

Finite Precision Analysis of Support Vector Machine Classification in

Logarithmic Number Systems

Faisal M. Khan, Mark G. Arnold and William M. Pottenger
Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania

{fmk2,maab,billp}@lehigh.edu

Abstract

 In this paper we present an analysis of the mini-
mal hardware precision required to implement Sup-
port Vector Machine (SVM) classification within a
Logarithmic Number System architecture. Support
Vector Machines are fast emerging as a powerful ma-
chine-learning tool for pattern recognition, decision-
making and classification. Logarithmic Number Sys-
tems (LNS) utilize the property of logarithmic com-
pression for numerical operations. Within the loga-
rithmic domain, multiplication and division can be
treated simply as addition or subtraction. Hardware
computation of these operations is significantly faster
with reduced complexity. Leveraging the inherent
properties of LNS, we are able to achieve significant
savings over double-precision floating point in an
implementation of a SVM classification algorithm.

1. Introduction

 Cognitive systems capable of gathering informa-
tion, detecting significant events, making decisions
and/or coordinating operations are of immense value
to a wide variety of application domains, from bio-
medical devices to automated military units. The core
functionality of such machine learning and classifica-
tion involves mathematical kernels employing com-
monly used operators [13].
 Thus far, the driving thrust of progress has been in
software-based solutions executing on general-purpose
single or multi-processor machines. Aside from a
plethora of work in neural-network hardware imple-
mentations [7], there exists a noteworthy absence of
hardware-based machine-learning technologies.
 This paper describes preliminary research towards
the development of robust, hardware-based kernel
solutions beyond neural networks for application-
specific deployment. Specifically, we are employing

Support Vector Machines (SVMs), a representative
kernel-based machine-learning technique especially
suited to high-dimensional data [13], [19], [20], [24].
 As noted, significant progress has been made in
the software domain for modeling and replicating the
natural processes of learning, adapting and decision
making for intelligent data analysis. Unfortunately,
such solutions require significant resources for execu-
tion and may consequently be unsuitable for portable
applications. Efficient hardware implementations of
machine-learning techniques yield a variety of advan-
tages over software solutions. Equipment cost and
complexity are reduced. Processing speed, reliability
and battery life are increased. The availability of ap-
plication-specific hardware components for detecting
events, decision-making, etc further enhance effi-
ciency.
 For these reasons we leverage logarithmic arith-
metic for its energy-efficient properties [5], [4], [21].
Successful deployment of logarithmic functionality in
neural networks has been shown to increase reliability
and reduce power usage [3], [2]. We anticipate further
progress in kernel-based SVMs since the majority of
machine-learning kernels employ multiplication
and/or exp onentiation operators, the performance of
which logarithmic computation significantly improves.
 The primary task in this endeavor is to analyze the
precision requirements for performing SVM classifica-
tion in LNS hardware and compare them against the
cost of using traditional floating-point architectures.
Furthermore, comparison with neural-network preci-
sion demands and existing hardware SVMs also pro-
vides an excellent framework for analysis.
 In the following sections we review SVM and
LNS backgrounds along with related work in hard-
ware-based machine-learning/decision ma king. We
present our approach for analyzing LNS SVM classifi-
cation and the results of the study. We follow with a
conclusion and a discussion of the future work cur-
rently underway.

2. Support Vector Machines

 The Support Vector Machine (SVM) algorithm is
well grounded in statistical learning theory [23] but is
abstractly a simple, intuitively clear algorithm [12]. It
performs excellently for complex real-world problems
that may be difficult to analyze theoretically.
 SVMs are an extension of linear models that are
capable of nonlinear classification. Linear models are
incapable of representing a concept with nonlinear
boundaries between classes. SVMs employ linear
models to represent nonlinear class boundaries by
transforming the input, or instance space, into a new
space using a nonlinear mapping.
 This transformation is facilitated through the use
of kernels. The SVM algorithm can be treated linearly
within the instance space, whereas the choice of vari-
ous kernels may map the core operations transparently
to a higher dimensional space. Consequently, com-
plex pattern recognition and classification approaches
can abstractly be represented linearly.
 Following this transformation, a Maximum Mar-
gin Hyperplane (MMH) that separates the instances by
class is learned, thereby forming a decision boundary.
The MMH comes no closer to a given instance than it
must; in the ideal case it optimally separates classes.
Support vectors are the instances closest to the MMH.
A set of support vectors thus defines the decision
boundary for a given set of instances. This simplifies
the representation of the decision boundary since other
training instances can be disregarded.
 SVM training involves minimizing a combination
of training error (empirical risk) and the probability of
incorrectly classifying unknown data (structural risk),
controlled by a single regularization parameter C [11].
In the dual form (often preferred for training) this
translates to obtaining the coefficients αi through a
quadratic programming problem. Given a set of input

instance vectors X
r

with class values Y, the objective
is to minimize and maximize the following objective
function given certain constraints:

=
≤≤

H
Cb i

M
α0

minmax

∑∑∑ +−
i

ii
i

i
ji

jijiji YbXXKYY αααα
,

),(
2
1 rr

Instances with an α >0 are considered support vectors.
The variable b is a threshold value which is also com-
puted.
 Support Vector classification (in a simple two
class problem) simply looks at the sign of a decision

function. A test instance T
r

 is classified by the fol-
lowing decision function [19], [20], [24], [6], [11]:

)),(()(bXTKYsignTf
i

iii += ∑
rrr

α .

 The choice of the kernel function

),(ji XXK
rr

and the resultant feature space is cru-

cially interesting in theoretical and practical terms. It
determines the functional form of the support vectors
given the regularization parameter C; thus, different
kernels behave differently. Some common kernels
are:

Linear:)(),(YXYXK
rrrr

•=

Polynomial: dYXYXK)(),(
rrrr

•=
Radial Basis Function (RBF):

))2/(||||exp(),(22 σYXYXK
rrrr

−−=

Sigmoid:))(tanh(),(Θ+•Κ= YXYXK
rrrr

 Interestingly a SVM with an RBF kernel is a sim-
ple type of neural network called a radial basis func-
tion network, and a sigmoid kernel implements a mu l-
tilayer perceptron with no hidden layers [24].
 Other machine-learning techniques, such as in-
stance-based learning, distance-function learning, etc.,
leverage similar mathematical kernels using dot prod-
ucts, inner products (employed in image processing)
[9], and other formulas. The fundamental operators
employed in such kernels are multiplication, division,
addition, subtraction, exponentiation, various roots
and integration [19], [20], [24], [6], [11].

3. Hardware-based Machine Learn-
ing/Data Processing

 There exists a significant lack of hardware-based
machine-learning systems. With the aforementioned
exception of neural networks (e.g., [3], [2], [14], [7],
[18], [22]), the advantages of portable, dedicated ma-
chine-learning ASICs still remain a viable field to be
explored.
 Mak et al. [17] present an early attempt in hard-
ware-based pattern matching for information retrieval.
Their system is composed of two elements: Data Par-
allel Pattern Matching Engines (DPPMEs) that are
slaves to a unique, master Processing Element (PE).
Each DPPME is responsible for locating one pattern
within a body of data. When a (complex) query is
proposed, the PE decomposes it into basic match
primitives, and distributes them among the various
DPPMEs, each of which search for one specific pat-
tern from the query, in parallel. Upon conclusion, the
PE correlates the generated distributed results in order
to actually resolve the query.

 Leong and Jabri [16] present a low-power chip for
classifying cardiac arrhythmia. The system employs a
hybrid decision-tree/neural-network solution in order
to classify a large database of arrhythmias with an
accuracy of 98.4%. A neural network is employed in
order to identify the abnormal heartbeat morphologies
associated with arrhythmia, and a decision tree is util-
ized for analyzing heartbeat timing. The classifier
system was designed for use in Implantable Cardio-
verter Defibrillators (ICDs)—devices that “monitor
the heart and deliver electrical shock therapy in the
event of a life threatening arrhythmia” [16]. Due to
the standard five-year battery life in an ICD, it is im-
perative for the classifier to operate with extremely
low-power consumption; their solution consumes less
than 25nWatts.
 The Kerneltron [10], [11] developed at John Hop-
kins is a recent SVM classification module. The in-
ternally analog, externally digital computational struc-
ture employs a massively parallel kernel comp utation
structure. It implements the linear and RBF kernels.
Due to the internal analog computation, the system is
able to achieve a system precision resolution of 8 bits.
 Anguita et al. [1] present a recent endeavor in the
field. They propose the design of a fully digital archi-
tecture for SVM training and classification employing
the linear and RBF kernels. The result is a highly op-
timal SVM ideal for hardware synthesis. The minimal
word size they are able to achieve is 20 bits.

4. Logarithmic Number Systems

 We leverage logarithmic arithmetic due to its high
degree of suitability for machine-learning-kernel op-
erations. Based on the once ubiquitous engineer’s
slide rule [4] Logarithmic Number Systems (LNS) are
an alternative to fixed- and floating-point arithmetic.
LNS utilize the property of logarithmic compression
for numerical operations. Within the logarithmic do-
main, multiplication and division can be treated sim-
ply as addition or subtraction. Hardware computation
of these operations is significantly faster with reduced
complexity. Employing LNS involves an overhead of
conversion to and from the logarithmic domain that is
insignificant relative to the reduction in kernel comp u-
tational complexity [4], [21].
 Unlike Floating-Point (FP) systems, the relative
error of LNS is constant and LNS can often achieve
equivalent signal-to-noise ratio with fewer bits of pre-
cision relative to conventional FP architectures [4].
Similar to FP architectures, LNS implementations can
represent numbers with relative precision; numbers
closer to zero such as those used in SVMs [8], are rep-
resented with better precision in LNS than FP systems.

 LNS provide other benefits conducive to a low-
power, reliable application. The logarithmic conver-
sion is inherently a compression algorithm as well.
LNS are particularly cost effective when an applica-
tion performs acceptably with reduced precision.
Given successful analog implementations of SVMs
[9], [10], we suspected digital low-precision LNS
SVMs would be feasible. Such reduced precision
permits a diminished word size. In turn, this offers
lower power-consumption, and/or additional bits
available for error-correcting codes. Furthermore, in
CMOS technology, power is consumed when individ-
ual bits switch. Conventional multiplication involves
extensive computation and bit switching. In LNS,
since multiplication is a simple addition, the number
of bits and the frequency of their switching are signifi-
cantly reduced [5].
 A disadvantage of LNS is that more hardware is
required for addition and subtraction than for multipli-
cation and division. Addition and subtraction in LNS
are handled through lookup tables, through signals
such as s(z)= log(1+bz) and d(z) = log|1-bz |, but it has
been shown that this lookup often requires minimal
hardware for systems that tolerate low precision [5].
Let x=log|X| and y=log|Y|. LNS use X+Y =
Y(1+X/Y), thus log(|X|+|Y|) = y+s(x-y), and log(|X|-
|Y|) = y+d(x-y). The function s(z) is used for sums,
and d(z) is used for differences, depending on the
signs of X and Y.
 Neural-network implementations using LNS al-
ready exist [3], [2] that exploit properties of s(z) and
d(z) to approximate a sigmoid related to the RBF- and
sigmoid-SVM kernels. The mathematical nature of
kernel-based operations, given the emphasis on multi-
plication and exp onentiation operations, make LNS an
attractive technology for SVMs.

4.1 LNS SVM Classification

 SVM classification lends itself quite naturally to
implementation in LNS (Figure 1, following page).
Only the decision function mentioned in section 2
needs to be realized. Our proposed architecture would
apply kernel operations to a test vector and stored sup-
port vectors. The mathematical operations would take
place within an LN S-based ALU. The kernel results
would be multiplied and summed. Finally, classifica-
tion would simply depend upon the sign of the result.

5. Precision Analysis

 Our approach to analyzing LNS precision de-
mands commenced by implementing two versions of
the SVM algorithm: an initial double-precision float-

ing-point version to serve as a benchmark for conven-
tional SVMs, and a second LNS version capable of
executing with variable precision. Both implementa-
tion results were corroborated with existing software
solutions [8], [24] to ensure the accuracy of the results.

Figure 1: LNS SVM Classification

 For classification analysis, we employed three
different datasets commonly utilized for benchmarking
purposes within the machine-learning community.
The first dataset is used to classify diabetes based
upon eight different attributes. The second dataset
serves to classify members of the United States House
of Representatives as Democrats or Republicans based
on their voting record for sixteen bills. The third data-
set is employed to classify SONAR signals as rocks or
mines, and is employed to compare results with [1].
The diverse properties and natures of machine learning
datasets are well represented within these three
choices.
 The datasets were scaled and normalized to pre-
vent any single attribute from dominating the learn ing
process [8]. Empirical results confirmed better per-
formance of scaled data. Furthermore, scaled numbers
centered on zero are better represented within the con-
text of LNS precision [3].
 The double-precision floating-point SVM was
employed to generate conventional mathematical ar-
chitecture results. Each dataset was processed through
four SVM kernels: linear, Radial Basis (RBF1 with
2σ 2 = 1 and RBF2 with 2σ 2 = 2) and the sigmoid
(? =0.1, T=0). Finally the LNS precision in the SVM
algorithm was varied to ascertain optimal LNS preci-

sion with performance comparable to double-precision
floating-point.

6. Experimental Results

 Table 1 summarizes our analysis. For each data-
set, it represents the LNS precision required for stabi-
lized results equivalent to double-precision floating-
point, and the LNS precision required for stabilized
results within 1% of double-precision floating-point
results.

Table 1. Summary of required LNS precision bits

 The LNS precision analysis summary indicates an
architecture of 10 bits is virtually guaranteed to match
the performance of a double-precision floating-point
system. Furthermore, an architecture with an LNS
precision of seven or eight bits yields results within
1% of double-precision floating-point. (Note that dif-
ferent kernels and datasets may lead to better perform-
ance.)
 In the following discussion True Positives (TP)
and True Negatives (TN) refer to test instances prop-
erly classified, similarly False Positives (FP) and False
Negatives (FN) indicate test instances improperly
classified. The percentage of Accuracy is calculated
by:

100*
FNFPTNTP

TNTP
+++

+

6.1 Diabetes Data set

 The diabetes dataset consists of 512 training in-
stances and 256 testing instances. Diabetes classifica-
tion is a complex task with attributes representing dif-
ferent ranges of values; thus the SVM algorithm in
LNS needed approximately 9 or 10 bits to stabilize. It
begins to oscillate around the correct value at 7 bits,

Kernel Type

therefore 7 bits of LNS precision leads to results
within 1% of double-precision floating point.

Table 2: Diabetes Linear Kernel

Table 3: Diabetes RBF1 Kernel

Table 4: Diabetes RBF2 Kernel

 Since the different kernels had approximately the
same results, the best kernel for hardware implementa-
tion is the linear as that is the simplest in terms of
hardware complexity.

6.2 Votes Data Set

 The votes dataset consists of 290 training and 145
testing instances. Although it is defined by 16 attrib-
utes, they are all simple yes or no votes on bills. Since
the linear kernel performed the most accurately, a LNS
system of precision 2 or 3 would be sufficient for this
classification and would save greatly on hardware
complexity.

Table 5: Diabetes Sigmoid Kernel

Table 6: Votes Linear Kernel

Table 7: Votes RBF1 Kernel

Table 8: Votes RBF2 Kernel

Table 9: Votes Sigmoid Kernel

6.3 SONAR Data Set

 The SONAR dataset is another complex set con-
sisting of 104 training and 104 testing instances. The
RBF2 Kernel performs comparably to double-precision
floating point and the results in [1]; it requires only 7
bits of precision. With an additional bit, a more accu-
rate LNS architecture with 8 bits of precision could be
leveraged via the RBF1 Kernel.

Table 10: SONAR Linear Kernel

Table 11: SONAR RBF1 Kernel

Table 12: SONAR RBF2 Kernel

Table 13: SONAR Sigmoid Kernel

6.4 Related Precision Analysis Work

 This study of the LNS SVM classification preci-
sion requirements indicates that a general-purpose
SVM needs seven or eight bits of precision to perform
within 1% of double-precision floating point. Appli-
cation-specific SVMs may require as little as two bits
of precision. The actual LNS word size needs an addi-

tional six bits beyond the precision bits to represent
the LNS exponent and sign bit, assuming a dynamic
range of 2-16 to 216-1. In other words, the total LNS
word required is between eight to fourteen bits.
 For the SONAR dataset, the digital SVM in [1]
requires at least a fixed-point word size of 20 bits,
with a dynamic range of 2-9 to 211-1. In contrast, the
LNS SVM proposed here requires only 11 bits for
equivalent performance.
 A related study on the precision requirements of
neural-network hardware implementations [14] states
that at least eight bits of precision are required for ac-
curate performance with additional bits to cover the
required dynamic range, as in [1]. The Kerneltron
analog SVM [10] has a system resolution equivalent to
eight digital precision bits again, with additional dy-
namic-range bits. The three- or four-bit LNS preci-
sions which our simulations show are acceptable offer
significant hardware savings.

7. Conclusion

 We have presented a study of the precision re-
quirements for novel SVM classification within a
logarithmic hardware architecture. Leveraging the
inherent properties of LNS, we are able to achieve
significant savings over double-precision floating
point. A general purpose SVM classification in LNS
would require seven or eight bits of precision, whereas
application-specific devices could be realized with as
little as two bits of precision! Furthermore, we are
able to achieve a precision comparable to that of an
analog based implementation [10]. Additionally, de-
spite the fact that SVM classification is significantly
more complex than neural networks [14], we realize
an equal or better precision through employing LNS.
Moreover, we compare favorably with the only other
work done in digital SVM hardware [1].
 Logarithmic Number Systems represent an ex-
tremely attractive technology for realizing digital
hardware implementations of SVMs and possibly
other machine learning approaches. The precision
requirement for LNS based SVM classification is eight
or fewer bits, comparable to simpler digital neural
networks or inherently optimal analog SVMs.

8. Future Work

 This paper has described the first steps towards
developing robust, kernel-based hardware machine-
learning platforms employing logarithmic arithmetic.
These platforms will serve as foundations for low-
power machine-learning research, and for porting
software solutions to hardware configurations.

 LNS provide an innovatively exciting foundation
due to inherently favorable characteristics for reduced
precision and energy requirements.
 We are currently implementing SVM classifica-
tion in hardware to simulate and observe performance
in terms of execution time and hardware costs. Fur-
thermore, we are exploring precision requirements for
hardware LNS-based SVM training. With the singular
exception of the (non-LNS) recent work in [1], to the
best of our knowledge no research into hardware-
based training has been accomplished.
 Future goals involve employing some of the inno-
vative SVM training algorithms proposed in recent
literature, employing an increased range of possible
kernels, and expanding LNS hardware architectures to
other machine-learning algorithms.

9. Acknowledgements

 The authors would like to acknowledge Jie Ruan
and Philip Garcia for their contributions and to thank
the reviewers for their comments and suggestions for
future work. Co-author William M. Pottenger grate-
fully acknowledges His Lord and Savior, Yeshua the
Messiah (Jesus the Christ).

10. References

[1] Davide Anguita, Andrea Boni and Sandro Ridella. “A
Digital Architecture for Support Vector Machines: Theory,
Algorithm, and FPGA Implementation.” IEEE Transactions
on Neural Networks, vol. 14, no. 5, pp. 993-1009, Sept.
2003.

[2] Mark Arnold, Thomas Bailey, J. Cowles and Jerry Cupal.
“Implementing Back Propagation Neural Nets with Loga-
rithmic Arithmetic.” Proceedings International. AMSE Con-
ference on Neural Networks, San Diego, CA, May 29-31,
(G. Mesnard and R. Swiniarski, Editors), vol. 1, pp. 75-86,
1991.

[3] Mark Arnold, Thomas Bailey, Jerry Cupal and Mark
Winkel. “On the Cost Effectiveness of Logarithmic Arith-
metic for Back Propagation Training on SIMD Processors. ”
International Conference on Neural Networks, Houston,
Texas, pp. 933-936, June 9-12, 1997.

[4] Mark Arnold. “Slide Rules for the 21st Century: Loga-
rithmic Arithmetic as a High-speed, Low-cost, Low-power
Alternative to Fixed Point Arithmetic.” OSEE: Second
Online Symposium for Electronics Engineers, 2001.

[5] Mark Arnold. “Reduced Power Consumption for MPEG
Decoding with LNS.” Application Specific Architectures and
Processors, San Jose, pp. 65-75, July 17-19, 2002.

[6] Christopher Burges. “A Tutorial on Support Vector Ma-
chines for Pattern Recognition.” Knowledge Discovery and
Data Mining, vol. 2, pp. 121-167, 1998.

[7] Gert Cauwenberghs, Editor. “Learning on Silicon: A
Survey,” Learning on Silicon: Adaptive VLSI Neural Sys-
tems. Boston: Kluwer Academic Publishers, 1999.

[8] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Li-
brary for Support Vector Machines, 2001. Software avail-
able at http://www.csie.ntu.edu.tw/~cjlin/libsvm

[9] Roman Genov and Gert Cauwenberghs. “Stochastic
Mixed-Signal VLSI Architecture for High-Dimensional
Kernel Machines.” Advances in Neural Information Process-
ing Systems (NIPS'2001), Cambridge, MA: MIT Press, vol.
14, pp. 1099-1105, 2002.

[10] Roman Genov and Gert Cauwenberghs. “Kerneltron:
Support Vector Machine in Silicon. ” IEEE Transactions on
Neural Networks, vol. 14, no. 5, pp. 1426-1434, 2003.

[11] Roman Genov, Shantanu Chakrabartty and Gert
Cauwenberghs. “Silicon Support Vector Machine with On-
Line Learning.” International Journal of Pattern Recogni-
tion and Artificial Intelligence, vol. 17, no. 3, pp. 385-404,
2003.

[12] Marti Hearst. “Support Vector Machines. ” IEEE Intel-
ligent Systems, vol. 13, no. 4, pp. 18-28 July 1998.

[13] Ralf Herbich. Learning Kernel Classifiers: Theory and
Algorithms. Cambridge: The MIT Press, 2002.

[14] Jordan Holt and Jeng-Neng Hwang. “Finite Precision
Error Analysis of Neural Network Hardware Implementa-
tions. ” IEEE Transactions on Computers. vol. 42, no. 3, pp.
281-290, Mar 1993.

[15] Chih-Wei Hsu, Chih-Chung Chang and Chih-Jen Li. “A
Practical Guide to Support Vector Classification,” available
www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

[16] Philip Leong and Marwan Jabri, “A Low Power VLSI
Arrhythmia Classifier.” IEEE Transactions on Neural Net-
works, vol. 6, no. 6, pp. 1435-1445, November 1995.

[17] Victo Mak, Kuo Chu Lee and Ophir Frieder. Exploit-
ing Parallelism in Pattern Matching: An Information Re-
trieval Application. ACM Transactions on Information Sy s-
tems (TOIS), pp. 52-72, 1991.

[18] Tony Martinez, Douglas Campbell, and Brent Hughes.
“Priority ASOCS.” Journal of Artificial Neural Networks,
vol. 1, no. 3, pp. 403-429, 1994.

[19] Bernhard Scholkopf, Alex Smola, and Klaus-Robert
Muller. “Support Vector Methods in Learning and Feature
Extraction.” Australian Journal of Intelligent Information
Processing Systems, vol. 1, pp. 3-9, 1998.

[20] Alex Smola and Bernhard Scholkopf. “A Tutorial on
Support Vector Regression.” ESPRIT Working Group in
Neural and Computational Learning II, NeuroCOLT2,
Technical Report TR-98-030, 1998.

[21] Thanos Stouraitis and Fred J. Taylor. “Analysis of
Logarithmic Number System Processors.” IEEE Transac-
tions on Circuits and Systems, vol. 35, no. 5, pp. 519-527,
May 1998.

[22] Matthew Stout, George Rudolph, Tony Martinez, and
Linton Salmon. “A VLSI Implementation of a Parallel, Self-
Organizing Learning Model.” Proceedings of the Interna-
tional Conference on Pattern Recognition, vol. 3, pp. 373-
376, 1994.

[23] Vladimir Vapnik. The Nature of Statistical Learning
Theory, Springer Verlag, 1995.

[24] Ian H. Witten and Eibe Frank. Data Mining: Practical
Machine Learning Tools and Techniques . New York: Mor-
gan Kaufmann Publishers, 2000.

