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Abstract Frequent itemset mining (FIM) is a well known technique for discovering 
relationships between items. Most FIM algorithms are based on first-order 
associations between items in the same record. Although a few algorithms capable 
of discovering indirect propositional rules exist, they do not extend beyond second-
order. In addition, although multi-relational ARM discovers higher-order rules, the 
rules are non-propositional and the algorithm is NP-complete. This article introduces 
Higher Order Apriori, a novel algorithm for mining higher-order rules. We extend 
the itemset definition to incorporate k-itemsets up to nth-order, and present our 
levelwise order-first algorithm: levelwise meaning that the size of k-itemsets 
increases in each iteration (as with Apriori), and order-first meaning that at each 
level, itemsets are generated across all orders. Support is calculated based on the 
order of itemsets and the number of higher-order associations connecting items. 

Keywords Association Rule Mining (ARM), Data Mining, Text Mining, Sequence 
Mining, Multi-relational ARM, Higher Order ARM, Machine Learning 

1 Introduction 

Association Rule Mining (ARM) is one of the most widely used algorithms in data 
mining.  Generating rules based on statistics of item co-occurrence, ARM produces output 
in the form of propositional rules.  Co-occurrence refers to instances where two or more 
items appear in the same context, and is also called 1st-order association.  Much work has 
been done developing techniques for generating, analyzing and measuring 1st-order 
associations (e.g., [2], [16], [17]), but most techniques do not support mining across 
transaction boundaries. Notable exceptions include sequence mining and multi-relational 
ARM. These are examples of approaches that discover higher-order associations. 

Higher-order associations are formed by linking different contexts (e.g., transactions) 
through one or more common items.  Consider the following example from traditional 
market-basket analysis: if customer “A” purchases {computer, OS}, customer “B” buys 
{laptop, OS} and customer “C” gets {laptop, mouse, battery}, then several higher-order 
associations can be formed. These include computer-to-laptop through OS, OS-to-mouse 
through laptop, computer-to-battery through OS and laptop, etc. The first two associations 
are termed 2nd-order since they each span two contexts, while the computer-to-battery 
association is 3rd-order.  Overall, any association greater than 1st-order (i.e., spanning at 
least two contexts) is termed a higher-order association. 



Higher-order associations are currently employed in a number of real world 
applications including medical research, marketing analysis, law enforcement and 
homeland defense. In the field of medicine, for example, Literature Based Discovery [18] 
has been used to uncover a higher-order association between Fish Oil and Raynaud’s 
disease in medical literature, leading to a potential new treatment [8]. An important law 
enforcement application that employs 2nd-order associations is COPLINK® Detect [9], 
which assists law enforcement personnel through textual entity extraction and link-
generation through the use of a semantic network.   Mooney et al. [14] discusses a link 
discovery algorithm, as part of the DARPA Evidence Extraction and Link Discovery 
program that uses Inductive Logic Programming in its mining of multi-relational data.   

Several other research efforts are also revealing promising results on the utility of 
higher-order associations. In [12], Kontostathis and Pottenger present experimental 
evidence suggesting a strong correlation between 2nd-order association of terms and the 
performance of Latent Semantic Indexing in terms of Fβ, the harmonic mean of precision 
and recall. In related work, based on statistical comparisons of distributions of higher-
order association frequencies, Ganiz and Pottenger report that classes of instances in 
labeled training data may be separable based on the characteristics of the higher-order 
associations alone (without recourse to a learning algorithm) [7].   

As Tan et al. [19] [20] intimate, the future of cross-selling in the e-Marketplace may be 
greatly impacted by the results of further study of higher-order associations. This is in 
keeping with our results on simulated e-Marketplace data, which indicate that the latent 
information contained in higher-order associations can be leveraged to build more 
effective association rule models. 

2 Related Work 

As noted in the Introduction, traditional ARM algorithms only identify 1st-order 
associations, i.e., co-occurrence in the same context. Sequential pattern mining, on the 
other hand, uses 2nd-order associations to discover frequent subsequences as patterns in a 
sequence database. The sequential pattern mining algorithm was introduced by Agrawal 
and others in [1] and [3]. In later work Mannila et al. introduce an efficient solution to the 
discovery of frequent patterns in a sequence database [13]. Chan et al. [4] study the use of 
wavelets in time-series matching and Faloutsos et al. [6] and Keogh et al. [11] propose 
indexing methods for fast sequence matching using R* trees, the Discrete Fourier 
Transform and the Discrete Wavelet Transform. Multi-relational ARM is a type of ARM 
algorithm designed specifically to mine higher-order rules across tables in a single 
database [5] [15]. In fact, multi-relational data mining in general (not limited to ARM) is 
an emerging research area that enables the analysis of complex, structured types of data 
such as sequences in genome analysis. Similarly, there is a wealth of recent work 
concerned with enhancing existing data mining approaches to employ relational logic. 
WARMR, for example, is a multi-relational enhancement of Apriori presented by 
Dehaspe and Raedt [5]. Although WARMR provides a sound theoretical basis for multi-
relational ARM, it does not seriously address the efficiency of computation. In fact the 



runtime performance of WARMR depends heavily on the implementation of θ-
subsumption, and because θ-subsumption is NP-complete, performance is poor. In 
addition, the model sacrifices the perspicuity of a propositional representation.  More 
recently, methods that address 2nd-order associations have been discussed in the context of 
the e-Marketplace.  Tan et al. [19] proposes a method of discovering indirect (2nd-order) 
associations between items in a database of transactions. The proposed INDIRECT 
algorithm is introduced in [19] and uses Apriori to link two items that are both highly 
dependent on a mediator set. This approach has similarities with sequence mining; in 
effect, the mediator set replaces the item held in common that is used to create the 
sequence (e.g., customer_ID). Of the efforts in higher-order ARM surveyed, only multi-
relational ARM provides a solid theoretical foundation for discovering higher-order rules 
based on higher-order associations. Yet this same foundation results in an NP-complete 
complexity. In addition, none of the approaches surveyed treat associations higher than 
2nd-order efficiently; most of them do not consider orders higher than two at all. To 
address these issues, in the following section we introduce a novel algorithm, Higher 
Order Apriori, that efficiently takes higher-order associations into account while 
providing the efficacy of the propositional representation available in existing algorithms 
in sequence mining and indirect association. 

3 Theoretical Framework 

Higher Order Apriori discovers itemsets that cross record boundaries. We first extend 
the itemset definition to incorporate k-itemsets up to nth-order, and then show how to 
generate and calculate support for higher-order itemsets. Following this, we present the 
pseudo code for Higher Order Apriori.  

Definition 1: If item a and item b from different transactions can be associated across 
n distinct records, then we say item a and b are nth-order associated, denoted 

biiia nn r
n

rrr ~~~~~ 121
121

−
−L  where ~ represents the co-occurrence relation and 

all records are distinct. The order of a higher-order association is determined by the 
number of records n.  This definition includes the constraint that a given record can 
appear at most once in a higher-order association. This is necessary to be consistent with 
the original ARM framework. For example, given a higher-order association 

biia rrr 121 ~~~ 21 , based on definition 1, a and b are 2nd-order associated because 

there are two distinct records in the link. This conflicts however with the fact that a and b 
actually are 1st-order associated since they both come from r1.  

Definition 2: An nth-order k-itemset is a k-itemset for which each pair of its items is nth-
order associated. For example, if abc is a 3rd-order itemset, then there must exist at least 
three 3rd-order associations between a and b, b and c and a and c respectively. Having 
defined higher-order itemsets, the remaining question is how to generate them and 
calculate support.  The support for 1st-order k-itemsets is calculated by counting the 
number of records containing the itemsets. However, this method is infeasible for higher-



order itemsets that cross record boundaries. Thus, we introduce the concept of a higher-
order recordset which is the context of higher-order itemsets. 

Definition 3: Two records are nth-order linked if they can be linked through n-2 distinct 

records. The nth-order link between records is denoted n
iii rrr n 121 ~~~ 21

−L . An nth-

order k-itemset is a k-itemset for which each pair of records is nth-order linked. Clearly, 

given an nth-order link between two records n
iii rrr n 121 ~~~ 21

−L , if a∈r1, b∈rn and a 

≠b, then there must exist at least one nth-order association between item a and b: 

biiia nn r
n

rrr ~~~~~ 121
121

−
−L . Given the higher-order links between records and 

the derived higher-order associations between items, the corresponding higher-order 
itemsets can be generated. 

Definition 4: A nth-order itemset i1i2…in is supported by a nth-order recordset r1r2...rn if 
no two items come from the same record. For example, given the following three records 

<r1, abc>, <r2, adef>, <r3, bfgh>, then r1r2r3 is a 2nd-order recordset as we have 21 ~ rr a , 

31 ~ rr b and 32 ~ rr f . Since for example b∈r1, e∈r2 and g∈r3, beg is a 2nd-order itemset 

supported by the 2nd-order recordset r1r2r3. To calculate the support of a higher-order 
itemset we need to know both the number of recordsets supporting the itemset and the 
order of each recordset. A recordset may appear frequently because there may be many 
different higher-order links supporting the recordset. For example, if there are two 2nd-

order links between r1 and r2, say 21
1~ rr i and 21

2~ rr i , then recordset r1 r2 could be 

formed based on either link and thus has a support of two. To simplify the problem, we 
group higher-order links that support the same recordset into a link group, written as 

121 ,~~~ 121
+∩=−

jjjn
III rrIrrr nL . The size of a link group, i.e. the number of links 

in the group, can be calculated by taking the product of the sizes of I j. For example, given 

a 3rd-order link group Lg: 321 ~~ rrr efacd , the number of links in Lg is 

size(Lg)=|acd|*|ef|=6.  
Similar to links, recordsets can also be grouped together. For example, the 2nd-order 4-

recordset in Figure 1.a and the 2nd-order 4-recordset in Figure 1.b can be grouped together 
to form the 2nd-order 4-recordset in Figure 1.c. The only difference is that the recordset in 

 (a)    (b)  (c)  
Figure 1. Grouping recordsets 

Figure 1.c is composed of link groups instead of links. In what follows, when we discuss 
recordsets, we refer to recordsets composed of link groups as exemplified in Figure 1.c. 
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Similarly, the size of a recordset composed of link groups can be calculated by taking 
the product of the sizes of each link group. For example, the size of the recordset in Figure 
1.c is 2*2*2*2*2*1=32. It is also important to note that a given recordset might be 
composed of different link group combinations. This may happen for nth-order recordsets 
when n is greater than two. For example, Figures 2.a and 2.b represent the same 3rd-order 
3-recordset r1r2r3 formed in two ways. Recordset r1r2r3 in Figure 2.a may have a size 
different than in Figure 2.b because the link groups connecting r1 and r2 (through r5 and r4 
respectively) may have different sizes. The total size of r1r2r3 must incorporate both 
recordsets. Generalizing from this example, given j instances of nth-order k-recordset rs, 

its size is defined as: ∑ ∏ ∏
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of different ways to form rs, and the double product inside the parentheses represents the 
size of the tth recordset.                                                   

(a)      (b) 
Figure 2. Two forms of recordset r1r2r3 

Given the size values for all recordsets, we define the support of a k-itemset is as: 
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The sum results from the fact that since the same k-itemset can be generated at different 
orders, the global support for a given k-itemset must include the local support at each 
order u. Thus the ratio urssize kn 1)(log _10 +∑ calculates the local support for an itemset at 

a specific order u. The idea behind this ratio is simply to account for both the number of 
higher-order links supporting a given itemset as well as the order of the itemset. As order 
grows, our intuition is that support ought to decrease – thus the denominator u. This 
reflects the assumption that the longer the link between records, the weaker the itemset 
association. In contrast, the more links connecting records in a recordset, the stronger 
support ought to be. These two intuitions are just that – clearly, extensive experimentation 
is required to ascertain the utility of this definition of support. 

The challenge arises when we consider the exponential growth of sizen-k(rs) – although 
order grows linearly, sizen-k(rs) grows exponentially. Again, our intuition is that both of 
these factors are equally important. Thus, in order to constrain sizen-k(rs) to grow linearly 
with order, we first take the square root of sizen-k(rs)  and then the log10. The square root 
accounts for the O(n2) growth in the number of edges in a recordset as order grows; the 
log10 accounts for the exponential growth of sizen-k(rs). We add one to sizen-k(rs) in the 
numerator to ensure that support is non-zero. 
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4 Higher Order Apriori Algorithm 

In this section, we present the Higher Order Apriori algorithm, which discovers rules 
based on higher-order associations. Our higher-order ARM is structured in a level-wise 
order-first manner. Level-wise means that the size of k-itemsets increases in each iteration 
(as is the case for Apriori), while order-first means that at each level, itemsets are 
generated across all orders. We will first introduce the notation used in the algorithm, and 
then present the algorithm in detail.  

Table 1. Notation 
RSk Set of k-recordsets. 

Each member has: i) recordset; ii) order; iii) size of the recordset. 
RSn_k Set of nth-order k-recordsets. Each member has: i) recordsets; ii) size. 

ISk Set of k-itemsets. 
Each member has: i) itemset; ii) global support of the itemset. 

ISn_k Set of nth-order k-itemsets. 
Each member has: i) itemsets; ii) local support. 

The input to HO-Apriori is a connected undirected graph, where each vertex represents 
a record, an edge between two vertices exists when two records share at least one common 
item, and the weight of the edge represents the number of common items. In terms of the 
nomenclature in section 3, a path in G is actually the link group between two records. 
Thus, the problem of discovering link groups is the problem of finding all simple paths. 

HO-Apriori (G) 
1. Enumpath(G, max_order)  
2. for ( k = 3; RSk-1≠φ; k++) // k: size of the recordset 
3.   for ( n = 2; n < max_order; n++)  // n: order 
4.    RSn_k = Gen_RS(RSn_k-1 ); 
5.    foreach recordset rs∈RSn_k 
6.     Enum_IS(rs, n); 
7.   foreach itemset is where |is|=k 
8.    for (u=2; u<max_order; u++) 
9.     if is∈ISu_k 

10.      ISk(is).sup+= uisIS kn /1sup).(log _10 +  

11.      if ISk(is).sup < min_sup  
12.     remove is from ISk  
13. Generate rules 

Figure 3. Higher Order Apriori 

The first step, Enumpath, discovers all the higher-order 2-recordsets within max_order 
by computing all the link groups between records. The pseudocode for Enumpath is 
shown in Figure 4. The first step in Enumpath uses an algorithm in [21] to find all simple 
paths (i.e., link groups) between two vertices. The worst case time complexity of this step 
is O(V E ) for a given path where V is the set of vertices and E the edges in G [21]. 



The resulting link groups are 2-recordsets of different orders with different sizes. The 
order and size information is kept in RS2.  

Enumpath (G, max_order) 
For each record pair rp in the graph 
 Find all simple paths using the algorithm in [21] 
For each path found 

order = number of records on the path 
size = size of the path 
If RS2(rp,order) is valid 

RS2(rp,order).size += size 
Else RS2(rp,order)=size 

Figure 4. Enumpath 

Steps 2 through 12 of the HO-Apriori algorithm in Figure 3 comprise one outer and 
two inner loops. The outer loop proceeds level-wise and keeps track of the sizes of 
recordsets. Although the (k+1)-recordsets are generated in an Apriori-like fashion based 
on k-recordsets from the previous iteration, naturally no pruning is performed for 
recordsets. The first inner loop, from steps 3 through 6, proceeds order-first and generates 
different order itemsets from the k-recordsets, and calculates the corresponding support. 
Figure 6 depicts the level-wise order-first structure of our higher-order association rule 
mining algorithm.  

Figure 6. Level-wise Order-First Structure 

In more detail, step 4 (Figure 5) generates the nth-order k-recordsets based on the nth-
order (k-1)-recordsets using Apriori’s candidate generation function. The size of the 
recordset is calculated based on the equation for sizen-k(rs) in section 3. 

Gen_RS (RSn_k)  
RSn_k+1 = apriori_gen(RSn_k) 
foreach recordset rs∈RSn_k+1 
 foreach rp in rs 
  rs.size ×= RS2(rp,n).size   

Figure 5. Generate Recordset 



For each nth-order k-recordset generated, step 6 (Figure 7) enumerates all possible nth-
order k-itemsets from the recordset. 

Enum_ IS (rs, n)  
k = number of records in the rs 
Pick one item from each record 
If the items are different 

ISn_k(is).sup += rs.size 
Figure 7. Enumerate Itemsets from Recordset 

Steps 8 to 10 calculate the global support for a single k-itemset across orders from 2 to 
max_order based on the support metric described in section 3. If the global support does 
not meet the threshold, the k-itemset is discarded in step 12. The frequent k-itemsets are 
kept in ISk. The algorithm proceeds with the (k+1)-recordsets in the next iteration. After 
discovering all the frequent itemsets (both first and higher-order), association rules are 
generated in step 13 using a standard ARM algorithm such as Apriori. 

6 Implementation 

To verify the feasibility and effectiveness of Higher-Order Apriori, a prototype has been 
developed. The input to the prototype is provided through an XML file that describes the 
instances of sample data. In a pre-processing step, the input is transformed into an 
adjacency matrix.  The core of the prototype lies in the Algorithm class which implements 
several task oriented, independent but related methods. The run() method of the 
Algorithm class invokes the populate() method of an instance of the RecordManager class 
to read in the input records and store them for further use. The higher-order paths are 
collected from UnoInterface ([21]) by invoking Enumpath method, passing one pair of 
records at a time. These paths are processed and objects of the PathEntry class are 
instantiated to represent higher-order paths between records along with other essential 
properties. An instance of the PathCollection class is responsible for sorting, storing and 
retrieving these paths during subsequent processing of the algorithm.  

The run() method also employs two instances of the RecordSetCollectionKItem 
AllOrders class to store two consecutive columns of recordsets (depicted as columns in 
Figure 6 moving in the k direction). One instance stores objects of type 
RecordSetCollection to represent the kth column of Figure 6, while the other is used to 
store the (k-1)th column, thus structuring the process level-wise. Instances of class 
RecordSetCollection are primarily used to achieve order-wise separation of the generation 
and storage of the RecordSet objects. Further more, each RecordSet objects holds an 
instance of the ItemSetCollection class to manage itemsets created using that particular 
record set. The Algorithm class has its own attribute of type ItemSetCollection to maintain 
all the itemsets being generated as the process advances level-wise. This 
ItemSetCollection object represents the result of the Higher Order Apriori algorithm 
described in the previous section, and all the itemsets in this collection satisfy the 
minimum support criteria. 



The prototype was designed and documented using Rational Rose Enterprise Suite, and 
implemented in C++ using GNU C/C++ compiler version 3.2.2 to compile and link the 
code under Red Hat Linux 9.0. Adequate use of OO design principles during the 
development of this prototype will lead to low maintainability and modification costs. The 
code and documentation is available online at hddi.cse.lehigh.edu. 

7 Results 

We conducted experiments to evaluate Higher Order Apriori on multiple systems, 
including at the National Center for Supercomputing Applications (NCSA). To validate 
the algorithm we prepared a simulated e-Marketplace dataset of four records and five 
products: Microsoft Wheel Mouse Optical (b); Building a PC for Dummies, Fifth Edition 
(c); Microsoft Internet Keyboard (d); Build the Ultimate Custom PC (e) and AMD Athlon 
64 X2 (f). For simplicity we will refer to these items by their letter designation (b, c, d, e 
and f). Table 2 depicts the outcome of executing Higher Order Apriori on this dataset. 
First, the transaction database (Table 2, left) is converted to a graph representation and 
passed to HO-Apriori. The link groups discovered by Enumpath are shown in Table 2 in 
the middle, and Table 2 (right) shows the top 10 itemsets with their local and global 
support. Seven of these itemsets cannot be discovered by Apriori. Based on these higher 
order itemsets, many interesting and novel rules can be formed. For example: Mouse & 
Keyboard => Building a PC for Dummies, Fifth Edition and Mouse & Keyboard => 
AMD Athlon. From these results we observe the following facts: (1) Higher Order Apriori 
discovers itemsets that cannot be discovered by Apriori; (2) Higher Order Apriori 
increases the strength of 1st-order k-itemsets. Higher Order Apriori also respects the well-
known Apriori property, making it feasible to generate k-itemsets in the usual manner.  

Table 2. Starting Record IDs, Link Groups and Itemsets Discovered by Higher Order Apriori 

The next set of experiments involved the automatic 
generation of a test set. Based on a dataset containing 100 
unique items we randomly generated records with an 
average of four items per record. Table 7 depicts 
examples of nth-order 3-itemsets generated from differing 
number of records (two through thirty-two). Items are 
represented by integer values. The first column depicts the 
number of records, and columns two through five portray examples of higher-order 3-
itemsets discovered by Higher Order Apriori. Note that not all runs resulted in higher 
order itemsets – this is expected because, like Apriori, Higher Order Apriori is a data-

Itemsets 2nd 3rd 4th Total 

cdf 0.15 0.21 0.16 0.52 

cef 0.15 0.21 0.16 0.52 

cd 0.19 0.17 0.12 0.49 

ce 0.19 0.17 0.12 0.49 

cf 0.19 0.17 0.12 0.49 

bcd 0.07 0.18 0.16 0.42 

bce 0.07 0.18 0.16 0.42 

bcf 0.07 0.18 0.16 0.42 

bdf 0.07 0.18 0.16 0.42 

bef 0.07 0.18 0.16 0.42 

RID Itemsets 
1 b, c 
2 c, d, e 
3 c, f 
4 d, e, f 

Order Paths  (Link groups) 
2nd 1-2; 1-3; 2-3;2-4; 3-4 
3rd 1-3-2;1-2-3;1-2-4;1-3-4; 

2-1-3;2-4-3;2-3-4;3-2-4; 
4th 1-3-4-2;1-2-4-3;1-2-3-4; 

1-3-2-4;2-1-3-4;3-1-2-4; 

 



driven rule mining algorithm. Table 8 gives a different perspective by portraying example 
k-itemsets for various orders. 
 

Table 7.  Example N-order 3-Itemsets, N=2,3,4,5 

Records 2nd order 3rd order 4th order 5th order 

2     

4 
{13 26 2} 
{50 13 2} 

{13 26 37} 
{63 13 2} 

  

8     

16     
32 {0 1 29} {21 16 20} {36 0 9} {21 50 0} 

 
Table 8.  Example N-order K-Itemsets, K=2,3,4 

Records 2-itemsets 3-itemsets 4-itemsets 

2    
4 {13 26} 

{50 2} 
{74 13 2} 
{89 26 37} 

 

8 {67 9} 
{24 11} 

  

16 {47 11} 
{18 23} 

  

32 { 21 17} 
{36 32} 

{0 1 88 } 
{98 80 0 } 

 

 
Higher Order Apriori discovers itemsets that Apriori does not. For example, the 2nd-

order 3-itemsets {13, 26, 2} and {0, 1, 29} do not occur in any single record in the input 
data. Likewise, the 2nd-order 2-itemset {50, 2} is a novel nugget. This demonstrates the 
capability of Higher Order Apriori not only to discover new knowledge, but also to 
enhance the support for existing 1st-order association rules. Although not depicted here, 
the rule generation process of Higher Order Apriori results in 1st and higher-order rules. 

8 Conclusions and Future Work 

We have developed a framework to extend association rule mining from 1st-order to all 
possible orders. We have defined and identified the context for higher-order itemsets. A 
mechanism to calculate support of higher-order itemsets was also presented. We have also 
designed, implemented and tested our higher-order association rule mining algorithm, 
which discovers propositional rules based on higher-order associations. 

In future work we plan to address both theoretical and practical aspects of Higher 
Order Apriori. First, we will apply the algorithm to real world data including e-
Marketplace, law enforcement and public healthcare data as part of our ongoing NSF-
funded work in distributed higher-order ARM development. To evaluate Higher Order 
Apriori, we plan to develop methods for comparing high-confidence, high-support rules 



generated using Higher Order Apriori with the rules generated by Apriori. This should be 
very interesting. Second, we need to evaluate the support metric. The current support 
metric was developed empirically, and we need to further explore whether there is a 
theoretical basis for calculating support in this way, and also what other factors must be 
considered in calculating support. Third, we plan to incorporate Higher Order Apriori into 
our Text Mining Infrastructure (TMI) [10]. The TMI is an open-source framework 
designed for high-end, scalable text mining, and aims to provide a robust software core for 
research and development of text mining applications. Based on the TMI, Higher Order 
Apriori can be easily applied in a distributed environment. Finally, we plan to address 
issues related to scalability of the algorithm. Although the current algorithm rests on a 
firm foundation, much of value remains to be accomplished in terms of improving the 
performance. 
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