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Abstract 
 
 In this paper we present an analysis of the mini-
mal hardware precision required to implement Sup-
port Vector Machine (SVM) classification within a 
Logarithmic Number System architecture.  Support 
Vector Machines are fast emerging as a powerful ma-
chine-learning tool for pattern recognition, decision-
making and classification.  Logarithmic Number Sys-
tems (LNS) utilize the property of logarithmic com-
pression for numerical operations.  Within the loga-
rithmic domain, multiplication and division can be 
treated simply as addition or subtraction.  Hardware 
computation of these operations is significantly faster 
with reduced complexity. Leveraging the inherent 
properties of LNS, we are able to achieve significant 
savings over double-precision floating point in an 
implementation of a SVM classification algorithm. 
 
 
1. Introduction 

 
 Cognitive systems capable of gathering informa-
tion, detecting significant events, making decisions 
and/or coordinating operations are of immense value 
to a wide variety of application domains, from bio-
medical devices to automated military units.   The core 
functionality of such machine learning and classifica-
tion involves mathematical kernels employing com-
monly used operators [13]. 
 Thus far, the driving thrust of progress has been in 
software-based solutions executing on general-purpose 
single or multi-processor machines.  Aside from a 
plethora of work in neural-network hardware imple-
mentations [7], there exists a noteworthy absence of 
hardware-based machine-learning technologies. 
 This paper describes preliminary research towards 
the development of robust, hardware-based kernel 
solutions beyond neural networks for application-
specific deployment.  Specifically, we are employing  

Support Vector Machines (SVMs), a representative 
kernel-based machine-learning technique especially 
suited to high-dimensional data [13], [19], [20], [24].   
 As noted, significant progress has been made in 
the software domain for modeling and replicating the 
natural processes of learning, adapting and decision 
making for intelligent data analysis.  Unfortunately, 
such solutions require significant resources for execu-
tion and may consequently be unsuitable for portable 
applications.  Efficient hardware implementations of 
machine-learning techniques yield a variety of advan-
tages over software solutions. Equipment cost and 
complexity are reduced. Processing speed, reliability 
and battery life are increased. The availability of ap-
plication-specific hardware components for detecting 
events, decision-making, etc further enhance effi-
ciency.   
 For these reasons we leverage logarithmic arith-
metic for its energy-efficient properties [5], [4], [21].  
Successful deployment of logarithmic functionality in 
neural networks has been shown to increase reliability 
and reduce power usage [3], [2]. We anticipate further 
progress in kernel-based SVMs since the majority of 
machine-learning kernels employ multiplication 
and/or exp onentiation operators, the performance of 
which logarithmic computation significantly improves. 
 The primary task in this endeavor is to analyze the 
precision requirements for performing SVM classifica-
tion in LNS hardware and compare them against the 
cost of using traditional floating-point architectures.  
Furthermore, comparison with neural-network preci-
sion demands and existing hardware SVMs also pro-
vides an excellent framework for analysis. 
 In the following sections we review SVM and 
LNS backgrounds along with related work in hard-
ware-based machine-learning/decision ma king.  We 
present our approach for analyzing LNS SVM classifi-
cation and the results of the study.  We follow with a 
conclusion and a discussion of the future work cur-
rently underway. 
 



2. Support Vector Machines 
 
 The Support Vector Machine (SVM) algorithm is 
well grounded in statistical learning theory [23] but is 
abstractly a simple, intuitively clear algorithm [12].  It 
performs excellently for complex real-world problems 
that may be difficult to analyze theoretically. 
 SVMs are an extension of linear models that are 
capable of nonlinear classification.  Linear models are 
incapable of representing a concept with nonlinear 
boundaries between classes.  SVMs employ linear 
models to represent nonlinear class boundaries by 
transforming the input, or instance space, into a new 
space using a nonlinear mapping. 
 This transformation is facilitated through the use 
of kernels.  The SVM algorithm can be treated linearly 
within the instance space, whereas the choice of vari-
ous kernels may map the core operations transparently 
to a higher dimensional space.  Consequently, com-
plex pattern recognition and classification approaches 
can abstractly be represented linearly. 
 Following this transformation, a Maximum Mar-
gin Hyperplane (MMH) that separates the instances by 
class is learned, thereby forming a decision boundary. 
The MMH comes no closer to a given instance than it 
must; in the ideal case it optimally separates classes.  
Support vectors are the instances closest to the MMH.  
A set of support vectors thus defines the decision 
boundary for a given set of instances. This simplifies 
the representation of the decision boundary since other 
training instances can be disregarded. 
 SVM training involves minimizing a combination 
of training error (empirical risk) and the probability of 
incorrectly classifying unknown data (structural risk), 
controlled by a single regularization parameter C [11].  
In the dual form (often preferred for training) this 
translates to obtaining the coefficients αi through a 
quadratic programming problem.  Given a set of input 

instance vectors X
r

with class values Y, the objective 
is to minimize and maximize the following objective 
function given certain constraints: 
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Instances with an α >0 are considered support vectors.  
The variable b is a threshold value which is also com-
puted. 
 Support Vector classification (in a simple two 
class problem) simply looks at the sign of a decision 

function.  A test instance T
r

 is classified by the fol-
lowing decision function [19], [20], [24], [6], [11]: 
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and the resultant feature space is cru-

cially interesting in theoretical and practical terms.  It 
determines the functional form of the support vectors 
given the regularization parameter C; thus, different 
kernels behave differently.  Some common kernels 
are: 
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 Interestingly a SVM with an RBF kernel is a sim-
ple type of neural network called a radial basis func-
tion network, and a sigmoid kernel implements a mu l-
tilayer perceptron with no hidden layers [24]. 
 Other machine-learning techniques, such as in-
stance-based learning, distance-function learning, etc., 
leverage similar mathematical kernels using dot prod-
ucts, inner products (employed in image processing) 
[9], and other formulas.  The fundamental operators 
employed in such kernels are multiplication, division, 
addition, subtraction, exponentiation, various roots 
and integration [19], [20],  [24], [6], [11]. 
 
3. Hardware-based Machine Learn-
ing/Data Processing 
 
 There exists a significant lack of hardware-based 
machine-learning systems.  With the aforementioned 
exception of neural networks (e.g., [3], [2], [14], [7],  
[18], [22]), the advantages of portable, dedicated ma-
chine-learning ASICs still remain a viable field to be 
explored. 
 Mak et al. [17] present an early attempt in hard-
ware-based pattern matching for information retrieval.  
Their system is composed of two elements: Data Par-
allel Pattern Matching Engines (DPPMEs) that are 
slaves to a unique, master Processing Element (PE).  
Each DPPME is responsible for locating one pattern 
within a body of data.  When a (complex) query is 
proposed, the PE decomposes it into basic match 
primitives, and distributes them among the various 
DPPMEs, each of which search for one specific pat-
tern from the query, in parallel.  Upon conclusion, the 
PE correlates the generated distributed results in order 
to actually resolve the query. 



 Leong and Jabri [16] present a low-power chip for 
classifying cardiac arrhythmia.  The system employs a 
hybrid decision-tree/neural-network solution in order 
to classify a large database of arrhythmias with an 
accuracy of 98.4%.  A neural network is employed in 
order to identify the abnormal heartbeat morphologies 
associated with arrhythmia, and a decision tree is util-
ized for analyzing heartbeat timing.  The classifier 
system was designed for use in Implantable Cardio-
verter Defibrillators (ICDs)—devices that “monitor 
the heart and deliver electrical shock therapy in the 
event of a life threatening arrhythmia” [16].  Due to 
the standard five-year battery life in an ICD, it is im-
perative for the classifier to operate with extremely 
low-power consumption; their solution consumes less 
than 25nWatts.   
 The Kerneltron [10], [11] developed at John Hop-
kins is a recent SVM classification module.  The in-
ternally analog, externally digital computational struc-
ture employs a massively parallel kernel comp utation 
structure.  It implements the linear and RBF kernels.  
Due to the internal analog computation, the system is 
able to achieve a system precision resolution of 8 bits. 
 Anguita et al. [1] present a recent endeavor in the 
field.  They propose the design of a fully digital archi-
tecture for SVM training and classification employing 
the linear and RBF kernels.  The result is a highly op-
timal SVM ideal for hardware synthesis.  The minimal 
word size they are able to achieve is 20 bits. 
 
4. Logarithmic Number Systems  

 
 We leverage logarithmic arithmetic due to its high 
degree of suitability for machine-learning-kernel op-
erations.  Based on the once ubiquitous engineer’s 
slide rule [4] Logarithmic Number Systems (LNS) are 
an alternative to fixed- and floating-point arithmetic.  
LNS utilize the property of logarithmic compression 
for numerical operations.  Within the logarithmic do-
main, multiplication and division can be treated sim-
ply as addition or subtraction.  Hardware computation 
of these operations is significantly faster with reduced 
complexity.  Employing LNS involves an overhead of 
conversion to and from the logarithmic domain that is 
insignificant relative to the reduction in kernel comp u-
tational complexity [4], [21].  
 Unlike Floating-Point (FP) systems, the relative 
error of LNS is constant and LNS can often achieve 
equivalent signal-to-noise ratio with fewer bits of pre-
cision relative to conventional FP architectures [4].  
Similar to FP architectures, LNS implementations can 
represent numbers with relative precision; numbers 
closer to zero such as those used in SVMs [8], are rep-
resented with better precision in LNS than FP systems. 

  LNS provide other benefits conducive to a low-
power, reliable application.  The logarithmic conver-
sion is inherently a compression algorithm as well.  
LNS are particularly cost effective when an applica-
tion performs acceptably with reduced precision. 
Given successful analog implementations of SVMs 
[9], [10], we suspected digital low-precision LNS 
SVMs would be feasible.  Such reduced precision 
permits a diminished word size. In turn, this offers 
lower power-consumption, and/or additional bits 
available for error-correcting codes.  Furthermore, in 
CMOS technology, power is consumed when individ-
ual bits switch.  Conventional multiplication involves 
extensive computation and bit switching.  In LNS, 
since multiplication is a simple addition, the number 
of bits and the frequency of their switching are signifi-
cantly reduced [5]. 
 A disadvantage of LNS is that more hardware is 
required for addition and subtraction than for multipli-
cation and division.   Addition and subtraction in LNS 
are handled through lookup tables, through signals 
such as s(z)= log(1+bz) and d(z) = log|1-bz |, but it has 
been shown that this lookup often requires minimal 
hardware for systems that tolerate low precision [5].  
Let x=log|X| and y=log|Y|.  LNS use X+Y = 
Y(1+X/Y), thus log(|X|+|Y|) = y+s(x-y), and log(|X|-
|Y|) = y+d(x-y). The function s(z) is used for sums, 
and d(z) is used for differences, depending on the 
signs of X and Y.  
 Neural-network implementations using LNS al-
ready exist [3], [2] that exploit properties of s(z) and 
d(z) to approximate a sigmoid related to the RBF- and 
sigmoid-SVM kernels. The mathematical nature of 
kernel-based operations, given the emphasis on multi-
plication and exp onentiation operations, make LNS an 
attractive technology for SVMs.  
 
4.1 LNS SVM Classification 

 
 SVM classification lends itself quite naturally to 
implementation in LNS (Figure 1, following page).  
Only the decision function mentioned in section 2 
needs to be realized.  Our proposed architecture would 
apply kernel operations to a test vector and stored sup-
port vectors.  The mathematical operations would take 
place within an LN S-based ALU.  The kernel results 
would be multiplied and summed.  Finally, classifica-
tion would simply depend upon the sign of the result. 
 
5. Precision Analysis 
   
 Our approach to analyzing LNS precision de-
mands commenced by implementing two versions of 
the SVM algorithm: an initial double-precision float-



ing-point version to serve as a benchmark for conven-
tional SVMs, and a second LNS version capable of 
executing with variable precision.  Both implementa-
tion results were corroborated with existing software 
solutions [8], [24] to ensure the accuracy of the results. 
  

 
 

Figure 1: LNS SVM Classification 
 
 For classification analysis, we employed three 
different datasets commonly utilized for benchmarking 
purposes within the machine-learning community.   
The first dataset is used to classify diabetes based 
upon eight different attributes.  The second dataset 
serves to classify members of the United States House 
of Representatives as Democrats or Republicans based 
on their voting record for sixteen bills.  The third data-
set is employed to classify SONAR signals as rocks or 
mines, and is employed to compare results with [1].  
The diverse properties and natures of machine learning 
datasets are well represented within these three 
choices. 
 The datasets were scaled and normalized to pre-
vent any single attribute from dominating the learn ing 
process [8].  Empirical results confirmed better per-
formance of scaled data.  Furthermore, scaled numbers 
centered on zero are better represented within the con-
text of LNS precision [3]. 
 The double-precision floating-point SVM was 
employed to generate conventional mathematical ar-
chitecture results.  Each dataset was processed through 
four SVM kernels: linear, Radial Basis (RBF1 with 
2σ 2 = 1 and RBF2 with 2σ 2 = 2) and the sigmoid 
(? =0.1, T=0).  Finally the LNS precision in the SVM 
algorithm was varied to ascertain optimal LNS preci-

sion with performance comparable to double-precision 
floating-point. 
 
 
6.  Experimental Results 
 
 Table 1 summarizes our analysis.  For each data-
set, it represents the LNS precision required for stabi-
lized results equivalent to double-precision floating-
point, and the LNS precision required for stabilized 
results within 1% of double-precision floating-point 
results. 
 
Table 1.  Summary of required LNS precision bits 

 

 
 
 The LNS precision analysis summary indicates an 
architecture of 10 bits is virtually guaranteed to match 
the performance of a double-precision floating-point 
system.  Furthermore, an architecture with an LNS 
precision of seven or eight bits yields results within 
1% of double-precision floating-point. (Note that dif-
ferent kernels and datasets may lead to better perform-
ance.)   
 In the following discussion True Positives (TP) 
and True Negatives (TN) refer to test instances  prop-
erly classified, similarly False Positives (FP) and False 
Negatives (FN) indicate test instances improperly 
classified.  The percentage of Accuracy is calculated 
by: 

100*
FNFPTNTP
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6.1 Diabetes Data set 
 
 The diabetes dataset consists of 512 training in-
stances and 256 testing instances.  Diabetes classifica-
tion is a complex task with attributes representing dif-
ferent ranges of values; thus the SVM algorithm in 
LNS needed approximately 9 or 10 bits to stabilize.  It 
begins to oscillate around the correct value at 7 bits, 

Kernel Type 



therefore 7 bits of LNS precision leads to results 
within 1% of double-precision floating point. 
 
 

Table 2: Diabetes Linear Kernel 

 
 
 
 

Table 3: Diabetes RBF1 Kernel 

 
 
 
 
Table 4: Diabetes RBF2 Kernel 

 
 
 

 Since the different kernels had approximately the 
same results, the best kernel for hardware implementa-
tion is the linear as that is the simplest in terms of 
hardware complexity. 

6.2 Votes Data Set 
 
 The votes dataset consists of 290 training and 145 
testing instances.  Although it is defined by 16 attrib-
utes, they are all simple yes  or no votes on bills.  Since 
the linear kernel performed the most accurately, a LNS 
system of precision 2 or 3 would be sufficient for this  
classification and would save greatly on hardware 
complexity. 

 
 

Table 5: Diabetes Sigmoid Kernel 

 
 
 
Table 6: Votes Linear Kernel 

 
 
 
 
Table 7: Votes RBF1 Kernel 

 
 



Table 8: Votes RBF2 Kernel 
 

 
 
 
Table 9: Votes Sigmoid Kernel 

 
 
 

6.3 SONAR Data Set 
 
 The SONAR dataset is another complex set con-
sisting of 104 training and 104 testing instances.  The 
RBF2 Kernel performs comparably to double-precision 
floating point and the results in [1]; it requires only 7 
bits of precision.  With an additional bit, a more accu-
rate LNS architecture with 8 bits of precision could be 
leveraged via the RBF1 Kernel. 
 
 

Table 10: SONAR Linear Kernel 

 

Table 11: SONAR RBF1 Kernel 

 
 
 
Table 12: SONAR RBF2 Kernel 

 
 
 
Table 13: SONAR Sigmoid Kernel 

 
 
6.4 Related Precision Analysis Work 
 
 This study of the LNS SVM classification preci-
sion requirements indicates that a general-purpose 
SVM needs seven or eight bits of precision to perform 
within 1% of double-precision floating point.  Appli-
cation-specific SVMs may require as little as two bits 
of precision.  The actual LNS word size needs an addi-



tional six bits beyond the precision bits to represent 
the LNS exponent and sign bit, assuming a dynamic  
range of 2-16 to 216-1.   In other words, the total LNS 
word required is between eight to fourteen bits. 
 For the SONAR dataset, the digital SVM in [1] 
requires at least a fixed-point word size of 20 bits, 
with a dynamic range of 2-9 to 211-1.  In contrast, the 
LNS SVM proposed here requires only 11 bits for 
equivalent performance. 
 A related study on the precision requirements of 
neural-network hardware implementations [14] states 
that at least eight bits of precision are required for ac-
curate performance with additional bits to cover the 
required dynamic range, as in [1].  The Kerneltron 
analog SVM [10] has a system resolution equivalent to 
eight digital precision bits again, with additional dy-
namic-range bits.  The three- or four-bit LNS preci-
sions which our simulations show are acceptable offer 
significant hardware savings.   

 
7.  Conclusion 

 
 We have presented a study of the precision re-
quirements for novel SVM classification within a 
logarithmic hardware architecture.  Leveraging the 
inherent properties of LNS, we are able to achieve 
significant savings over double-precision floating 
point.  A general purpose SVM classification in LNS 
would require seven or eight bits of precision, whereas 
application-specific devices could be realized with as 
little as two bits of precision!  Furthermore, we are 
able to achieve a precision comparable to that of an 
analog based implementation [10].  Additionally, de-
spite the fact that SVM classification is significantly 
more complex than neural networks [14], we realize 
an equal or better precision through employing LNS.  
Moreover, we compare favorably with the only other 
work done in digital SVM hardware [1]. 
 Logarithmic Number Systems represent an ex-
tremely attractive technology for realizing digital 
hardware implementations of SVMs and possibly 
other machine learning approaches.  The precision 
requirement for LNS based SVM classification is eight 
or fewer bits, comparable to simpler digital neural 
networks or inherently optimal analog SVMs. 
 
8. Future Work 
 
 This paper has described the first steps towards 
developing robust, kernel-based hardware machine-
learning platforms employing logarithmic arithmetic.  
These platforms will serve as foundations for low-
power machine-learning research, and for porting 
software solutions to hardware configurations. 

 LNS provide an innovatively exciting foundation 
due to inherently favorable characteristics for reduced 
precision and energy requirements. 
 We are currently implementing SVM classifica-
tion in hardware to simulate and observe performance 
in terms of execution time and hardware costs.  Fur-
thermore, we are exploring precision requirements for 
hardware LNS-based SVM training. With the singular 
exception of the (non-LNS) recent work in [1], to the 
best of our knowledge no research into hardware-
based training has been accomplished. 
 Future goals involve employing some of the inno-
vative SVM training algorithms proposed in recent 
literature, employing an increased range of possible 
kernels, and expanding LNS hardware architectures to 
other machine-learning algorithms. 
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