) and
Bo(j) out of the way if either £¢(7) > 3 or £o(j) > 3.

(c) Le(i) =1 and £o(j) > 3: Fold Be(i), Bo(j),
and Bo(j +1) as in Figures 5(c) and 6(c). Set i =i+ 1

and j = j + 2. The idea is to make sure there are 2
contacts: one between the it* even-1 and the j* odd-1
and one between the i" even-1 and the j + 1t* odd-1.

(d) £e(i) > 3 and £o(j) = 1: Fold Bg(i), Be(i+1),
and Bp(j) as in Figure 5(d) and in the mirror image of
Figure 6(c). Set ¢ =i+2 and j = j+1. The idea here is
the same as in case (c) except here there are 2 contacts
for the j** odd-1 and one contact for the i** and i+ 1t*
even-1.

3. Repeat Step 2 while Bg (i) and Bo(j) do not overlap.

Figure 5: Case (a), (b), (c), and (d) folds.

In Figure 5, we show how to fold the string when
Le(i+1) =1 and £o(j + 1) = 1. For larger values of
Le(i+ 1) and £o(j + 1), i.e. when £g(i + 1) > 3 or
Lo(j + 1) > 3, we fold the string as shown in Figure 6.
For a case (b) fold, Figure 5 shows how to fold the string
when ¢ (i) = 3 and £o(j) = 3 and Figure 6 shows how
to fold the string when £g(i) > 5 or £o(j) > 5.

2.5 Analysis

THEOREM 2.1. The algorithm finds a folding with at
least M /3 contacts, i.e. a 1/3-approzimation.

Proof. Without loss of generality, assume there are k
more case (c¢) folds than case (d) folds, where & > 0. We
will count how many contacts the odd-1’s are involved
in. (If there are more case (d) folds than case (c)

Figure 6: Foldings for higher values of £¢(i) and £o(7)-

folds, we would count how many contacts the even-
1’s are involved in.) Consider the folding of a string
S found by the algorithm. Let * and j* be the value
of i and j during the last iteration of the algorithm.
Then O[p+1,p+2,...j*] denotes the number of odd-1’s
that are guaranteed to be used in some contact(s). How
many odd-1’s are not necessarily in any contacts? The
0dd-1’s in the string p—2,p—3,...4* are not necessarily
used in any contacts. By Lemma 2.2, we have:

(2.1) Op-2,p—3,...i"] <
Elp—2,p—3,...7"]
(2.2) OS]=0p+1,p+2,...5%]+

Olp—2,p—3,...i

Combining equations (2.1) and (2.2), we have:

(23) O[S]<OPp+1,p+2,...57]+

Elp—2,p—3,...7"]

We assumed that there are & more case (c) folds
than case (d) folds. Let’s pair up each case (d) fold
with a case (c) fold and call each of these pairs a (c-
d)-fold. Thus, the number of odd-1’s used in case (a),
case (b), or (c-d) folds is O[p+ 1,p+2,...5*] — 2k and
2k odd-1’s are used in unpaired case (c) folds, since
each case (c) fold uses 2 odd-1’s. The number of even-
1’s used in case (a), case (b), or case (c-d) folds is also
Olp+1,p+2,...5*]—2k, since in these folds the number
of even-1’s used is the same as the number of odd-1’s.
Then there are k even-1’s used in the extra case (c)
folds. Thus,

(2.4) Elp—2,p—3,...i"] =

Op+Lp+2,...57]—k
Combining (2.3) and (2.4), we have:

(2.5) O[S]<Op+1,p+2,...5°) +

Op+1,p+2,...5*] — k)

Equation (2.5) can be rewritten as:

OS] k&
0[p+1,p+2,...j*]2%+5

If we consider the subset of the odd-1’s in the string
p+1,p+2,...5* involved in case (a), case (b), or (c-
d) folds, we note that there are at least 4 contacts for
every 3 odd-1’s. (i.e. In case (a) and case (b) folds, we
have 3 contacts for every 2 odd-1’s, and in case (c-d)
folds, we have 4 contacts for every 3 odd-1’s.) In the
unpaired case (c¢) folds, we have at least one contact for
every odd-1. Thus, the number of contacts we have is
at least:

(2.6)

4
(2.7) g(O[p+ L,p+2,...5%] — 2k) + 2k

Using equation (2.6), we have that the quantity in
equation (2.7) is at least:

Recall that O[S] = £[S] by assumption, which
implies that M = 20[S]. Therefore, the number of
contacts that the algorithm achieves is at least M/3. O

2.8)

The algorithm runs in O(n) time where n is the
length of L. We can find point p in O(n) time. Finding
Bg(i) and Bp(i) and folding these blocks takes time
proportional to the size of the blocks, but since each
element is included in only one of the blocks, the total
time it takes to find all the blocks and fold them is O(n).

3 How Good is the Upper Bound?

In this section, we examine the upper bound presented
in Section 2.2. Recall that the upper bound is M =
2 % min(O[S],£[S]). How good is this bound? In the
previous section, we saw that OPT/M > 1/3 for any
string. In this section, we describe a string for which
OPT/M =1/2+ o(1). Thus, this upper bound cannot
be used to obtain an approximation factor better than
1/2.

Let § = {0}*"{01}¥{0}8%"{1000}*{0}**" for an
integer k > 0. We will show that no folding of S has
more than (1 4+ o(1))M/2 contacts.

THEOREM 3.1. No folding of S results in more than
(14 0(1))M/2 contacts.

Note that for the string 5’, there are k even-1’s
and k odd-1’s. Thus, k = M/2 for the string S. So
we need to show that no folding contains more than
(1+0(1))k contacts. To prove Theorem 3.1, we consider
two strings S; and Sy such that S = S515;. Let S =
{0}°{01}%{0}4* and let S, = {0}**"{1000}+{0}*+".
All the 1’s in S; are even-1’s and all the 1’s in Sy are
odd-1’s. Note that since all the 1’s in S; are even-1’s,
no folding of $ contains a contact between a pair of 1’s
from S;. Similarly, no folding of S contains a contact
between a pair of 1’s from S5, since all the 1’s in S
are odd-1’s. Thus, we can assume that all contacts are
comprised of an even-1 from S; and an odd-1 from S.
Therefore, it suffices to show that no folding of S results
in more than (1+0(1))k contacts between the two strings
51 and 52.

Since we are only concerned with contacts between
the strings S1 and Sa, we focus on foldings of these two
strings rather than on foldings of S. Note that for any
folding of S, there is a folding of S; and SQA that has
at least as many contacts as the folding of S. This is
because S; and Sy are substrings of S. Thus, proving
that no folding of the two strings S; and Sy results in
more than (1 + o(1))k contacts would prove Theorem
3.1.

Suppose that for each of the strings S; and Sa, we
color one side red and the other side blue. Alternatively,
we can imagine that the strings S; and S; are each
enclosed within two adjacent strings, one red and one
blue. A contact is a red-red contact if the red sides (or
red strings) face each other in the contact, or a red-blue
contact if one red side (or red string) faces a blue side
(or blue string) in the contact. Some examples of red-
red contacts are illustrated in Figure 7. There are four
types of contacts if we always consider the color of the S}
string first: red-red, red-blue, blue-red, and blue-blue.
We now show that it is only possible to have one type

Figure 7: Some red-red contacts.

of contact between S; and Ss in any folding. In other
words, if some contact is a red-red contact, then all the
contacts must be red-red contacts. Thus, we only have
to consider foldings in which all contacts are of one type.
If an odd-1 is involved in 2 contacts, both must be with
even-1’s on the same side of the odd-1. For example, we
can ignore contacts such as those shown in Figure 8.

Figure 8: These two contacts are each of a different
type.

LEMMA 3.1. In any folding of S’, all contacts between
S1 and Sy are of the same type.

Proof. Assume for the sake of contradiction that there
is some folding of Sy and Sy with at least two different
types of contacts (of the four possible types). Let ¢;
be a red-red contact and ¢y be a blue-blue contact, as
shown in Figure 9. Suppose ¢; is a contact between z;
and y; where z; is an even-1in S7 and y; is an odd-1 in
Ss. Similarly, co is a contact between x> and y2, where
22 is an even-1 in S; and y» is an odd-1 in Ss.

Then there is a closed path from y; to y, along
Sa, from y, to z2, from x, to x; along S; and from
x1 back to y;. Note that the farthest distance between
any two 1’s is 2k — 1 in S; and 4k — 1 in S;. Thus,
the total length of this closed path is no more than
6k. However, as shown in Figure 9, at least one of the
substrings of 0’s at the end of Sy or S; is enclosed by this
path. The number of 0’s in this substring is 4k>. But
this is a contradiction, because the maximum number of

blue

Figure 9: One way to connect a red-red and a blue-blue
contact.

lattice points that can fit an enclosed area of perimeter
6k is 9k2/4. We obtain the same contradiction for the
other possible arrangement of a red-red and a blue-
blue contact as shown in Figure 10. Furthermore, we
obtain the same contradiction for any arrangement of
a red-red contact and a red-blue contact or a red-red
contact and a blue-red contact. This can be verified
by inspecting the two cases (which are similar to the
two possible arrangements of a red-red and a blue-blue
contact) corresponding to each of these pairs of different
types of contacts. O

Now we consider the case in which all contacts are
of the same type. Without loss of generality, we assume
they are all red-red.

LEMMA 3.2. There are at most (1 + o(1))k red-red
contacts between Sy and S,.

Proof. We will show that the average number of con-
tacts per even-1 cannot exceed (1 + o(1)). We note
that if an even-1 has two contacts, then its two con-
tacts much be perpendicular to each other since both
are red-red contacts.

We will use the following notions in our proof. First,
we assume that the contacts are ordered consecutively
in a folding of S; and S;. We begin folding S; and
S> by considering a specific endpoint for each of these
strings. Then the even-1in S; and the odd-1 in S, that
are closest to these endpoints and that make a contact
are in the first contact. The next closest even-1 in S;

Figure 10: Another way to connect a red-red and a blue-
blue contact.

and the next closest odd-1 in Sy that make a contact
are in the second contact, etc. Note that consecutive
contacts, e.g. the two contacts involving z in Figure 11,
may involve the same odd-1 or same even-1.

Figure 11: The arrows indicate the orientation of each
contact.

Next, we associate an orientation with each contact.
A contact can have orientation up, down, right, or
left. For example, in Figure 11, say that the horizontal
contact involving the even-1 labeled z is the first contact
in the folding, and the vertical contact involving x is the
second, etc. Then the first contact has orientation up
and the second contact has orientation left. A horizontal
contact has orientation up if the next contact is above
it and down if the next contact is below it. A vertical
contact has orientation left if the next contact is to its
left and right if the next contact is to its right. Note
that the orientation of a contact is only well-defined
if the next even-1 or the next odd-1 in the string are

(b)

Figure 12: z is the first even-1 in the folding with two
contacts.

involved in a contact.

Let z be the first even-1 to have two contacts.
Without loss of generality, assume that the first of these
contacts is oriented up. The two possibilities for this
situation are shown in Figure 12. First, we consider case
(a) in Figure 12. Say that has an up and a left contact
as in case (a). If the next even-1 also has two contacts,
then its second contact will have a down orientation
as shown in Figure 13(a). If the next even-1 has only
one contact, but the next next even-1 has two contacts,
then its second contact will have a down orientation,
as shown in Figure 13(b). In other words, consider the
next even-1 (call it y) after = that has contacts with two
odd-1’s. If all the even-1’s between x and y have at least
one contact, then the orientation of y’s contacts makes
a counter-clockwise turn. If some even-1 between z and
y does not have any contacts, then the second contact
of y may have a left orientation. So in this case, we are
not in a downward orientation (i.e. we have not made a
counter-clockwise turn), but we do not have more than
one contact per even-1 on average for the set of even-1’s
between x and y.

If the next even-1 after x has only one contact, it
can have a left or a down orientation, but it cannot
have an up orientation. In order for a contact to have
an up orientation, we need to make a clockwise turn.
However, for every clockwise turn, there will be two
even-1’s with no contacts. To see this, consider Figure
14. Now suppose r and s make a contact as shown in
Figure 14. Note that r can be in the same situation as
z is in in Figure 12(a) or (b). If r is in case (a) and we
make another clockwise turn and then go back to case
(a), etc., then we will average less than 1 contact for each
even-1. If r is in the same position as z in Figure 12(b),

(b)

Figure 13: y is the next even-1 after x to have two
contacts.

then we can make a counter-clockwise turn so that the
next two even-1’s will have two contacts each. But in
this case, we will average only one contact per even-
1 over the course of a counter-clockwise and clockwise
turn.

r S

T

Figure 14: If the orientation of the contacts makes a
clockwise turn, then two even-1’s have no contacts.

Next, we consider case (b) in Figure 12(b). If z is
in case (b), then the even-1 that follows z will have one
contact as shown in the first figure in Figure 12(b) or it
will have two contacts and be in the same position as
z is in in case (a). Thus, if we start from case (b), we
can get only one more contact than if we were to start
in case (a).

Therefore, the only way to fold the string so that a
constant fraction of the even-1’s are contained in more
than one contact is to have more counter-clockwise turns
than clockwise turns. In this case, the string forms a
“spiral”, as shown in Figure 15. Every time we make
a counter-clockwise turn in this configuration, we can

Figure 15: A “spiral” configuration of S.

have an even-1 with two contacts. How many counter-
clockwise turns can we make? After completing the
first four counter-clockwise turns in the spiral, we have
four even-1’s with two contacts each. Then, one out of
the next five even-1’s has two contacts, then one out of
next six, one out of the next seven, etc. Thus, the total
number of even-1’s with two contacts each is v/2k. The
total number of contacts is k+0(1)+v2k = (1+0(1))k.
O

Theorem 3.1 follows from Lemmas 3.1 and 3.2.

Acknowledgments

I would like to thank Santosh Vempala for giving me this
problem to work on, for suggesting that I work on the
two aspects of the problem addressed in this paper, for
many helpful discussions, for reading and commenting
profusely on many drafts, and for being my advisor. I
would like to thank Anna Lysyanskaya for her many
helpful comments on the presentation of this paper.
I would also like to acknowledge the support of an
Edgerton Fellowship from the MIT EECS Department
for the Spring 2001 semester.

References

[1] R. Agarwala, S. Batzoglou, V. Dancik, S. Decatur,
M. Farach, S. Hannenhalli, S. Muthukrishnan, and S.

2]

(3]

[4]
[5]

Skiena, Local Rules for Protein Folding on a Triangu-
lar Lattice and Generalized Hydrophobicity in the HP
Model, Proceedings of the 8th ACM-SIAM Symposium
on Discrete Algorithms (SODA ’97) and Journal of
Computational Biology, 4(2):275-296, 1997.

Bonnie Berger and Tom Leighton, Protein Folding
in the Hydrophobic-Hydrophilic (HP) Model is NP-
Complete, Proceedings of the 2nd Conference on Com-
putational Molecular Biology (RECOMB ’98).

P. Crescenzi, D. Goldman, C. Papadimitiou, A. Piccol-
boni, and M. Yannakakis, On the Complezity of Protein
Folding, Proceedings of the 2nd Conference on Compu-
tational Molecular Biology (RECOMB ’98).

K. A. Dill; Theory for the Folding and Stability of
Globular Proteins, Biochemistry, 24:1501(1985).

K. A. Dill, Dominant Forces in Protein Folding, Bio-
chemistry, 29:7133-7155(1990).

William E. Hart and Sorin Istrail, Fast Protein Folding
in the Hydrophobic-Hydrophilic Model Within Three-
eights of Optimal, Proceedings of the 27th ACM Sym-
posium on the Theory of Computing (STOC ’95).
Giancarlo Mauri, Antonio Piccolboni, and Giulio
Pavesi, Approzimation Algorithms for Protein Folding
Prediction, Proceedings of the 10th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA ’99).

