
The Role of the HDDI Collection Builder
in Hierarchical Distributed Dynamic Indexing

Russell H. Bader, Miranda R. Callahan, Douglas A. Grim,

John T. Krause, and William M. Pottenger

Russell H. Bader, Miranda R. Callahan, Douglas A. Grim and John T. Krause
National Center for Supercomputing Applications

Champaign, IL 61820

William M. Pottenger, Ph.D.
Lehigh University

Bethlehem, PA 18015
billp@eecs.lehigh.edu

Keywords: data mining, information retrieval, machine
learning, computational knowledge management, parsing,
parts of speech tagging, noun phrase extraction, HDDI

Abstract

 The global growth in popularity of the World Wide Web
has been enabled in part by the availability of browser-
based search tools which in turn have led to increased
demand for advances in the field of textual data mining.
 Simultaneously, fully automatic content-based
techniques of textual data management have been under
development at a number of institutions. The time is thus
ripe for the development of scalable knowledge
management systems capable of handling extremely large
and diverse textual collections distributed across multiple
repositories.
 This paper introduces the HDDI Collection Builder,
our custom developed solution for automatic feature
extraction from such collections. The HDDI Collection
Builder provides input features for several algorithms in
distributed textual data mining.

1 Introduction

 The explosive growth of digital repositories of
information has been enabled by recent developments
in communication and information technologies.
Despite significant accomplishments in
internetworking, however, scalable mining
techniques for distributed data lag behind the rapid
growth of digital collections.
 In the 21st century, a significant amount of
scientifically valuable information will be available
via such computer communications networks. The
appearance of focused digital libraries on the World
Wide Web demonstrates the willingness of scientists
and engineers to distribute detailed information

beyond that traditionally available in the published
literature (e.g., [2]). If this volume of literature,
unprecedented in its scope, is to be useful to the
scientific community, it is critical that new
information infrastructure be developed which
enables effective management of the huge volume of
distributed data emerging in digital form.
 Traditional methods of textual indexing combine
multiple subject areas into a single, monolithic index.
There are already enough documents on the Web that
such mining technology often fails to perform
effective search. The difficulty lies in the fact that
since so many documents and subjects are being
combined together, retrieving all the documents that
match a particular word phrase often returns too
many documents for effective search. This problem
has been known for some time [3]. In order to
properly address this problem, a paradigm shift is
needed in the approach to indexing.
 First and foremost, it is clear that digital
collections are now and will continue to be
distributed. Our first premise is thus that indexes, or
models, in a distributed data mining system must also
be distributed1.
 Second, it must be realized that the textual data
contained in these distributed digital repositories is
hierarchical in nature. Traditionally, knowledge
hierarchies, or ontologies, have been created with
human expertise2. Such an approach does not scale to
the tremendous amount of emerging digital data for
two reasons: first, as knowledge increases, new topics

1 Note that we use the terms model and index
interchangeably throughout this paper.
2 One popular form is the thesaurus (e.g., the National
Library of Medicine’s MeSH thesaurus).

are emerging at a greater rate; second, the speed of
emergence and the sheer volume of data preclude
manual approaches to model building. Our second
premise is thus that models of distributed textual data
must be automatically generable while at the same
time properly reflecting the hierarchical nature of
knowledge.
 Third, due to the rapid increase in
communications bandwidth and computing and
online storage capabilities mentioned above, digital
collections are frequently updated. This reflects a key
characteristic of 21st century collections: namely, that
they are dynamic in nature. Our third premise is thus
that any new information infrastructure must include
dynamic model building capabilities.
 In the final analysis, these three perspectives
must be integrated into a cohesive whole. The goal of
our research is thus to architect a computational
knowledge management prototype based on HDDI:
Hierarchical Distributed Dynamic Indexing.
 As part of our research we are discovering novel
approaches to addressing the various issues of
managing distributed digital information in the
context of the aforementioned paradigm shift. This
paper introduces the HDDI Collection Builder, our
approach to automatic concept extraction from digital
distributed collections of documents. The HDDI
Collection Builder provides a basis and underlying
data for the new indexing/textual data mining
algorithms of HDDI.

2 HDDI Collection Builder

 In the following sections we review the three
functional parts of the HDDI Collection Builder:
parsing, parts of speech tagging, and concept
extraction. We also present the results of validation
experiments that were performed on the Collection
Builder.

2.1 Terminology

 Before we introduce the functional parts of the
system, we must introduce some terminology that
will be used throughout this paper:

• Items: Item refers to the basic unit of data

content that is used in textual data mining. We
generally use item to refer to a single document;
however as explained in [1], other units of
information, such as subsections of a document
or sentences, could be used as well. For
simplicity, as in [1] and [18], we will assume
that item refers to a document for the rest of this
paper.

• Collections: A collection refers to a group of
items that will be indexed in the HDDI system.

• Concepts: We use concept to refer to a maximal
length English-language noun phrase that is
extracted from a Collection’s items. Concepts are
used as keywords for the purposes of the
HDDI computational knowledge management
system.3

2.2 Parsing

 The first step in the concept extraction process
requires us to parse the original collection. Since the
collection can originate from almost any source, we
need the parser to work correctly on many different
input formats. We also need the parser to extract and
label specific fields from the collection. In order to
accomplish these tasks we set out to create an
extensible, reusable object-oriented parser.
 Because we wanted the parser to be capable of
handling data in many different input formats, we
decided that the parser should have two inputs. The
parser obviously requires the original collection
(giving the text that is to be parsed) as its first input.
The second input is a specifications (Specs) object,
specific to a given data format and the needs of the
user. This Specs object contains information the
parser needs to extract the necessary content from the
collection. The Specs object gives the sequence of
characters which signify the end of a document,
strings that identify the fields within the original
document that are to be extracted, and strings that the
parser outputs to label the content’s field of origin.
The use of this Specs object gives the parser its
ability to parse almost anything that can be delimited;
in practice, however, we generally use either XML or
HTML collections. Given a Specs object which
defines “DOC” tags as document delimiters, and
“Title” and “Abstract” tags as marking fields with
valuable content, Figure 1 shows an example of an
XML item that could be used as input to the parser:

<DOC>
<Title>
Sample Article
</Title>
<Date>
6/14/00 21:40:00
</Date>
<Author>
R. H. Bader
</Author>

3 See [1] for a review of Information Retrieval topics.
Also, see [4], [5], and [6] for information about
English-language grammar and noun phrases.

<Affiliation>
National Center for Supercomputing
Applications, Champaign, IL
</Affiliation>
<Abstract>
This is a sample abstract.
</Abstract>
<Body>
This is a sample article body.
</Body>
</DOC>

Figure 1: Sample XML input File.

 Once the parser receives the Specs object and
input in the form shown in Figure 1, it reads in one
item from the collection. The parser, using
information from the Specs object to break the input
into tokens, loops through these tokens extracting the
desired fields while ignoring the unspecified fields.
When the parser reaches the end of an item, the
process continues and is repeated for all other items
in the collection. Figure 2 is an example of the output
from the parser, using Figure 1 as the input XML file.

[<Title:14>, Sample Article]
[<Abstract:202>, This is a sample
abstract.]

Figure 2: Sample parsed output File. Only Title and
Abstract fields were specified in Specs object. Field
names are followed by the numeric offset which
specifies the location of the extracted text in the
original text.

2.3 Parts of Speech Tagging

 The Parts of Speech Tagger is a rule -based
system for tagging English parts of speech. This
system is based on the SemanTag system ([10])
developed by Gregg Cooke, who based his work on
Dr. Eric Brill’s tagging system (see [7], [8], and [9]
for detailed information about Brill’s tagging
system). It uses three levels of rule sets to determine
the part of speech of each word, and tags words with
their English part of speech tag, as specified in the
Brown tagset (see [11]).
 The tagger starts by initializing its rule tables.
This involves reading about 94,000 lines of rules (of
which all but about 350 are lexicon rules). The
lexicon rules consist of a mapping of a given word to
its parts of speech. After the lexicon rules are read,
the lexical rules are read. These deal with roots of a
word, and other internal properties that modify a
word’s part of speech usage. An example of a lexical
rule would be “If a word ends in “ly”, it is probably

an adverb”. These rules are put into a list, so they can
be applied in order to each word from the input text.
Due to the fact that there are only 134 lexical rules,
the cost incurred by applying these rules is relatively
low. The final set of rules consists of 220 contextual
rules that deal with semantic information that can be
derived from the position of a word in a sentence. For
example, if a word is initially identified as an adverb,
and the next word is a noun, a contextual rule would
insure that the word is retagged as an adjective.
 When the text input is read, a pre-pass separates
punctuation by inserting spaces before each
punctuation character. Next, the input is broken into
a series of “CorpusWord” objects, each of which
contains a word, a space, or punctuation, along with
the tag that the word has been assigned. This process
results in approximately twice as many objects being
created as there are words in the input text. Once the
input text is properly formatted, it is passed to the
lexicon stage of the tagger.
 In the lexicon stage, each word (except for those
which have been marked as nonstandard) is looked
up in the lexicon hash table, and the first entry in its
parts of speech list is assigned to the word. If no tag
exists for the word, the assumption is made that it is a
noun, or a proper noun (if it is capitalized). The
tagged text is then passed to the lexical rules stage of
the tagger.
 In the lexical rules stage each lexical rule is
applied to each word. Any rule matches that are
found change the part of speech tag of the word,
overriding any earlier tagging decision that may have
been made. After this step is completed, there are
many fewer nouns as tags have been changed based
upon word suffixes and other properties. Finally, the
contextual rules are applied to each word, thus
incorporating knowledge that can be gained from
inter-word relationships into the tagging process.
 It is interesting to note that the rules used, while
adequate for Brill’s purposes of tagging, fall
somewhat short for use in tagging text from the
World Wide Web, some of which is less formal or
polished than text from a standard published source.
Brill’s rule sets still performed very well, but special
exceptions needed to be coded for some very non-
standard English.

2.4 Concept Extraction

 A key part of textual data mining is feature, or
concept extraction. For this purpose, we have
designed and implemented a sophisticated English
language noun phrase extractor. Our goal was to
create a noun phrase extractor that would extract
maximal length English language noun phrases. Our
premise is that such noun phrases represent the most

specific content in an item and should therefore be
used as keyword features for indexing purposes by
the HDDI textual data mining system. Initially, a
recognizer was developed based upon work from
[12], and a lexical analyzer created using JLex ([13]),
a java version of the well-known Unix tool lex.
 The first recognizer developed accepted the
language generated by the following regular
expression: [(d) a* n+]. This regular expression
represents the maximal length noun phrase that can
be formed by an optional determiner (“(d)”) followed
by zero or more adjectives (“a*”) followed by one or
more nouns (“n+”).
 It is important to note that this regular expression
is not sophisticated enough to handle and extract
complex noun phrases such as those containing
prepositions, gerunds, or participles. This resulted in
poor recall of maximal length noun phrases. To
address this issue, we developed a second, more
comprehensive regular expression to handle more
specific types of noun phrases. Our second regular
expression is shown in Figure 3. It handles more
complicated noun phrases including those with
participles, gerunds, and prepositional phrases. (See
[4], [5], and [6], for definitions of the types of noun
phrases.)
 Concurrently with the extraction of noun
phrases, other information that is used later in the
HDDI model building stage is extracted and
preserved. For example, a frequency of occurrence is
calculated for each concept in each item as well as
the character offset of each concept in the original
item. Also, the field in which the concept occurred
(e.g., title) is preserved. In addition, we have the
option of enabling stemming of the concepts. The
stemming algorithm is basically a modified version
of Porter’s stemming algorithm (see [15] and [16] for
details on Porter’s original algorithm), which was
designed to work on single-word keywords. We
simply apply Porter’s stemming algorithm to each
word of a concept, thus creating an algorithm that
works on multi-word phrases (concepts). If this
option is enabled, concepts that have similar
meanings (but slightly different grammatical
structure) can be reduced to the same concept. For
example, the concepts “black dog” and “black dogs”
reduce to “black dog” if stemming is enabled.

The following is an example of the functionality
of the phraser. If the phraser received the input “She
built an apparatus for the transformation of picture
information.” as the original text of an item, and
“She//PP built//VBD an//DT apparatus//NN for//IN
the//DT transformation//NN of//IN picture//NN
information//NN .//.” as the marked up text (see
Figure 4 for an explanation of the parts of speech
tags), the noun phrase “apparatus for the

transformation of picture information” would be
extracted with a character offset of 12. This concept
would be given a frequency of occurrence of 1 since
it occurs only once in this simple one sentence
example. Note that this phrase was extracted using
the second, more sophisticated regular expression for
recognition of noun phrases; had the original regular
expression been used, “an apparatus”, “the
transformation”, and “picture information” would
have been identified as the noun phrases.

C?(G|J|P)*N+(I*D?C?(G|J|P)*N+)*

C - cardinal number
G - verb: gerund or present
participle
P - verb: past participle
J - adjective
N - noun
I – preposition
D – determiner
? - option: zero or one occurrence
| - union
* - Kleene closure
+ - Kleene plus: 1 or more
occurrence

Figure 3: Second regular expression for English
language noun phrases. The regular expression is
presented both graphically and textually, followed by
a key. In the graphic, state 0 is the start state, and
state 1 is the final state.

DT - determiner
IN - preposition or subordinating
conjunction

NN - noun - singular or mass
PP - personal pronoun
VBD - verb - past tense
. - literal period

Figure 4: Selected Brown parts of speech tags and
their definitions.

2.5 Validation Experiments

 The following metrics were used to evaluate the
effectiveness of the HDDI Collection Builder:

Precision = concepts identified correctly by phraser ÷
all phrases identified as concepts by phraser

Recall = concepts identified correctly by phraser ÷
total number of concepts identified by human expert

The following collections served as our test data:

• Grainger journal abstracts: A collection of 10

items chosen at random from the University of
Illinois Grainger Engineering Library’s Digital
Library Initiative testbed (DLI [14]). The DLI
testbed is a database of over 60,0000
engineering, computer science, and other
technical full-text journal articles. For this
collection, only the abstracts were extracted.

• USPTO and IBM patents: Both the United States
Patent Office (USPTO) and IBM maintain web
databases of various patent information. Both
databases contain the full text of US patents from
the early 1970’s through the present, and contain
over 2 million items each. A collection was
formed from 5 USPTO and 5 IBM patent
applications, for a total of 10 items, that were
randomly selected from queries on various
computer science topics, such as computer
graphics, pipelining, processors, etc. As with the
DLI test set, only the abstracts were extracted.

• Airline safety data: 10 airline safety reports were

chosen at random from a database of airline
safety data obtained from Boeing. For this
collection, the full-text summary of each airline
safety incident was extracted by the parser.

 Concepts were extracted from each of these three
collections using the HDDI Collection Builder and
compared with a human expert analysis of the same
items. The results are summarized below for each
collection.

2.5.1 Grainger Journal Abstracts

 Our approach for analyzing the data from these
validation experiments was to perform a statistical
analysis to determine the 95% confidence interval for
the mean of the entire collection from a relatively
small sample of the collection. We justify the use of a
small sample by the fact that the precision/recall data
for these items closely fits a normal distribution (see
figures 6 and 8 for a comparison between the
resulting precision/recall and a normal distribution).
This enabled us to limit the tedium of manually
calculating precision and recall. Figures 5 and 7
depict the 95% confidence interval for the means of
the precision and recall obtained for this data set. As
you can see, the Collection Builder performed quite
well on the Grainger data. The precision is, however,
slightly higher and has a smaller range for the 95%
confidence interval than the recall. Due to the large
standard deviation of the recall, the 95% confidence
interval is large, ranging from 77.4% to 91.3%. If we
were to rerun the experiment with a larger sample of
the collection, we would expect that the confidence
interval would decrease.

Figure 5: Grainger Precision 95% confidence interval

Figure 6: Grainger Precision vs. Normal Distribution

Grainger Precision

Population Standard Deviation 2.967344
Sample Mean 96.93065
Sample Size 10
Confidence Level 95%
Standard Error of the Mean 0.938356564
Z Value -1.95996108
Interval Half Width 1.839142347
Interval Lower Limit 95.09150765
Interval Upper Limit 98.76979235

Figure 7: Grainger Recall 95% confidence interval

Figure 8: Grainger Recall vs. Normal Distribution

2.5.2 USPTO and IBM Patent Applications

Our approach for the patent data set was the
same as that described above for the Grainger data
set. The results as shown in Figures 9, 10, 11, and 12
were almost identical to those of the Grainger data
set. Again, the precision was better than and had a
smaller range for the 95% confidence interval than
the recall, suggesting that a larger sample size would
be useful to focus the recall confidence interval.

Figure 9: Patent Precision 95% confidence interval

Figure 10: Patent Precision vs. Normal Distribution

Figure 11: Patent Recall 95% confidence interval

Figure 12: Patent Recall vs. Normal Distribution

2.5.3 Boeing Airline Safety Data

This collection proved to be somewhat of a
challenge for the HDDI Collection Builder due to
the unique nature of the airline safety incident reports
that make up the collection. These reports are
recorded in uppercase text, and almost all of the
words are abbreviations. Both of these issues caused
some interesting problems for the parts of speech
tagger. With minor modifications, such as forcing all
the text into lowercase, we were able to improve
upon our initial results. However, as can be seen in

Figures 15 and 16, the recall for this collection was
not nearly as good as for the other two collections. It
is noteworthy, however, that the precision for the
Boeing data set (Figures 13 and 14) is only slightly
less than that of the Grainger and patent data sets.
 The unique, highly abbreviated and
grammatically incorrect text of the airline safety
reports is most certainly the cause for the drastic
decline in recall. We noticed that the difficulty stems
from poor performance of the parts of speech tagging
phase of the HDDI Collection Builder. Many
words were tagged incorrectly, especially those that
were abbreviations. The noun phraser actually still
functioned correctly, however, its output was poor
due to the poor quality of the tagged text that was
received as input. If this type of data is to be used
frequently with HDDI technology, it may be
necessary to create a set of customized
lexical/contextual rules for this data set and/or make
other custom modifications to the parts of speech
tagger. Another possibility would be to expand all of
the known abbreviations before parts of speech tags
are assigned. It is our belief that this would
significantly improve the recall for this data set
without the need for major modifications to the parts
of speech tagger.

Figure 13: Boeing Precision 95% confidence interval

Figure 14: Boeing Precision vs. Normal Distribution

Figure 15: Boeing Recall 95% confidence interval

Figure 16: Boeing Recall vs. Normal Distribution

3 Summary and Conclusion

We have created the HDDI Collection Builder
to perform automatic concept extraction from
distributed digital collections of textual data. We
have validated the performance of this system by
calculating the precision and recall for several test
collections. The initial results are promising, but
further work is needed to test the Collection Builder
in real-life applications. Ongoing work at Lehigh
University involves the development of several
applications based on HDDI technologies and the
HDDI Collection Builder which will allow us to
further validate and improve our approach to
automatic concept extraction.

Acknowledgments

We gratefully acknowledge the assistance and
contributions of the staff in the Hierarchical
Distributed Dynamic Indexing Group at Lehigh
University and NCSA4. We would also like to thank
Gertjan van Noord for developing his FSA6 software
([17]), which helped us make Figure 3.

4 Co-author William M. Pottenger, Ph.D., gratefully
acknowledges the assistance of his Lord and Savior,
Jesus Christ, in his life and work.

References

[1] F. D. Bouskila, “The Role of Semantic Locality in
Hierarchical Distributed Dynamic Indexing and
Information Retrieval”, MS thesis, University of
Illinois at Urbana-Champaign, Department of
Electrical and Computer Engineering, 1999. (Thesis
advisor was William M. Pottenger, Ph.D.)

[2] Los Alamos National Laboratory, “arXiv.org e-
Print archive”. http://xxx.lanl.gov , 1999.

[3] National Research Council CSTB, Computing
The Future. Washington DC: National Academy
Press, 1992.

[4] D. Keis, Modern English Grammar, a
HyperTextbook for English 126, Department of
English, College of Du-Page.
papyr.com/hypertextbooks/engl126/phnoun.htm

[5] M. A. K. Halliday, Introduction to Functional
Grammar, 2nd edition, London: Edward Arnold,
1994.

[6] R. Quirk, S. Greenbaum, G. Leech, and J.
Svartvik, A Comprehensive Grammar of the English
Language, London: Longman, 1985.

[7] E. Brill, “A simple rule -based part of speech
tagger”, Proceedings of the Third Conference on
Applied Natural Language Processing, ACL, 1992.

[8] E. Brill, “A corpus-based approach to Language
learning”, PhD. Dissertation, Department of
Computer and Information Science, University of
Pennsylvania, 1993.

[9] E. Brill, “Some advances in rule -based part of
speech tagging”, Proceedings of the Twelfth National
Conference on Artificial Intelligence (AAAI-94),
1994.

[10] G. Cooke, SemanTag, gcooke@rt66.com,
http://www.rt66.com/gcooke/.

[11] W. N. Francis, H. Kucera, Brown Corpus
Manual, Department of Linguistics, Brown
University, 1979 revision.
http://www.hit.uib.no/icame/brown/bcm.html

[12] L. Karttunen, “Directed Replacement”,
Proceedings of the 34th Annual Meeting of the
Association for Computational Linguistics, ACL-96,
Santa Cruz, California, 1996.

[13] E. Berk, JLex: A lexical analyzer generator for
Java(TM), Version 1.2.5, Department of Computer
Science, Princeton University, July 1999.
http://www.cs.princeton.edu/~appel/modern/java/JLe
x/current/manual.html

[14] “UIUC Digital Library Initiative”,
http://dli.grainger.uiuc.edu/.

[15] M. F. Porter, “An algorithm for suffix
stripping”, in S. Jones, K. and P. Willet, Readings in
In-formation Retrieval, San Francisco, CA: Morgan
Kaufmann, 1997.

[16] M. Porter, The Porter Stemming Algorithm
Official Homepage.
http://www.muscat.com/˜martin/stem.html

[17] G. van Noord, FSA6.
http://odur.let.rug.nl/~vannoord/fsa/fsa.html

[18] Fabien Bouskila and William M. Pottenger,
“The Role of Semantic Locality in Hierarchical
Distributed Dynamic Indexing”, Proceedings of the
2000 International Conference on Artificial
Intelligence (IC-AI 2000), Las Vegas, Nevada, June,
2000.

