
Higher Order Apriori

Shenzhi Li, Aditya P. Belapurkar, Xiaoning Yang, Mark J. Dilsizian
William M. Pottenger, Murat Can Ganiz, Christopher D. Janneck

Lehigh University Department of Computer Science and Engineering
19 Memorial Drive West, Bethlehem, PA 18015, USA

{shl3, apb204, xiy204, mjd204, billp, mug3, cdj2}@lehigh.edu

Abstract Frequent itemset mining (FIM) is a well known technique for discovering
relationships between items. Most FIM algorithms are based on first-order
associations between items in the same record. Although a few algorithms capable
of discovering indirect propositional rules exist, they do not extend beyond second-
order. In addition, although multi-relational ARM discovers higher-order rules, the
rules are non-propositional and the algorithm is NP-complete. This article introduces
Higher Order Apriori, a novel algorithm for mining higher-order rules. We extend
the itemset definition to incorporate k-itemsets up to nth-order, and present our
levelwise order-first algorithm: levelwise meaning that the size of k-itemsets
increases in each iteration (as with Apriori), and order-first meaning that at each
level, itemsets are generated across all orders. Support is calculated based on the
order of itemsets and the number of higher-order associations connecting items.

Keywords Association Rule Mining (ARM), Data Mining, Text Mining, Sequence
Mining, Multi-relational ARM, Higher Order ARM, Machine Learning

1 Introduction

Association Rule Mining (ARM) is one of the most widely used algorithms in data
mining. Generating rules based on statistics of item co-occurrence, ARM produces output
in the form of propositional rules. Co-occurrence refers to instances where two or more
items appear in the same context, and is also called 1st-order association. Much work has
been done developing techniques for generating, analyzing and measuring 1st-order
associations (e.g., [2], [16], [17]), but most techniques do not support mining across
transaction boundaries. Notable exceptions include sequence mining and multi-relational
ARM. These are examples of approaches that discover higher-order associations.

Higher-order associations are formed by linking different contexts (e.g., transactions)
through one or more common items. Consider the following example from traditional
market-basket analysis: if customer “A” purchases {computer, OS}, customer “B” buys
{laptop, OS} and customer “C” gets {laptop, mouse, battery}, then several higher-order
associations can be formed. These include computer-to-laptop through OS, OS-to-mouse
through laptop, computer-to-battery through OS and laptop, etc. The first two associations
are termed 2nd-order since they each span two contexts, while the computer-to-battery
association is 3rd-order. Overall, any association greater than 1st-order (i.e., spanning at
least two contexts) is termed a higher-order association.

Higher-order associations are currently employed in a number of real world
applications including medical research, marketing analysis, law enforcement and
homeland defense. In the field of medicine, for example, Literature Based Discovery [18]
has been used to uncover a higher-order association between Fish Oil and Raynaud’s
disease in medical literature, leading to a potential new treatment [8]. An important law
enforcement application that employs 2nd-order associations is COPLINK® Detect [9],
which assists law enforcement personnel through textual entity extraction and link-
generation through the use of a semantic network. Mooney et al. [14] discusses a link
discovery algorithm, as part of the DARPA Evidence Extraction and Link Discovery
program that uses Inductive Logic Programming in its mining of multi-relational data.

Several other research efforts are also revealing promising results on the utility of
higher-order associations. In [12], Kontostathis and Pottenger present experimental
evidence suggesting a strong correlation between 2nd-order association of terms and the
performance of Latent Semantic Indexing in terms of Fβ, the harmonic mean of precision
and recall. In related work, based on statistical comparisons of distributions of higher-
order association frequencies, Ganiz and Pottenger report that classes of instances in
labeled training data may be separable based on the characteristics of the higher-order
associations alone (without recourse to a learning algorithm) [7].

As Tan et al. [19] [20] intimate, the future of cross-selling in the e-Marketplace may be
greatly impacted by the results of further study of higher-order associations. This is in
keeping with our results on simulated e-Marketplace data, which indicate that the latent
information contained in higher-order associations can be leveraged to build more
effective association rule models.

2 Related Work

As noted in the Introduction, traditional ARM algorithms only identify 1st-order
associations, i.e., co-occurrence in the same context. Sequential pattern mining, on the
other hand, uses 2nd-order associations to discover frequent subsequences as patterns in a
sequence database. The sequential pattern mining algorithm was introduced by Agrawal
and others in [1] and [3]. In later work Mannila et al. introduce an efficient solution to the
discovery of frequent patterns in a sequence database [13]. Chan et al. [4] study the use of
wavelets in time-series matching and Faloutsos et al. [6] and Keogh et al. [11] propose
indexing methods for fast sequence matching using R* trees, the Discrete Fourier
Transform and the Discrete Wavelet Transform. Multi-relational ARM is a type of ARM
algorithm designed specifically to mine higher-order rules across tables in a single
database [5] [15]. In fact, multi-relational data mining in general (not limited to ARM) is
an emerging research area that enables the analysis of complex, structured types of data
such as sequences in genome analysis. Similarly, there is a wealth of recent work
concerned with enhancing existing data mining approaches to employ relational logic.
WARMR, for example, is a multi-relational enhancement of Apriori presented by
Dehaspe and Raedt [5]. Although WARMR provides a sound theoretical basis for multi-
relational ARM, it does not seriously address the efficiency of computation. In fact the

runtime performance of WARMR depends heavily on the implementation of θ-
subsumption, and because θ-subsumption is NP-complete, performance is poor. In
addition, the model sacrifices the perspicuity of a propositional representation. More
recently, methods that address 2nd-order associations have been discussed in the context of
the e-Marketplace. Tan et al. [19] proposes a method of discovering indirect (2nd-order)
associations between items in a database of transactions. The proposed INDIRECT
algorithm is introduced in [19] and uses Apriori to link two items that are both highly
dependent on a mediator set. This approach has similarities with sequence mining; in
effect, the mediator set replaces the item held in common that is used to create the
sequence (e.g., customer_ID). Of the efforts in higher-order ARM surveyed, only multi-
relational ARM provides a solid theoretical foundation for discovering higher-order rules
based on higher-order associations. Yet this same foundation results in an NP-complete
complexity. In addition, none of the approaches surveyed treat associations higher than
2nd-order efficiently; most of them do not consider orders higher than two at all. To
address these issues, in the following section we introduce a novel algorithm, Higher
Order Apriori, that efficiently takes higher-order associations into account while
providing the efficacy of the propositional representation available in existing algorithms
in sequence mining and indirect association.

3 Theoretical Framework

Higher Order Apriori discovers itemsets that cross record boundaries. We first extend
the itemset definition to incorporate k-itemsets up to nth-order, and then show how to
generate and calculate support for higher-order itemsets. Following this, we present the
pseudo code for Higher Order Apriori.

Definition 1: If item a and item b from different transactions can be associated across
n distinct records, then we say item a and b are nth-order associated, denoted

biiia nn r
n

rrr ~~~~~ 121
121

−
−L where ~ represents the co-occurrence relation and

all records are distinct. The order of a higher-order association is determined by the
number of records n. This definition includes the constraint that a given record can
appear at most once in a higher-order association. This is necessary to be consistent with
the original ARM framework. For example, given a higher-order association

biia rrr 121 ~~~ 21 , based on definition 1, a and b are 2nd-order associated because

there are two distinct records in the link. This conflicts however with the fact that a and b
actually are 1st-order associated since they both come from r1.

Definition 2: An nth-order k-itemset is a k-itemset for which each pair of its items is nth-
order associated. For example, if abc is a 3rd-order itemset, then there must exist at least
three 3rd-order associations between a and b, b and c and a and c respectively. Having
defined higher-order itemsets, the remaining question is how to generate them and
calculate support. The support for 1st-order k-itemsets is calculated by counting the
number of records containing the itemsets. However, this method is infeasible for higher-

order itemsets that cross record boundaries. Thus, we introduce the concept of a higher-
order recordset which is the context of higher-order itemsets.

Definition 3: Two records are nth-order linked if they can be linked through n-2 distinct

records. The nth-order link between records is denoted n
iii rrr n 121 ~~~ 21

−L . An nth-

order k-itemset is a k-itemset for which each pair of records is nth-order linked. Clearly,

given an nth-order link between two records n
iii rrr n 121 ~~~ 21

−L , if a∈r1, b∈rn and a

≠b, then there must exist at least one nth-order association between item a and b:

biiia nn r
n

rrr ~~~~~ 121
121

−
−L . Given the higher-order links between records and

the derived higher-order associations between items, the corresponding higher-order
itemsets can be generated.

Definition 4: A nth-order itemset i1i2…in is supported by a nth-order recordset r1r2...rn if
no two items come from the same record. For example, given the following three records

<r1, abc>, <r2, adef>, <r3, bfgh>, then r1r2r3 is a 2nd-order recordset as we have 21 ~ rr a ,

31 ~ rr b and 32 ~ rr f . Since for example b∈r1, e∈r2 and g∈r3, beg is a 2nd-order itemset

supported by the 2nd-order recordset r1r2r3. To calculate the support of a higher-order
itemset we need to know both the number of recordsets supporting the itemset and the
order of each recordset. A recordset may appear frequently because there may be many
different higher-order links supporting the recordset. For example, if there are two 2nd-

order links between r1 and r2, say 21
1~ rr i and 21

2~ rr i , then recordset r1 r2 could be

formed based on either link and thus has a support of two. To simplify the problem, we
group higher-order links that support the same recordset into a link group, written as

121 ,~~~ 121
+∩=−

jjjn
III rrIrrr nL . The size of a link group, i.e. the number of links

in the group, can be calculated by taking the product of the sizes of I j. For example, given

a 3rd-order link group Lg: 321 ~~ rrr efacd , the number of links in Lg is

size(Lg)=|acd|*|ef|=6.
Similar to links, recordsets can also be grouped together. For example, the 2nd-order 4-

recordset in Figure 1.a and the 2nd-order 4-recordset in Figure 1.b can be grouped together
to form the 2nd-order 4-recordset in Figure 1.c. The only difference is that the recordset in

 (a) (b) (c)
Figure 1. Grouping recordsets

Figure 1.c is composed of link groups instead of links. In what follows, when we discuss
recordsets, we refer to recordsets composed of link groups as exemplified in Figure 1.c.

d

c

 a b

 1 2

3 4

a

e d

a

 h d

 1 2

 3 4

e

g d

ac

ah bd

 1 2

 3 4

ae

eg

Similarly, the size of a recordset composed of link groups can be calculated by taking
the product of the sizes of each link group. For example, the size of the recordset in Figure
1.c is 2*2*2*2*2*1=32. It is also important to note that a given recordset might be
composed of different link group combinations. This may happen for nth-order recordsets
when n is greater than two. For example, Figures 2.a and 2.b represent the same 3rd-order
3-recordset r1r2r3 formed in two ways. Recordset r1r2r3 in Figure 2.a may have a size
different than in Figure 2.b because the link groups connecting r1 and r2 (through r5 and r4
respectively) may have different sizes. The total size of r1r2r3 must incorporate both
recordsets. Generalizing from this example, given j instances of nth-order k-recordset rs,

its size is defined as: ∑ ∏ ∏
=

−

=

−

=

=
j

t

kk

u

n

v
vkn Irssize

1

2/)1(

1

1

1
_)()(, where j represents the number

of different ways to form rs, and the double product inside the parentheses represents the
size of the tth recordset.

(a) (b)
Figure 2. Two forms of recordset r1r2r3

Given the size values for all recordsets, we define the support of a k-itemset is as:

∑
∑

=

+
=

order

u

kn

k u

rssize
is

max_

1

_10 1)(log
)(sup

The sum results from the fact that since the same k-itemset can be generated at different
orders, the global support for a given k-itemset must include the local support at each
order u. Thus the ratio urssize kn 1)(log _10 +∑ calculates the local support for an itemset at

a specific order u. The idea behind this ratio is simply to account for both the number of
higher-order links supporting a given itemset as well as the order of the itemset. As order
grows, our intuition is that support ought to decrease – thus the denominator u. This
reflects the assumption that the longer the link between records, the weaker the itemset
association. In contrast, the more links connecting records in a recordset, the stronger
support ought to be. These two intuitions are just that – clearly, extensive experimentation
is required to ascertain the utility of this definition of support.

The challenge arises when we consider the exponential growth of sizen-k(rs) – although
order grows linearly, sizen-k(rs) grows exponentially. Again, our intuition is that both of
these factors are equally important. Thus, in order to constrain sizen-k(rs) to grow linearly
with order, we first take the square root of sizen-k(rs) and then the log10. The square root
accounts for the O(n2) growth in the number of edges in a recordset as order grows; the
log10 accounts for the exponential growth of sizen-k(rs). We add one to sizen-k(rs) in the
numerator to ensure that support is non-zero.

 1

 2 3

 5 7

 6

 1

 2 3

 4 7

 6

4 Higher Order Apriori Algorithm

In this section, we present the Higher Order Apriori algorithm, which discovers rules
based on higher-order associations. Our higher-order ARM is structured in a level-wise
order-first manner. Level-wise means that the size of k-itemsets increases in each iteration
(as is the case for Apriori), while order-first means that at each level, itemsets are
generated across all orders. We will first introduce the notation used in the algorithm, and
then present the algorithm in detail.

Table 1. Notation
RSk Set of k-recordsets.

Each member has: i) recordset; ii) order; iii) size of the recordset.
RSn_k Set of nth-order k-recordsets. Each member has: i) recordsets; ii) size.

ISk Set of k-itemsets.
Each member has: i) itemset; ii) global support of the itemset.

ISn_k Set of nth-order k-itemsets.
Each member has: i) itemsets; ii) local support.

The input to HO-Apriori is a connected undirected graph, where each vertex represents
a record, an edge between two vertices exists when two records share at least one common
item, and the weight of the edge represents the number of common items. In terms of the
nomenclature in section 3, a path in G is actually the link group between two records.
Thus, the problem of discovering link groups is the problem of finding all simple paths.

HO-Apriori (G)
1. Enumpath(G, max_order)
2. for (k = 3; RSk-1≠φ; k++) // k: size of the recordset
3. for (n = 2; n < max_order; n++) // n: order
4. RSn_k = Gen_RS(RSn_k-1);
5. foreach recordset rs∈RSn_k
6. Enum_IS(rs, n);
7. foreach itemset is where |is|=k
8. for (u=2; u<max_order; u++)
9. if is∈ISu_k

10. ISk(is).sup+= uisIS kn /1sup).(log _10 +

11. if ISk(is).sup < min_sup
12. remove is from ISk
13. Generate rules

Figure 3. Higher Order Apriori

The first step, Enumpath, discovers all the higher-order 2-recordsets within max_order
by computing all the link groups between records. The pseudocode for Enumpath is
shown in Figure 4. The first step in Enumpath uses an algorithm in [21] to find all simple
paths (i.e., link groups) between two vertices. The worst case time complexity of this step
is O(V E ) for a given path where V is the set of vertices and E the edges in G [21].

The resulting link groups are 2-recordsets of different orders with different sizes. The
order and size information is kept in RS2.

Enumpath (G, max_order)
For each record pair rp in the graph
 Find all simple paths using the algorithm in [21]
For each path found

order = number of records on the path
size = size of the path
If RS2(rp,order) is valid

RS2(rp,order).size += size
Else RS2(rp,order)=size

Figure 4. Enumpath

Steps 2 through 12 of the HO-Apriori algorithm in Figure 3 comprise one outer and
two inner loops. The outer loop proceeds level-wise and keeps track of the sizes of
recordsets. Although the (k+1)-recordsets are generated in an Apriori-like fashion based
on k-recordsets from the previous iteration, naturally no pruning is performed for
recordsets. The first inner loop, from steps 3 through 6, proceeds order-first and generates
different order itemsets from the k-recordsets, and calculates the corresponding support.
Figure 6 depicts the level-wise order-first structure of our higher-order association rule
mining algorithm.

Figure 6. Level-wise Order-First Structure

In more detail, step 4 (Figure 5) generates the nth-order k-recordsets based on the nth-
order (k-1)-recordsets using Apriori’s candidate generation function. The size of the
recordset is calculated based on the equation for sizen-k(rs) in section 3.

Gen_RS (RSn_k)
RSn_k+1 = apriori_gen(RSn_k)
foreach recordset rs∈RSn_k+1
 foreach rp in rs
 rs.size ×= RS2(rp,n).size

Figure 5. Generate Recordset

For each nth-order k-recordset generated, step 6 (Figure 7) enumerates all possible nth-
order k-itemsets from the recordset.

Enum_ IS (rs, n)
k = number of records in the rs
Pick one item from each record
If the items are different

ISn_k(is).sup += rs.size
Figure 7. Enumerate Itemsets from Recordset

Steps 8 to 10 calculate the global support for a single k-itemset across orders from 2 to
max_order based on the support metric described in section 3. If the global support does
not meet the threshold, the k-itemset is discarded in step 12. The frequent k-itemsets are
kept in ISk. The algorithm proceeds with the (k+1)-recordsets in the next iteration. After
discovering all the frequent itemsets (both first and higher-order), association rules are
generated in step 13 using a standard ARM algorithm such as Apriori.

6 Implementation

To verify the feasibility and effectiveness of Higher-Order Apriori, a prototype has been
developed. The input to the prototype is provided through an XML file that describes the
instances of sample data. In a pre-processing step, the input is transformed into an
adjacency matrix. The core of the prototype lies in the Algorithm class which implements
several task oriented, independent but related methods. The run() method of the
Algorithm class invokes the populate() method of an instance of the RecordManager class
to read in the input records and store them for further use. The higher-order paths are
collected from UnoInterface ([21]) by invoking Enumpath method, passing one pair of
records at a time. These paths are processed and objects of the PathEntry class are
instantiated to represent higher-order paths between records along with other essential
properties. An instance of the PathCollection class is responsible for sorting, storing and
retrieving these paths during subsequent processing of the algorithm.

The run() method also employs two instances of the RecordSetCollectionKItem
AllOrders class to store two consecutive columns of recordsets (depicted as columns in
Figure 6 moving in the k direction). One instance stores objects of type
RecordSetCollection to represent the kth column of Figure 6, while the other is used to
store the (k-1)th column, thus structuring the process level-wise. Instances of class
RecordSetCollection are primarily used to achieve order-wise separation of the generation
and storage of the RecordSet objects. Further more, each RecordSet objects holds an
instance of the ItemSetCollection class to manage itemsets created using that particular
record set. The Algorithm class has its own attribute of type ItemSetCollection to maintain
all the itemsets being generated as the process advances level-wise. This
ItemSetCollection object represents the result of the Higher Order Apriori algorithm
described in the previous section, and all the itemsets in this collection satisfy the
minimum support criteria.

The prototype was designed and documented using Rational Rose Enterprise Suite, and
implemented in C++ using GNU C/C++ compiler version 3.2.2 to compile and link the
code under Red Hat Linux 9.0. Adequate use of OO design principles during the
development of this prototype will lead to low maintainability and modification costs. The
code and documentation is available online at hddi.cse.lehigh.edu.

7 Results

We conducted experiments to evaluate Higher Order Apriori on multiple systems,
including at the National Center for Supercomputing Applications (NCSA). To validate
the algorithm we prepared a simulated e-Marketplace dataset of four records and five
products: Microsoft Wheel Mouse Optical (b); Building a PC for Dummies, Fifth Edition
(c); Microsoft Internet Keyboard (d); Build the Ultimate Custom PC (e) and AMD Athlon
64 X2 (f). For simplicity we will refer to these items by their letter designation (b, c, d, e
and f). Table 2 depicts the outcome of executing Higher Order Apriori on this dataset.
First, the transaction database (Table 2, left) is converted to a graph representation and
passed to HO-Apriori. The link groups discovered by Enumpath are shown in Table 2 in
the middle, and Table 2 (right) shows the top 10 itemsets with their local and global
support. Seven of these itemsets cannot be discovered by Apriori. Based on these higher
order itemsets, many interesting and novel rules can be formed. For example: Mouse &
Keyboard => Building a PC for Dummies, Fifth Edition and Mouse & Keyboard =>
AMD Athlon. From these results we observe the following facts: (1) Higher Order Apriori
discovers itemsets that cannot be discovered by Apriori; (2) Higher Order Apriori
increases the strength of 1st-order k-itemsets. Higher Order Apriori also respects the well-
known Apriori property, making it feasible to generate k-itemsets in the usual manner.

Table 2. Starting Record IDs, Link Groups and Itemsets Discovered by Higher Order Apriori

The next set of experiments involved the automatic
generation of a test set. Based on a dataset containing 100
unique items we randomly generated records with an
average of four items per record. Table 7 depicts
examples of nth-order 3-itemsets generated from differing
number of records (two through thirty-two). Items are
represented by integer values. The first column depicts the
number of records, and columns two through five portray examples of higher-order 3-
itemsets discovered by Higher Order Apriori. Note that not all runs resulted in higher
order itemsets – this is expected because, like Apriori, Higher Order Apriori is a data-

Itemsets 2nd 3rd 4th Total

cdf 0.15 0.21 0.16 0.52

cef 0.15 0.21 0.16 0.52

cd 0.19 0.17 0.12 0.49

ce 0.19 0.17 0.12 0.49

cf 0.19 0.17 0.12 0.49

bcd 0.07 0.18 0.16 0.42

bce 0.07 0.18 0.16 0.42

bcf 0.07 0.18 0.16 0.42

bdf 0.07 0.18 0.16 0.42

bef 0.07 0.18 0.16 0.42

RID Itemsets
1 b, c
2 c, d, e
3 c, f
4 d, e, f

Order Paths (Link groups)
2nd 1-2; 1-3; 2-3;2-4; 3-4
3rd 1-3-2;1-2-3;1-2-4;1-3-4;

2-1-3;2-4-3;2-3-4;3-2-4;
4th 1-3-4-2;1-2-4-3;1-2-3-4;

1-3-2-4;2-1-3-4;3-1-2-4;

driven rule mining algorithm. Table 8 gives a different perspective by portraying example
k-itemsets for various orders.

Table 7. Example N-order 3-Itemsets, N=2,3,4,5

Records 2nd order 3rd order 4th order 5th order

2

4
{13 26 2}
{50 13 2}

{13 26 37}
{63 13 2}

8

16
32 {0 1 29} {21 16 20} {36 0 9} {21 50 0}

Table 8. Example N-order K-Itemsets, K=2,3,4

Records 2-itemsets 3-itemsets 4-itemsets

2
4 {13 26}

{50 2}
{74 13 2}
{89 26 37}

8 {67 9}
{24 11}

16 {47 11}
{18 23}

32 { 21 17}
{36 32}

{0 1 88 }
{98 80 0 }

Higher Order Apriori discovers itemsets that Apriori does not. For example, the 2nd-

order 3-itemsets {13, 26, 2} and {0, 1, 29} do not occur in any single record in the input
data. Likewise, the 2nd-order 2-itemset {50, 2} is a novel nugget. This demonstrates the
capability of Higher Order Apriori not only to discover new knowledge, but also to
enhance the support for existing 1st-order association rules. Although not depicted here,
the rule generation process of Higher Order Apriori results in 1st and higher-order rules.

8 Conclusions and Future Work

We have developed a framework to extend association rule mining from 1st-order to all
possible orders. We have defined and identified the context for higher-order itemsets. A
mechanism to calculate support of higher-order itemsets was also presented. We have also
designed, implemented and tested our higher-order association rule mining algorithm,
which discovers propositional rules based on higher-order associations.

In future work we plan to address both theoretical and practical aspects of Higher
Order Apriori. First, we will apply the algorithm to real world data including e-
Marketplace, law enforcement and public healthcare data as part of our ongoing NSF-
funded work in distributed higher-order ARM development. To evaluate Higher Order
Apriori, we plan to develop methods for comparing high-confidence, high-support rules

generated using Higher Order Apriori with the rules generated by Apriori. This should be
very interesting. Second, we need to evaluate the support metric. The current support
metric was developed empirically, and we need to further explore whether there is a
theoretical basis for calculating support in this way, and also what other factors must be
considered in calculating support. Third, we plan to incorporate Higher Order Apriori into
our Text Mining Infrastructure (TMI) [10]. The TMI is an open-source framework
designed for high-end, scalable text mining, and aims to provide a robust software core for
research and development of text mining applications. Based on the TMI, Higher Order
Apriori can be easily applied in a distributed environment. Finally, we plan to address
issues related to scalability of the algorithm. Although the current algorithm rests on a
firm foundation, much of value remains to be accomplished in terms of improving the
performance.

Acknowledgements

The authors wish to thank Lehigh University, the Pennsylvania State Police, the
Lockheed-Martin Corporation, the City of Bethlehem Police Department, the National
Science Foundation and the National Institute of Justice, US Department of Justice. This
work was supported in part by NSF grant number 0534276 and NIJ grant numbers 2005-
93045-PA-IJ and 2005-93046-PA-IJ. Points of view in this document are those of the
authors and do not necessarily represent the official position or policies of Lehigh
University, the US Department of Justice, the National Science Foundation, the
Pennsylvania State Police or the Lockheed Martin Corporation.

We are also grateful for the help of other co-workers, family members and friends. Co-
authors Shenzhi Li, Mark J. Dilsizian, Christopher D. Janneck and William M. Pottenger
also gratefully acknowledge the continuing help of their Lord and Savior, Yeshua the
Messiah (Jesus the Christ) in our lives and work. Amen.

References
[1] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient Similarity Search In Sequence

Databases. In D. Lomet, editor, Proceedings of the 4th International Conference of Foundations
of Data Organization and Algorithms (FODO), pages 69–84, Chicago, Illinois, 1993. Springer
Verlag.

[2] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of items in
large databases. In P. Buneman and S. Jajodia, editors, Proceedings of the 1993 ACM
SIGMOD International Conference on Management of Data, pages 207–216, Washington,
D.C., 26–28 1993.

[3] R. Agrawal and R. Srikant. Mining sequential patterns. In P. S. Yu and A. S. P. Chen, editors,
Eleventh International Conference on Data Engineering, pages 3–14, Taipei, Taiwan, 1995.
IEEE Computer Society Press.

[4] K. Chan and A. Fu. Efficient Time-Series Matching by Wavelets. In Proc. of 1999 Int. Conf.
on Data Engineering, Sydney, Australia, March, 1999.

[5] L. Dehaspe and L. D. Raedt. Mining association rules in multiple relations. In ILP ’97:
Proceedings of the 7th International Workshop on Inductive Logic Programming, pages 125–
132, London, UK, 1997. Springer-Verlag.

[6] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast Subsequence Matching in Time-
Series Databases. In Proc. of the 1994 ACM SIGMOD Int. Conf. on Management of Data,
Minneapolis, Minnesota, May, 1994.

[7] M. Ganiz, W. M. Pottenger and X. Yang. Link Analysis
of Higher-Order Paths in Supervised Learning Datasets. In the Proceedings of the Workshop on
Link Analysis, Counterterrorism and Security, 2006 SIAM Conference on Data Mining.
 Bethesda, MD, April 2006.

[8] M. Ganiz, W. M. Pottenger and Janneck, C. D. Recent Advances in Literature Based
Discovery. Journal of the American Society for Information Science and Technology, JASIST ,
2006 (Submitted)

[9] R. V. Hauck, H. Atabakhsh, P. Ongvasith, H. Gupta, H. Chen, Using Coplink to analyze
criminal-justice data, IEEE Computer 35 (3), 2002, pp. 30– 37.

[10] L.E. Holzman, T.A. Fisher, L.M. Galitsky, A. Kontostathis and W. M. Pottenger. A Software
Infrastructure for Research in Textual Data Mining. The International Journal on Artificial
Intelligence Tools, volume 14, number 4, pages 829-849. 2004.

[11] E. Keogh, K. Chakrabarti, M. Pazzani and S. Mehrotra. Dimensionality Reduction for Fast
Similarity Search in Large Time Series Databases. Springer-Verlag, Knowledge and
Information Systems, p. 263–286, 2001.

[12] A. Kontostathis and W.M. Pottenger, W. M. A Framework for Understanding LSI
Performance. Information Processing & Management, 42(1), 2006.

[13] H. Mannila, H. Toivonen, and A.I. Verkamo. Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery, vol. 1, no. 3, 259-289, 1997.

[14] R. J. Mooney, P. Melville, L.R. Tang, J. Shavlik, I.C. Dutra, D. Page and V.S. Costa.
Relational Data Mining with Inductive Logic Programming for Link Discovery. Proceedings of
the National Science Foundation Workshop on Next Generation Data Mining, Nov. 2002,
Baltimore, MD.

[15] S. Nijssen and J. Kok. Faster Association Rules for Multiple Relations. In IJCAI01, Seattle,
Washington, USA, pages 891—896, 2001.

[16] J. S. Park, M. Chen, and P.S. Yu, “An Effective Hash Based Algorithm for Mining Association
Rules,” Proc. ACM SIGMOD Conf., ACM Press, New York, 1995, pp. 175–186.

[17] A. Savasere, E. Omiecinski, and S. Navathe, “An Efficient Algorithm for Mining Association
Rules in Large Databases,” Proc. 21st Int’l Conf. Very Large Databases., Morgan Kaufmann,
San Francisco, 1995, pp. 432–444.

[18] D.R. Swanson. Complementary structures in disjoint science literatures. In A. Bookstein, Y.
Chiaramella, G. Salton, & V.V. Raghavan (Eds.), Proceedings of the 14th Annual International
ACM/SIGIR Conference on Research and Development in Information Retrieval, pp. 280–289,
1991. New York: ACM Press.

[19] P.N. Tan, V. Kumar, and J. Srivastava. Indirect association: Mining higher order dependencies
in data. Technical Report TR00-037, University of Minnesota, 2000.

[20] Tan, Pang-Ning Tan and Vipin Kumar. Mining Association Patterns in Web Usage Data.
University of Minnesota, 2002.

[21] T. UNO. An Output Linear Time Algorithm for Enumerating Chordless Cycles. 92nd SIGAL of
Information Processing Society Japan, 47-53, 2003.

