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Abstract Frequent itemset mining (FIM) is a well known teiciue for discovering
relationships between items. Most FIM algorithmse d@vased on first-order
associations between items in the same recordodédfh a few algorithms capable
of discovering indirect propositional rules existey do not extend beyond second-
order. In addition, although multi-relational ARMsdovers higher-order rules, the
rules are non-propositional and the algorithm isd¢bhplete. This article introduces
Higher Order Apriori, a novel algorithm for miniriggher-order rules. We extend
the itemset definition to incorporate k-itemsets topri™order, and present our
levelwise order-first algorithm: levelwise meanirgat the size of k-itemsets
increases in each iteration (as with Apriori), arder-first meaning that at each
level, itemsets are generated across all ordengpd@uis calculated based on the
order of itemsets and the number of higher-ordso@ations connecting items.

Keywords Association Rule Mining (ARM), Data Mining, TextiMng, Sequence
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1 Introduction

Association Rule Mining (ARM) is one of the mostdely used algorithms in data
mining. Generating rules based on statisticseshito-occurrence, ARM produces output
in the form of propositional rules. Co-occurremeéers to instances where two or more
items appear in the same context, and is alsodc&lk®rder association. Much work has
been done developing techniques for generatinglyzing and measuring “4order
associations (e.g., [2], [16], [D7]but most techniques do not support mining across
transaction boundaries. Notable exceptions incketpience mining and multi-relational
ARM. These are examples of approaches that dis¢ogker-orderassociations.

Higher-order associations are formed by linkinded#nt contexts (e.g., transactions)
through one or more common items. Consider thievidhg example from traditional
market-basket analysis: if customer “A” purchasesnfiputer, OS}, customer “B” buys
{laptop, OS} and customer “C” gets {laptop, mouseattery}, then several higher-order
associations can be formed. These include competiaptop through OS, OS-to-mouse
through laptop, computer-to-battery through OS laptbp, etc. The first two associations
are termed Z-order since they each span two contexts, whilecthraputer-to-battery
association is "%order. Overall, any association greater th&morter (i.e., spanning at
least two contexts) is termed a higher-order aatiooi.



Higher-order associations are currently employed ainnumber of real world
applications including medical research, marketiagalysis, law enforcement and
homeland defense. In the field of medicine, forregke, Literature Based Discovery [18]
has been used to uncover a higher-order associbgbmeen Fish Oil and Raynaud’s
disease in medical literature, leading to a potééméew treatment [8]. An important law
enforcement application that employ&-a@rder associations is COPLINK® Detect [9],
which assists law enforcement personnel throughusbxentity extraction and link-
generation through the use of a semantic netwoMooney et al. [14] discusses a link
discovery algorithm, as part of the DARPA Evidertegtraction and Link Discovery
program that uses Inductive Logic Programmingsmiining of multi-relational data.

Several other research efforts are also revealmogniging results on the utility of
higher-order associations. In [12], Kontostathisd alRottenger present experimental
evidence suggesting a strong correlation betwé&orfler association of terms and the
performance of Latent Semantic Indexing in term&@fthe harmonic mean of precision
and recall. In related work, based on statisticahparisons of distributions of higher-
order association frequencies, Ganiz and Pottengmort that classes of instances in
labeled training data may be separable based omhheacteristics of the higher-order
associations alone (without recourse to a learalggrithm) [7].

As Tan et al. [19] [20] intimate, the future of sssselling in the e-Marketplace may be
greatly impacted by the results of further studyhafher-order associations. This is in
keeping with our results on simulated e-Marketplda&, which indicate that the latent
information contained in higher-order associatiartem be leveraged to build more
effective association rule models.

2 Redated Work

As noted in the Introduction, traditional ARM aliggoms only identify f-order
associations, i.e., co-occurrence in the same xorBequential pattern mining, on the
other hand, uses'®order associations to discover frequent subsegseas patterns in a
sequence database. The sequential pattern mirgogitain was introduced by Agrawal
and others in [1] and [3]. In later work Mannilaatt introduce an efficient solution to the
discovery of frequent patterns in a sequence dagalis8]. Chan et al. [4] study the use of
wavelets in time-series matching and Faloutsod.g6hand Keogh et al. [11] propose
indexing methods for fast sequence matching usifigtrBes, the Discrete Fourier
Transform and the Discrete Wavelet Transform. Mutational ARM is a type of ARM
algorithm designed specifically to mine higher-ardales across tables in a single
database [5] [15]. In fact, multi-relational daténing in general (not limited to ARM) is
an emerging research area that enables the anafys@mmplex, structured types of data
such as sequences in genome analysis. Similargretis a wealth of recent work
concerned with enhancing existing data mining apghhes to employ relational logic.
WARMR, for example, is a multi-relational enhancemef Apriori presented by
Dehaspe and Raedt [5]. Although WARMR provides ansotheoretical basis for multi-
relational ARM, it does not seriously address tffeciency of computation. In fact the



runtime performance of WARMR depends heavily on thgplementation of©-
subsumption, and becaudgksubsumption is NP-complete, performance is poar. |
addition, the model sacrifices the perspicuity oprapositional representation. More
recently, methods that addre$&-@rder associations have been discussed in thextaoit
the e-Marketplace. Tan et al. [19] proposes a auwethf discovering indirect (2-order)
associations between items in a database of trémssc The proposed INDIRECT
algorithm is introduced in [19] and uses Aprioriliok two items that are both highly
dependent on a mediator set. This approach hagasties with sequence mining; in
effect, the mediator set replaces the item held&dmmon that is used to create the
sequence (e.g., customer_ID). Of the efforts irhéigorder ARM surveyed, only multi-
relational ARM provides a solid theoretical fouridatfor discovering higher-order rules
based on higher-order associations. Yet this samedftion results in an NP-complete
complexity. In addition, none of the approaches/syed treat associations higher than
2"%order efficiently; most of them do not considedenrs higher than two at all. To
address these issues, in the following section mtduce a novel algorithm, Higher
Order Apriori, that efficiently takes higher-ordexssociations into account while
providing the efficacy of the propositional repnesdion available in existing algorithms
in sequence mining and indirect association.

3 Theoretical Framework

Higher Order Apriori discovers itemsets that cromsord boundaries. We first extend
the itemset definition to incorporate k-itemsets tapri™-order, and then show how to
generate and calculate support for higher-ordengegs. Following this, we present the
pseudo code for Higher Order Apriori.

Definition 1: If item a and item b from different transactionsd#e associated across
n distinct records, then we say item a and b af®order associated, denoted

a~"i ~%i,~--~"j _ ~™b where ~ represents the co-occurrence relation and

all records are distinct. The order of a higher-erdassociation is determined by the
number of records n.This definition includes the constraint that aegi record can
appear at most once in a higher-order associdfibis. is necessary to be consistent with
the original ARM framework. For example, given agher-order association

a~"i,~"%1i,~"b, based on definition 1a and b are 2%order associated because

there are two distinct records in the link. Thisftiots however with the fact thatandb
actually are T-order associated since they both come fram

Definition 2: An d™-order k-itemset is a k-itemset for which each pdiits items is H
order associatedFor example, iibcis a 3%-order itemset, then there must exist at least
three ¥-order associations betweanandb, b and ¢ anda and ¢ respectively. Having
defined higher-order itemsets, the remaining qaesis how to generate them and
calculate support. The support fof-drder k-itemsets is calculated by counting the
number of records containing the itemsets. Howethés, method is infeasible for higher-



order itemsets that cross record boundaries. TWesntroduce the concept ofhagher-
order recordsetvhich is the context of higher-order itemsets.
Definition 3: Two records are frorder linked if they can be linked through n-2tidist

records. The Horder link between records is denotelfp~il r, ~f2 L~ r.. An i
order k-itemset is a k-itemset for which each mdirecords is B-order linked.Clearly,
given ann™-order link between two records ~t r, ~fz L~ r,, if alry, bOr, anda
#b, then there must exist at least onBorder association between itean and b:
a~"i ~%i,~--~"j _ ~™b. Given the higher-order links between records and

the derived higher-order associations between iteims corresponding higher-order
itemsets can be generated.

Definition 4: A n"™-order itemsetii,...i, is supported by a'horder recordset iro...r, if
no two items come from the same recérdr example, given the following three records

<ry, abc>, <ry, adef>, <r;, bfgh>, thenrir,ra is a2"%order recordset as we ha‘?p~a r,,

r ~P r;andr, ~ r,. Since for exampléOry, elr, andglrs, begis a2"-order itemset

supported by th@"-order recordsetrirors. To calculate the support of a higher-order
itemset we need to know both the number of rectsdsepporting the itemset and the
order of each recordset. A recordset may appeguérgly because there may be many
different higher-order links supporting the recatds=or example, if there are twd%2

order links betweem; andr,, say I; ~h r,and r; ~2 r,, then recordset; r, could be

formed based on either link and thus has a supgdo. To simplify the problem, we

group higher-order links that support the same nds=t into alink group written as
| I (. —

At PRaRTRI R ) I A

in the group, can be calculated by taking the pcodiithe sizes of;. For example, given

a 3%order link group L1, ~*"r, ~*r,, the number of links in L is

size( g)=|acd*|efi=6.

Similar to links, recordsets can also be groupegtter. For example, th&%rder 4-
recordset in Figure 1.a and th¥-8rder 4-recordset in Figure 1.b can be groupedthmy
to form the 2%order 4-recordset in Figure 1.c. The only differeiis that the recordset in

4 Thesizeof a link group, i.e. the number of links
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Figure 1. Grouping recordsets
Figure 1.c is composed of link groups instead mkdi In what follows, when we discuss
recordsets, we refer to recordsets composed ofjlialdps as exemplified in Figure 1.c.



Similarly, thesizeof a recordset composed of link groups can beutatted by taking
the product of the sizes of each link group. Famegle, the size of the recordset in Figure
l.c is 2*2*2*2*2*1=32. It is also important to notéhat a given recordset might be
composed of different link group combinations. Tiiay happen for"horder recordsets
when n is greater than two. For example, Figurasad 2.b represent the sanfedsder
3-recordsetrirors formed in two ways. Recordsefr,r; in Figure 2.a may have a size
different than in Figure 2.b because the link gsoapnnecting, andr, (throughrsandr,
respectively) may have different sizes. The totaé 2f rir,rs must incorporate both
recordsets. Generalizing from this example, givémstances ofi"-order k-recordsetrs,

i k(k-1)/2 n-1
its size is defined assize, , (rs) = Z( |_| |_| |1,]). where j represents the number
t=1 u=l v=1
of different ways to fornrs, and the double product inside the parenthesesgepts the
size of the'f recordset.

Figure 2. Two forms of recordset rir,rs
Given the size values for all recordsets, we defieesupport of &-itemsetis as:

spie)= 3 e /2.576.,(19) +1

u=1 u
The sum results from the fact that since the seitemset can be generated at different
orders, theglobal support for a giverk-itemsetmust include thdocal support at each

orderu. Thus the ratiqqg > size k(rs)+1/u calculates théocal support for an itemset at

a specific ordeu. The idea behind this ratio is simply to accowntioth the number of
higher-order links supporting a given itemset al a®the order of the itemset. As order
grows, our intuition is that support ought to dese — thus the denominator This
reflects the assumption that the longer the lintwben records, the weaker the itemset
association. In contrast, the more links connectiegprds in a recordset, the stronger
support ought to be. These two intuitions are fluat — clearly, extensive experimentation
is required to ascertain the utility of this defiioin of support.

The challenge arises when we consider the expatambwth ofsizeg,(rs) — although
order grows linearlysizg(rs) grows exponentially. Again, our intuition is thadth of
these factors are equally important. Thus, in otderonstrairsize,.(rs) to grow linearly
with order, we first take the square rootsife, (rs) and then the log The square root
accounts for the ®@f) growth in the number of edges in a recordsetrdsragrows; the
log;o accounts for the exponential growth sifg (rs). We add one tsizg,(rs) in the
numerator to ensure that support is non-zero.




4 Higher Order Apriori Algorithm

In this section, we present the Higher Order Apradgorithm, which discovers rules
based on higher-order associations. Our higherroddRM is structured in a level-wise
order-first manner. Level-wise means that the sfdeitemsets increases in each iteration
(as is the case for Apriori), while order-first meathat at each level, itemsets are
generated across all orders. We will first introgltice notation used in the algorithm, and
then present the algorithm in detail.

Table 1. Notation

RS Set ofk-recordsets.
Each member has: i) recordset; ii) order; iii) ssf¢he recordset.
RS « Set ofn™orderk-recordsets. Each member has: i) recordsets; @) siz

1S, Set ofk-itemsets.
Each member has: i) itemset; ii) global suppotthefitemset.
1Sh & Set ofn™-orderk-itemsets.

Each member has: i) itemsets; ii) local support.
The input toHO-Apriori is a connected undirected graph, where each vegfeesents

a record, an edge between two vertices exists whemecords share at least one common

item, and the weight of the edge represents thebeuwf common items. In terms of the

nomenclature in section 3, a path in G is actutdly link group between two records.

Thus, the problem of discovering link groups is pheblem of finding all simple paths.

HO-Apriori (G)
1. Enumpath(G, max_order)
for (k= 3;RS.i#@; k++) /] k: size of the recordset
for (n=2;n<max_ordern++) // n: order
RS «=Gen_RSRS, k1),
foreach recordsetslIRS, «
Enum_IS(s, n);
foreach itemsetis where is|=k
for (u=2; u<max_order; u++)
if isOIS, «

1S(is).sup+og,,,/1S, , (is).supr1/u

11. if 1S(is).sup <min_sup
12. removes from IS,
13. Generate rules

Figure 3. Higher Order Apriori
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The first stepEnumpath discovers all the higher-order 2-recordsets withiax_order
by computing all the link groups between recordbe Jpseudocode foEnumpathis
shown in Figure 4. The first step Eimumpathuses an algorithm in [21] to find all simple
paths (i.e., link groups) between two vertices. Wuoest case time complexity of this step
is O(V ||E|) for a given path where V is the set of verticed & the edges in G [21].



The resulting link groups are 2-recordsets of diffé orders with different sizes. The
order and size information is keptRS.

Enumpath(G, max_order)
For each record paip in the graph
Find all simple paths using the algorithm in [21]

For each path found

order = number of records on the path

size= size of the path

If RS(rp,order)is valid

RS(rp,order).sizet= size
ElseRS(rp,order)size
Figure 4. Enumpath

Steps 2 through 12 of tHeO-Apriori algorithm in Figure 3 comprise one outer and
two inner loops. The outer loop proceeds level-vasel keeps track of the sizes of
recordsets. Although thé&-+1)-recordsets are generated in an Apriori-like fashbhased
on k-recordsets from the previous iteration, naturally pruning is performed for
recordsets. The first inner loop, from steps 3ulgto6, proceeds order-first and generates
different order itemsets from tHerecordsets, and calculates the corresponding suppo
Figure 6 depicts the level-wise order-first struetof our higher-order association rule
mining algorithm.

2-temset itemset aitemset nitemset

Figure 6. Level-wise Order-First Structure

In more detail, step 4 (Figure 5) generatesrif@rder k-recordsetbased on the™
order (k-1)-recordsetsusing Apriori's candidate generation function. Téiee of the
recordset is calculated based on the equatiosiZey(rs) in section 3.

Gen_RSRS, y
RS k1 = apriori_genRS, ¥
foreach recordsetsdJRS, 1
foreachrpinrs
rs.sizex= RS(rp,n).size
Figure 5. Generate Recordset



For eact™-order k-recordsegenerated, step 6 (Figure 7) enumerates all des#ib
order k-itemsetérom the recordset.

Enum_ ISrs, n)
k = number of records in the
Pick one item from each record
If the items are different
IS, (is).sup+=rs.size
Figure 7. Enumerate Itemsets from Recordset

Steps 8 to 10 calculate the global support fonglsik-itemsetacross orders from 2 to
max_order based on the support metric describesgétion 3. If the global support does
not meet the threshold, theitemsetis discarded in step 12. The frequ&rtemsetsare
kept inIS.. The algorithm proceeds with tifle+1)-recordsets in the next iteration. After
discovering all the frequent itemsets (both firstl ehigher-order), association rules are
generated in step 13 using a standard ARM algorgthah as Apriori.

6 Implementation

To verify the feasibility and effectiveness of HagFOrder Apriori, a prototype has been
developed. The input to the prototype is providadugh an XML file that describes the
instances of sample data. In a pre-processing s$hep,input is transformed into an
adjacency matrix. The core of the prototype liethie Algorithm class which implements
several task oriented, independent but related edsth Therun() method of the
Algorithm class invokes theopulate()method of an instance of the RecordManager class
to read in the input records and store them foth&rr use. The higher-order paths are
collected from Unolnterface ([21]) by invoking Enpath method, passing one pair of
records at a time. These paths are processed gedtolf the PathEntry class are
instantiated to represent higher-order paths betweeords along with other essential
properties. An instance of the PathCollection cilas®sponsible for sorting, storing and
retrieving these paths during subsequent procesditige algorithm.

The run() method also employs two instances of the Reco€iflectionKitem
AllOrders class to store two consecuts@umns of recordsets (depicted as columns in
Figure 6 moving in the Kk direction). One instancéores objects of type
RecordSetCollection to represent tHedolumn of Figure 6, while the other is used to
store the (k-1 column, thus structuring the process level-wisestdnces of class
RecordSetCollection are primarily used to achiendecwise separation of the generation
and storage of the RecordSet objects. Further meaelh RecordSet objects holds an
instance of the ItemSetCollection class to manégmsdets created using that particular
record set. The Algorithm class has its own attglaf type ItemSetCollection to maintain
all the itemsets being generated as the processaneds level-wise. This
ltemSetCollection object represents the resulth&f Higher Order Apriori algorithm
described in the previous section, and all the s&t® in this collection satisfy the
minimum support criteria.



The prototype was designed and documented usirigri@hRose Enterprise Suite, and
implemented in C++ using GNU C/C++ compiler versi®@.2 to compile and link the
code under Red Hat Linux 9.0. Adequate use of OGigdeprinciples during the
development of this prototype will lead to low maimability and modification costs. The
code and documentation is available online at bddilehigh.edu.

7 Results

We conducted experiments to evaluate Higher Orderiofi on multiple systems,
including at the National Center for Supercomputimplications (NCSA). To validate
the algorithm we prepared a simulated e-Marketpldaset of four records and five
products: Microsoft Wheel Mouse Optical (b); Buildia PC for Dummies, Fifth Edition
(c); Microsoft Internet Keyboard (d); Build the Witate Custom PC (e) and AMD Athlon
64 X2 (f). For simplicity we will refer to theseeiins by their letter designation (b, ¢, d, e
and f). Table 2 depicts the outcome of executinghdi Order Apriori on this dataset.
First, the transaction database (Table 2, lefjosverted to a graph representation and
passed to HO-Apriori. The link groups discoveredEmumpath are shown in Table 2 in
the middle, and Table 2 (right) shows the top Hingets with their local and global
support. Seven of these itemsets cannot be dised\®r Apriori. Based on these higher
order itemsets, many interesting and novel rules e formed. For exampl&dlouse &
Keyboard => Building a PC for Dummigg#-ifth Edition and Mouse & Keyboard =>
AMD Athlon From these results we observe the following fadfsHigher Order Apriori
discovers itemsets that cannot be discovered hyioApr(2) Higher Order Apriori
increases the strength of-@rder k-itemsets. Higher Order Apriori also redpebe well-
known Apriori property, making it feasible to geatr k-itemsets in the usual manner.

Table 2. Starting Record IDs, Link Groups and Itemsets Disced by Higher Order Apriori

RID | Temsets| |Order Paths (Link groups) ltemsets 2™ | 3¢ | 4" | Total
d . . . .

1 | be 2" 1-2,1-3, 2-3,2-4: 3-4 cdf |0.150.21]0.16) 0.52
2 | cde 3 ;fg%ig%gj;gj cef |0.150.21]0.16) 0.52
3 C,f AT, LT, LT, VLT,
am———— A [ 13421043 1.2.34 cd |0.1d0.17/0.12] 0.49

- & 1-3-2-4;2-1-3-4:3-1-2-4; ce |0.190.17/0.12] 0.49

fany

The next set of experiments involved the autom cf 10.190.17]0.12) 0.49
generation of a test set. Based on a dataset nowgaioo | _Pcd | 0.070.18/0.16] 0.42
unique items we randomly generated records with |arbce | 0.070.18)0.16| 0.42
average of four items per record. Table 7 depictspef |0.070.18/0.16| 0.42
examples of frorder 3-itemsets generated from differing bdf |0.070.18/0.16/ 0.42
number of records (two through thirty-two). Itemee a
represented by integer values. The first columnatephe bef ]0.070.18/0.16) 0.42
number of records, and columns two through fivetragrexamples of higher-order 3-
itemsets discovered by Higher Order Apriori. Ndtattnot all runs resulted in higher
order itemsets — this is expected because, likeoApHigher Order Apriori is a data-

o
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driven rule mining algorithm. Table 8 gives a diéfet perspective by portraying example
k-itemsets for various orders.

Table7. Example N-order 3-ltemsets, N=2,3,4,5

Records ¥ order ¥ order Horder | % order
2
4 {13 26 2} {13 26 37}
{50 13 2} {63 13 2}
8
16
32 {0129} {21 16 20} {36 09} | {21500}
Table8. Example N-order K-ltemsets, K=2,3,4
Records| 2-itemsetg 3-itemsets 4-itemsets
2
4 {13 26} {74 13 2}
{50 2} {89 26 37}
8 {67 9}
{24 11}
16 {47 11}
{18 23}
32 {2117} {0188}
{36 32} {98800}

Higher Order Apriori discovers itemsets that Apridoes not. For example, th&2
order 3-itemsets {13, 26, 2} and {0, 1, 29} do mwicur in any single record in the input
data. Likewise, the "dorder 2-itemset {50, 2} is a novel nugget. Thisrdmstrates the
capability of Higher Order Apriori not only to diseer new knowledge, but also to
enhance the support for existing-drder association rules. Although not depicteceher
the rule generation process of Higher Order Apriesults in i and higher-order rules.

8 Conclusionsand FutureWork

We have developed a framework to extend associatitnmining from f-order to all
possible orders. We have defined and identifiedcthrext for higher-order itemsets. A
mechanism to calculate support of higher-order stetsiwas also presented. We have also
designed, implemented and tested our higher-ordsocéation rule mining algorithm,
which discovers propositional rules based on higitder associations.

In future work we plan to address both theoret&adl practical aspects of Higher
Order Apriori. First, we will apply the algorithmo treal world data including e-
Marketplace, law enforcement and public healthaata as part of our ongoing NSF-
funded work in distributed higher-order ARM devaiognt. To evaluate Higher Order
Apriori, we plan to develop methods for comparinghhconfidence, high-support rules



generated using Higher Order Apriori with the rudesmerated by Apriori. This should be
very interesting. Second, we need to evaluate tippa@t metric. The current support
metric was developed empirically, and we need tmhér explore whether there is a
theoretical basis for calculating support in thigywand also what other factors must be
considered in calculating support. Third, we plaiincorporate Higher Order Apriori into
our Text Mining Infrastructure (TMI) [10]. The TMIs an open-source framework
designed for high-end, scalable text mining, amasaio provide a robust software core for
research and development of text mining applicati®ased on the TMI, Higher Order
Apriori can be easily applied in a distributed eoaiment. Finally, we plan to address
issues related to scalability of the algorithm.haligh the current algorithm rests on a
firm foundation, much of value remains to be acclished in terms of improving the
performance.
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