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Abstract 
 
 The global growth in popularity of the World Wide Web 
has been enabled in part by the availability of browser-
based search tools which in turn have led to increased 
demand for advances in the field of textual data mining. 
 Simultaneously, fully automatic content-based 
techniques of textual data management have been under 
development at a number of institutions.  The time is thus 
ripe for the development of scalable knowledge 
management systems capable of handling extremely large 
and diverse textual collections distributed across multiple 
repositories. 
 This paper introduces the HDDI  Collection Builder, 
our custom developed solution for automatic feature 
extraction from such collections. The HDDI  Collection 
Builder provides input features for several algorithms in 
distributed textual data mining. 
 
1 Introduction 
 
 The explosive growth of digital repositories of  
information has been enabled by recent developments 
in communication and information technologies. 
Despite significant accomplishments in 
internetworking, however, scalable mining 
techniques for distributed data lag behind the rapid 
growth of digital collections. 
 In the 21st century, a significant amount of 
scientifically valuable information will be available 
via such computer communications networks. The 
appearance of focused digital libraries on the World 
Wide Web demonstrates the willingness of scientists 
and engineers to distribute detailed information 

beyond that traditionally available in the published 
literature (e.g., [2]). If this volume of literature, 
unprecedented in its scope, is to be useful to the 
scientific community, it is critical that new 
information infrastructure be developed which 
enables effective management of the huge volume of 
distributed data emerging in digital form. 
 Traditional methods of textual indexing combine 
multiple subject areas into a single, monolithic index. 
There are already enough documents on the Web that 
such mining technology often fails to perform 
effective search. The difficulty lies in the fact that 
since so many documents and subjects are being 
combined together, retrieving all the documents that 
match a particular word phrase often returns too 
many documents for effective search. This problem 
has been known for some time [3]. In order to 
properly address this problem, a paradigm shift is 
needed in the approach to indexing. 
 First and foremost, it is clear that digital 
collections are now and will continue to be 
distributed. Our first premise is thus that indexes, or 
models, in a distributed data mining system must also 
be distributed1. 
 Second, it must be realized that the textual data 
contained in these distributed digital repositories is 
hierarchical in nature. Traditionally, knowledge 
hierarchies, or ontologies, have been created with 
human expertise2. Such an approach does not scale to 
the tremendous amount of emerging digital data for 
two reasons: first, as knowledge increases, new topics 

                                                                 
1 Note that we use the terms model and index 
interchangeably throughout this paper. 
2 One popular form is the thesaurus (e.g., the National 
Library of Medicine’s MeSH thesaurus). 



are emerging at a greater rate; second, the speed of 
emergence and the sheer volume of data preclude 
manual approaches to model building. Our second 
premise is thus that models of distributed textual data 
must be automatically generable while at the same 
time properly reflecting the hierarchical nature of 
knowledge. 
 Third, due to the rapid increase in 
communications bandwidth and computing and 
online storage capabilities mentioned above, digital 
collections are frequently updated. This reflects a key 
characteristic of 21st century collections: namely, that 
they are dynamic in nature. Our third premise is thus 
that any new information infrastructure must include 
dynamic model building capabilities. 
 In the final analysis, these three perspectives 
must be integrated into a cohesive whole. The goal of 
our research is thus to architect a computational 
knowledge management prototype based on HDDI: 
Hierarchical Distributed Dynamic Indexing. 
 As part of our research we are discovering novel 
approaches to addressing the various issues of 
managing distributed digital information in the 
context of the aforementioned paradigm shift.  This 
paper introduces the HDDI Collection Builder, our 
approach to automatic concept extraction from digital 
distributed collections of documents. The HDDI  
Collection Builder provides a basis and underlying 
data for the new indexing/textual data mining 
algorithms of HDDI. 
 
2 HDDI  Collection Builder 
 
 In the following sections we review the three 
functional parts of the HDDI Collection Builder: 
parsing, parts of speech tagging, and concept 
extraction. We also present the results of validation 
experiments that were performed on the Collection 
Builder. 
 
2.1 Terminology 
 
 Before we introduce the functional parts of the 
system, we must introduce some terminology that 
will be used throughout this paper: 
 
• Items: Item refers to the basic unit of data 

content that is used in textual data mining. We 
generally use item to refer to a single document; 
however as explained in [1], other units of 
information, such as subsections of a document 
or sentences, could be used as well. For 
simplicity, as in [1] and [18], we will assume 
that item refers to a document for the rest of this 
paper. 

• Collections: A collection refers to a group of 
items that will be indexed in the HDDI system. 

• Concepts: We use concept to refer to a maximal 
length English-language noun phrase that is 
extracted from a Collection’s items. Concepts are 
used as keywords for the purposes of the 
HDDI  computational knowledge management 
system.3 

 
2.2 Parsing  
 
 The first step in the concept extraction process 
requires us to parse the original collection. Since the 
collection can originate from almost any source, we 
need the parser to work correctly on many different 
input formats. We also need the parser to extract and 
label specific fields from the collection. In order to 
accomplish these tasks we set out to create an 
extensible, reusable object-oriented parser. 
 Because we wanted the parser to be capable of 
handling data in many different input formats, we 
decided that the parser should have two inputs. The 
parser obviously requires the original collection 
(giving the text that is to be parsed) as its first input. 
The second input is a specifications (Specs) object, 
specific to a given data format and the needs of the 
user. This Specs object contains information the 
parser needs to extract the necessary content from the 
collection. The Specs object gives the sequence of 
characters which signify the end of a document, 
strings that identify the fields within the original 
document that are to be extracted, and strings that the 
parser outputs to label the content’s field of origin. 
The use of this Specs object gives the parser its 
ability to parse almost anything that can be delimited; 
in practice, however, we generally use either XML or 
HTML collections. Given a Specs object which 
defines “DOC” tags as document delimiters, and 
“Title” and “Abstract” tags as marking fields with 
valuable content, Figure 1 shows an example of an 
XML item that could be used as input to the parser: 
 
<DOC> 
<Title> 
Sample Article 
</Title> 
<Date> 
6/14/00 21:40:00 
</Date> 
<Author> 
R. H. Bader 
</Author> 
                                                                 
3 See [1] for a review of Information Retrieval topics. 
Also, see [4], [5], and [6] for information about 
English-language grammar and noun phrases. 



<Affiliation> 
National Center for Supercomputing 
Applications, Champaign, IL 
</Affiliation> 
<Abstract> 
This is a sample abstract. 
</Abstract> 
<Body> 
This is a sample article body. 
</Body> 
</DOC> 
 
Figure 1: Sample XML input File. 
 
 Once the parser receives the Specs object and 
input in the form shown in Figure 1, it reads in one 
item from the collection. The parser, using 
information from the Specs object to break the input 
into tokens, loops through these tokens extracting the 
desired fields while ignoring the unspecified fields. 
When the parser reaches the end of an item, the 
process continues and is repeated for all other items 
in the collection. Figure 2 is an example of the output 
from the parser, using Figure 1 as the input XML file. 
 
[<Title:14>, Sample Article] 
[<Abstract:202>, This is a sample 
abstract.] 
 
Figure 2: Sample parsed output File. Only Title and 
Abstract fields were specified in Specs object.  Field 
names are followed by the numeric offset which 
specifies the location of the extracted text in the 
original text. 
 
2.3 Parts of Speech Tagging 
 
 The Parts of Speech Tagger is a rule -based 
system for tagging English parts of speech. This 
system is based on the SemanTag system ([10]) 
developed by Gregg Cooke, who based his work on 
Dr. Eric Brill’s tagging system (see [7], [8], and [9] 
for detailed information about Brill’s tagging 
system). It uses three levels of rule sets to determine 
the part of speech of each word, and tags words with 
their English part of speech tag, as specified in the 
Brown tagset (see [11]). 
 The tagger starts by initializing its rule tables. 
This involves reading about 94,000 lines of rules (of 
which all but about 350 are lexicon rules). The 
lexicon rules consist of a mapping of a given word to 
its parts of speech. After the lexicon rules are read, 
the lexical rules are read. These deal with roots of a 
word, and other internal properties that modify a 
word’s part of speech usage. An example of a lexical 
rule would be “If a word ends in “ly”, it is probably 

an adverb”. These rules are put into a list, so they can 
be applied in order to each word from the input text. 
Due to the fact that there are only 134 lexical rules, 
the cost incurred by applying these rules is relatively 
low. The final set of rules consists of 220 contextual 
rules that deal with semantic information that can be 
derived from the position of a word in a sentence. For 
example, if a word is initially identified as an adverb, 
and the next word is a noun, a contextual rule would 
insure that the word is retagged as an adjective. 
 When the text input is read, a pre-pass separates 
punctuation by inserting spaces before each 
punctuation character.  Next, the input is broken into 
a series of “CorpusWord” objects, each of which 
contains a word, a space, or punctuation, along with 
the tag that the word has been assigned. This process 
results in approximately twice as many objects being 
created as there are words in the input text. Once the 
input text is properly formatted, it is passed to the 
lexicon stage of the tagger. 
 In the lexicon stage, each word (except for those 
which have been marked as nonstandard) is looked 
up in the lexicon hash table, and the first entry in its 
parts of speech list is assigned to the word. If no tag 
exists for the word, the assumption is made that it is a 
noun, or a proper noun (if it is capitalized). The 
tagged text is then passed to the lexical rules stage of 
the tagger. 
 In the lexical rules stage each lexical rule is 
applied to each word. Any rule matches that are 
found change the part of speech tag of the word, 
overriding any earlier tagging decision that may have 
been made. After this step is completed, there are 
many fewer nouns as tags have been changed based 
upon word suffixes and other properties.  Finally, the 
contextual rules are applied to each word, thus 
incorporating knowledge that can be gained from 
inter-word relationships into the tagging process. 
 It is interesting to note that the rules used, while 
adequate for Brill’s purposes of tagging, fall 
somewhat short for use in tagging text from the 
World Wide Web, some of which is less formal or 
polished than text from a standard published source. 
Brill’s rule sets still performed very well, but special 
exceptions needed to be coded for some very non-
standard English. 
 
2.4 Concept Extraction 
 
 A key part of textual data mining is feature, or 
concept extraction. For this purpose, we have 
designed and implemented a sophisticated English 
language noun phrase extractor. Our goal was to 
create a noun phrase extractor that would extract 
maximal length English language noun phrases.  Our 
premise is that such noun phrases represent the most 



specific content in an item and should therefore be 
used as keyword features for indexing purposes by 
the HDDI textual data mining system. Initially, a 
recognizer was developed based upon work from 
[12], and a lexical analyzer created using JLex ([13]), 
a java version of the well-known Unix tool lex. 
 The first recognizer developed accepted the 
language generated by the following regular 
expression: [(d) a* n+]. This regular expression 
represents the maximal length noun phrase that can 
be formed by an optional determiner (“(d)”) followed 
by zero or more adjectives (“a*”) followed by one or 
more nouns (“n+”). 
 It is important to note that this regular expression 
is not sophisticated enough to handle and extract 
complex noun phrases such as those containing 
prepositions, gerunds, or participles. This resulted in 
poor recall of maximal length noun phrases. To 
address this issue, we developed a second, more 
comprehensive regular expression to handle more 
specific types of noun phrases. Our second regular 
expression is shown in Figure 3. It handles more 
complicated noun phrases including those with 
participles, gerunds, and prepositional phrases. (See 
[4], [5], and [6], for definitions of the types of noun 
phrases.) 
 Concurrently with the extraction of noun 
phrases, other information that is used later in the 
HDDI model building stage is extracted and 
preserved. For example, a frequency of occurrence is 
calculated for each concept in each item as well as 
the character offset of each concept in the original 
item. Also, the field in which the concept occurred 
(e.g., title) is preserved. In addition, we have the 
option of enabling stemming of the concepts. The 
stemming algorithm is basically a modified version 
of Porter’s stemming algorithm (see [15] and [16] for 
details on Porter’s original algorithm), which was 
designed to work on single-word keywords. We 
simply apply Porter’s stemming algorithm to each 
word of a concept, thus creating an algorithm that 
works on multi-word phrases (concepts). If this 
option is enabled, concepts that have similar 
meanings (but slightly different grammatical 
structure) can be reduced to the same concept. For 
example, the concepts “black dog” and “black dogs” 
reduce to “black dog” if stemming is enabled. 

The following is an example of the functionality 
of the phraser. If the phraser received the input “She 
built an apparatus for the transformation of picture 
information.” as the original text of an item, and 
“She//PP built//VBD an//DT apparatus//NN for//IN 
the//DT transformation//NN of//IN picture//NN 
information//NN .//.” as the marked up text (see 
Figure 4 for an explanation of the parts of speech 
tags), the noun phrase “apparatus for the 

transformation of picture information” would be 
extracted with a character offset of 12.  This concept 
would be given a frequency of occurrence of 1 since 
it occurs only once in this simple one sentence 
example.  Note that this phrase was extracted using 
the second, more sophisticated regular expression for 
recognition of noun phrases; had the original regular 
expression been used, “an apparatus”, “the 
transformation”, and “picture information” would 
have been identified as the noun phrases.  

 
 

 
 
C?(G|J|P)*N+(I*D?C?(G|J|P)*N+)* 
 
C - cardinal number 
G - verb: gerund or present 
participle 
P - verb: past participle 
J - adjective 
N - noun 
I – preposition 
D – determiner 
? - option: zero or one occurrence 
| - union 
* - Kleene closure 
+ - Kleene plus: 1 or more 
occurrence 
 
Figure 3: Second regular expression for English 
language noun phrases. The regular expression is 
presented both graphically and textually, followed by 
a key. In the graphic, state 0 is the start state, and 
state 1 is the final state. 
 
DT - determiner 
IN - preposition or subordinating 
conjunction 



NN - noun - singular or mass 
PP - personal pronoun 
VBD - verb - past tense 
. - literal period 
 
Figure 4: Selected Brown parts of speech tags and 
their definitions. 
 
2.5 Validation Experiments  
 
 The following metrics were used to evaluate the 
effectiveness of the HDDI  Collection Builder: 
 
Precision = concepts identified correctly by phraser ÷ 
all phrases identified as concepts by phraser 
 
Recall = concepts identified correctly by phraser ÷ 
total number of concepts identified by human expert  
 
The following collections served as our test data: 
 
• Grainger journal abstracts: A collection of 10 

items chosen at random from the University of 
Illinois Grainger Engineering Library’s Digital 
Library Initiative testbed (DLI [14]). The DLI 
testbed is a database of over 60,0000 
engineering, computer science, and other 
technical full-text journal articles.  For this 
collection, only the abstracts were extracted. 
 

• USPTO and IBM patents: Both the United States 
Patent Office (USPTO) and IBM maintain web 
databases of various patent information.  Both 
databases contain the full text of US patents from 
the early 1970’s through the present, and contain 
over 2 million items each. A collection was 
formed from 5 USPTO and 5 IBM patent 
applications, for a total of 10 items, that were 
randomly selected from queries on various 
computer science topics, such as computer 
graphics, pipelining, processors, etc. As with the 
DLI test set, only the abstracts were extracted. 

 
• Airline safety data: 10 airline safety reports were 

chosen at random from a database of airline 
safety data obtained from Boeing. For this 
collection, the full-text summary of each airline 
safety incident was extracted by the parser. 

 
 Concepts were extracted from each of these three 
collections using the HDDI Collection Builder and 
compared with a human expert analysis of the same 
items. The results are summarized below for each 
collection. 
 

2.5.1 Grainger Journal Abstracts 
 
 Our approach for analyzing the data from these 
validation experiments was to perform a statistical 
analysis to determine the 95% confidence interval for 
the mean of the entire collection from a relatively 
small sample of the collection. We justify the use of a 
small sample by the fact that the precision/recall data 
for these items closely fits a normal distribution (see 
figures 6 and 8 for a comparison between the 
resulting precision/recall and a normal distribution). 
This enabled us to limit the tedium of manually 
calculating precision and recall.  Figures 5 and 7 
depict the 95% confidence interval for the means of 
the precision and recall obtained for this data set. As 
you can see, the Collection Builder performed quite 
well on the Grainger data. The precision is, however, 
slightly higher and has a smaller range for the 95% 
confidence interval than the recall. Due to the large 
standard deviation of the recall, the 95% confidence 
interval is large, ranging from 77.4% to 91.3%. If we 
were to rerun the experiment with a larger sample of 
the collection, we would expect that the confidence 
interval would decrease. 

 
Figure 5: Grainger Precision 95% confidence interval 
 

 
 

Figure 6: Grainger Precision vs. Normal Distribution 

Grainger Precision

Population Standard Deviation 2.967344
Sample Mean 96.93065
Sample Size 10
Confidence Level 95%
Standard Error of the Mean 0.938356564
Z Value -1.95996108
Interval Half Width 1.839142347
Interval Lower Limit 95.09150765
Interval Upper Limit 98.76979235



 
 

Figure 7: Grainger Recall 95% confidence interval 
 

 
 

Figure 8: Grainger Recall vs. Normal Distribution 
 
2.5.2 USPTO and IBM Patent Applications 
 

Our approach for the patent data set was the 
same as that described above for the Grainger data 
set. The results as shown in Figures 9, 10, 11, and 12 
were almost identical to those of the Grainger data 
set. Again, the precision was better than and had a 
smaller range for the 95% confidence interval than 
the recall, suggesting that a larger sample size would 
be useful to focus the recall confidence interval. 
 

 
 

Figure 9: Patent Precision 95% confidence interval 

 
 

Figure 10: Patent Precision vs. Normal Distribution 
 

 

 
 

Figure 11: Patent Recall 95% confidence interval 
 

 
 

Figure 12: Patent Recall vs. Normal Distribution 
 
2.5.3 Boeing Airline Safety Data 
 

This collection proved to be somewhat of a 
challenge for the HDDI Collection Builder due to 
the unique nature of the airline safety incident reports 
that make up the collection. These reports are 
recorded in uppercase text, and almost all of the 
words are abbreviations. Both of these issues caused 
some interesting problems for the parts of speech 
tagger. With minor modifications, such as forcing all 
the text into lowercase, we were able to improve 
upon our initial results. However, as can be seen in 



Figures 15 and 16, the recall for this collection was 
not nearly as good as for the other two collections. It 
is noteworthy, however, that the precision for the 
Boeing data set (Figures 13 and 14) is only slightly 
less than that of the Grainger and patent data sets. 
 The unique, highly abbreviated and 
grammatically incorrect text of the airline safety 
reports is most certainly the cause for the drastic 
decline in recall. We noticed that the difficulty stems 
from poor performance of the parts of speech tagging 
phase of the HDDI Collection Builder. Many 
words were tagged incorrectly, especially those that 
were abbreviations. The noun phraser actually still 
functioned correctly, however, its output was poor 
due to the poor quality of the tagged text that was 
received as input. If this type of data is to be used 
frequently with HDDI technology, it may be 
necessary to create a set of customized 
lexical/contextual rules for this data set and/or make 
other custom modifications to the parts of speech 
tagger. Another possibility would be to expand all of 
the known abbreviations before parts of speech tags 
are assigned. It is our belief that this would 
significantly improve the recall for this data set 
without the need for major modifications to the parts 
of speech tagger. 
 

 
 

Figure 13: Boeing Precision 95% confidence interval 
 

 
 

Figure 14: Boeing Precision vs. Normal Distribution 
 

 

 
 

Figure 15: Boeing Recall 95% confidence interval 
 

 
 

Figure 16: Boeing Recall vs. Normal Distribution 
 
3 Summary and Conclusion 
 

We have created the HDDI Collection Builder 
to perform automatic concept extraction from 
distributed digital collections of textual data. We 
have validated the performance of this system by 
calculating the precision and recall for several test 
collections.  The initial results are promising, but 
further work is needed to test the Collection Builder 
in real-life applications. Ongoing work at Lehigh 
University involves the development of several 
applications based on HDDI  technologies and the 
HDDI Collection Builder which will allow us to 
further validate and improve our approach to 
automatic concept extraction. 
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