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Abstract 
 

Internet routing dynamics have been extensively studied 
in the past few years. However, dynamics such as 
interdomain Border Gateway Protocol (BGP) behavior 
are still poorly understood. Anomalous BGP events 
including misconfigurations, attacks and large-scale 
power failures often affect the global routing 
infrastructure. Thus, the ability to detect and categorize 
such events is extremely useful. In this article we present 
a novel anomaly detection technique for BGP that 
distinguishes between different anomalies in BGP traffic. 
This technique is termed Higher Order Path Analysis 
(HOPA) and focuses on the discovery of patterns in 
higher order paths in supervised learning datasets. Our 
results demonstrate that not only worm events but also 
different types of worms as well as blackout events are 
cleanly separable and can be classified in real time based 
on our incremental approach. This novel approach to 
supervised learning has potential applications in 
cybersecurity/forensics and text/data mining in general. 
 

1. Introduction 
 
Border Gateway Protocol (BGP) is the de facto 

interdomain routing protocol.  BGP is responsible for the 
discovery and maintenance of paths between autonomous 
systems (ASes) in the Internet. The Internet is made of 
thousands of ASes, which are loosely defined as a 
connected set of IP prefixes under a single administration 
[18]. BGP provides reachability information to ASes and 
distributes external reachability internally within an AS. 
With the exponential growth of ASes, BGP has become 
one of the most critical components of the Internet’s 
infrastructure. Within the last few years, internet routing 
dynamics have been extensively studied [1], [2], [3], [4]. 
However, interdomain routing dynamics such as BGP 
activities are still poorly understood. Abnormal BGP 
events including misconfigurations [5], attacks [6], and 
large-scale power failures [7] often affect global routing 
infrastructure. For example, in January 2003, the Slammer 
worm caused a surge of BGP updates [8]. In August 2003, 
the East Coast electricity blackout affected 3175 networks 
and many BGP routers were shut down [9]. Since 
anomalous BGP events often cause major disruptions in 

the Internet, the ability to detect and categorize BGP 
events is extremely useful. Different abnormal BGP 
events can have different effects on the performance of the 
Internet and may warrant different corrective actions. For 
example, some worm events may cause a surge in BGP 
traffic on the control plane but may not cause noticeable 
degradation in the packet delivery performance on the 
Internet’s data plane [23]. Different worm quarantine 
mechanisms may be needed for different attack types. 

In this article we propose a novel data mining 
approach termed Higher Order Path Analysis (HOPA) that 
focuses on distinguishing different anomalous events in 
BGP traffic. To our knowledge this is the first such work 
to successfully distinguish between Slammer, Witty and 
Blackout events. Our work with the Witty worm is 
especially notable because the Witty worm event poses 
challenges to detection algorithms and has not been 
widely studied. Although in this work our main focus is 
interdomain routing, our supervised HOPA learning 
algorithm is not limited to this application, but rather can 
be applied in other learning domains as well. HOPA 
discovers higher-order link patterns in data based on 
relationships between entities. In this context, a higher-
order link can be represented as a chain of co-occurrences 
of entities in different records as seen in figure 1.  
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Figure 1. Higher-order path as a chain of co-
occurrences 

 
We also refer to such a link as a higher-order path. 

Given a supervised learning dataset (i.e., labeled training 
data), HOPA discovers patterns in sets of higher-order 
links that distinguish between the classes in the data. 
(Note that in this paper records correspond to what are 
usually referred to as instances in machine learning and 
our use of entities corresponds to attribute-value pairs. We 
use these pairs of terms interchangeably.) Our results are 
based on statistical BGP data extracted from the 
RouteViews archive [10]. Our target is to characterize and 
distinguish different anomalous BGP events such as worm 
attacks (e.g., Slammer, Witty) and power failures using 
our HOPA learning algorithm. In this paper we also 



present and report results for an incremental HOPA 
algorithm for online (real time) detection and 
characterization of different abnormal BGP events. We 
tested our algorithm on BGP data from the Slammer worm 
attack, the Witty worm attack and the 2003 East Coast 
Blackout event. 

The rest of the article is organized as follows: in 
Section 2 we briefly review related work. In Section 3, we 
present our approach followed by results in Section 4 and 
discussion in Section 5. Section 6 outlines some 
interesting research issues that we wish to explore in 
future work, and our conclusions are drawn in Section 7. 
 

2. Related Work 
 
In [11] Li et al. use attributes derived from BGP traffic 

to detect internet routing anomalies. They employ data 
mining techniques, in particular a decision tree machine 
learning algorithm, to train a model using labeled data. 
The authors use the counts of different types of BGP 
messages divided into one minute bins. Their model 
consists of the rules learned, and is used to detect 
occurrences of abnormal events. Basically their system 
can distinguish between two classes – event and normal – 
but cannot differentiate between different types of events. 
Thus one important drawback in their approach is that it 
cannot distinguish between different anomalous events 
and worms. In fact, in her public review, Dina Katabi 
from MIT points out the importance of identifying 
whether an abnormal event is caused by a worm, blackout, 
or misconfiguration [11]. 

Several other efforts have been undertaken in [18], 
[19], [20] and [21] of a similar nature. Zhang et al. [20] 
proposes two approaches, signature based and statistics-
based detection. Zhang et al. [21] employs wavelets and 
k-means clustering to build an instance-learning 
framework that identifies anomalies for a given prefix as 
well as across prefixes. Most of these efforts follow the 
same basic steps: first the system is trained using labeled 
training data, and then the system examines test data and 
flags anomalies. Our approach differs in the sense that we 
characterize anomalous events and use models of these 
anomalous events to classify test data. In summary, it is 
important to note that to the best of our knowledge none 
of this prior work has successfully distinguished between 
different worm types. 

Higher order co-occurrence is closely related to our 
HOPA technique. In our previous work in [12], we proved 
mathematically that Latent Semantic Indexing (LSI), a 
well-known approach to information retrieval, implicitly 
depends on higher-order co-occurrences. We also 
demonstrated empirically that higher-order co-occurrences 
play a key role in the effectiveness of systems based on 
LSI. LSI can reveal hidden or latent relationships among 

terms, as terms semantically similar lie closer to each 
other in the LSI vector space. In our prior work in [17] we 
analyzed a machine learning dataset from the UCI 
repository and concluded that the classes of instances in 
labeled training data may be separable using the 
characteristics of higher-order paths. In this preliminary 
work we developed both theoretical and algorithmic 
approaches to enumerating and characterizing higher-
order paths between attribute-value pairs. Based on 
statistical comparisons of distributions of higher-order 
path itemset frequencies, we discovered evidence that 
classes of instances in a labeled dataset containing 
nominal attributes may be separable based on the 
characteristics of higher-order paths. 

One of the challenges facing us in this work is the 
complexity of enumerating the various higher-order paths. 
We used graph representations of the data and graph 
algorithms to enumerate higher-order paths. In this area 
too, fortunately, there has been prior work on which we 
can build. In [13], Uno proposes efficient algorithms for 
enumerating chordless paths and cycles of a given graph 
G = (V, E). Given two vertices, this algorithm takes 
O(|V||E|) time for each path connecting them. Additionally, 
in related work, Uno [14] presents enumerating algorithms 
for perfect, maximum and maximal matchings in a 
bipartite graph Gb = (V1 ∪ V2, E). A matching is a set of 
edges that have no vertices in common between the two 
sets of vertices in Gb. On the other hand, maximum 
matchings are defined as matchings whose cardinalities 
are maximum among all matchings. An algorithm that has 
a time complexity of O(|V1 ∪ V2|) per matching is 
proposed for maximum matchings in bipartite graphs. 

 

3. Approach 
 
We focus on discovering higher-order link patterns in 

BGP traffic based on higher-order associations between 
elements of data termed entities. In this context, entities 
can be aggregate counts of announce or withdraw BGP 
updates, and a higher-order link is represented as a chain 
of co-occurrences of such entities in different snapshots of 
BGP traffic taken over time. As noted we also refer to 
such a link as a higher-order path. Given a supervised 
learning dataset (i.e., labeled training data), we attempt to 
discover patterns in sets of higher-order links that 
distinguish between the classes in the labeled data. As 
such, our approach is a supervised learning technique.  

Our definition of a higher-order path is similar to that 
found in graph theory, which states that given a non-
empty graph G = (V, E) of the form V = {x0, x1, … , xk }, 
E = { x0x1, x1x2, …, xk-1xk } with nodes xi distinct, two 
vertices xi and xk are linked by a path P where the number 
of edges in P is its length [15]. Our definition of a higher-
order path differs from this in a couple of respects. First, 



vertices V = {e0, e1, …, ek} represent entities, and edges E 
= {r0, r1, …, rm} represents records, documents or 
instances. Several edges may exist between given entities. 
Finally and most importantly, in a higher-order path both 
vertices and edges must be distinct. We are interested in 
enumerating all such paths. 

In order to use conventional graph structures and 
algorithms, we divided the above representation into two 
structures. First, we form a co-occurrence graph Gc = (V, 
E) in which the vertices are the entities and there is an 
edge between two entities if they co-occur in one or more 
records. A path (length ≥ 2) extracted from Gc satisfies the 
first requirement of our higher-order path definition since 
the vertices in this path are distinct. The second 
requirement entails that records on a path must be distinct, 
and another data structure that contains lists of records for 
each edge is needed. We term this structure a path group. 

 

 
Figure 2. Extracting/enumerating higher-order paths 

from co-occurrence graph 
 
Using the path group representation, we need to 

identify the system of distinct representatives (SDR) of the 
record sets. Each distinct representative in the path group 
satisfies the second requirement and corresponds to a 
higher order path. In order to enumerate all the distinct 
representatives in a given path group, a bipartite graph Gb 
= (V1 ∪ V2, E) is formed such that V1 is the sets of 
records (S1, S2,…) in a given path group and V2 is the 
records themselves. A maximum matching with 
cardinality |V1| in this bipartite graph yields the SDR for 
the higher order path. This process is summarized in 
figure 2. In figure 2 we can see an example 2nd order path 
group (e1-{1,2}-e2-{1,2,4}-e3) that is extracted from the 
co-occurrence graph Gc. This particular 2nd order path 
group includes two sets of records: S1={1,2} and 
S2={1,2,4}. S1 corresponds to the records in which e1 and 
e2 co-occur, and S2 is the set of records in which e2 and e3 
co-occur. A bipartite graph Gb = (V1 ∪ V2, E) is formed 
where V1 is the two sets of records and V2 is the all 
records in these sets. Enumerating all maximum matchings 
in this graph yields all higher-order paths in the path 
group. The fourth diagram (depicted in figure 2) shows an 
example of the many paths in this path group. In this 
higher-order path, edge labels R1 and R4 are records in S1 

and S2 and the path corresponds to the orange-colored 
maximum matching in the bipartite graph. 

Motivated by the fact that the order of the entities in a 
higher-order path encapsulates information about the 
relations between records/instances as well as for 
performance reasons, we implemented our own method to 
discover frequent itemsets in the higher-order paths. Thus, 
our definition of frequent itemsets is a bit different from 
the standard definition used in association rule mining 
(ARM). Itemsets in our framework are ordered, and thus 
must appear in order in a given supporting path. 
Additionally, the items (entities) in an itemset must be 
adjacent in the higher-order path. During computational 
enumeration of the paths, statistics are gathered. When 
dealing with labeled training data used in supervised 
machine learning, we divide the instances by class and 
then characterize the resulting sets by higher-order itemset 
frequencies. The end result is a distribution of itemset 
frequencies for a given class. Actually we compute two 
distributions. The first is the frequencies of higher-order 
itemsets for particular order paths (e.g., 3-itemsets from 
4th order paths). These frequencies are similar to the 
support metric in Apriori, a well-known ARM algorithm 
[22]. However, instead of counting the number of records 
containing a given k-itemset, we count the number of 
higher order paths containing a given higher-order k-
itemset. The second distribution is the counts of same-
frequency itemsets. Either of these distributions can be 
compared for different classes using simple statistical 
measures such as the t-test. If two distributions are 
statistically significantly different, we conclude that the 
higher-order path patterns (i.e., itemset frequencies) 
separate the classes.  
 

4. Incremental HOPA Algorithm 
 
We developed an incremental HOPA algorithm for use 

in online BGP anomaly detection as well as other similar 
applications. In our algorithm the main data structure is 
the path group, which consists of entities and sets of 
records. There are several path groups formed from the 
dataset. In the incremental algorithm, a sliding window 
moves forward in time and new records are added and old 
records deleted as appropriate. The size of the sliding 
window is a parameter of the algorithm, and in the results 
reported herein we employed windows composed of 120 
instances, with three seconds per instance (i.e., time bin). 
This approach results in changes in some of the path 
groups. Specifically for BGP data, however, we have 
observed that only a small fraction of these path groups 
need to be updated. There are two update operations. First 
we check to see if any new entities are introduced by new 
records from the next window or whether any existing 
entities are no longer referenced after deletion of old 



records from the previous window. If changes occur, we 
need to first update the entity co-occurrence graph Gc and 
then the corresponding bipartite graph Gb of each path 
group impacted by a change. Recall from the Approach in 
section 3 that extracting path groups from Gc is quite fast. 
For deleted records we need only modify path groups 
which include deleted records. Following this the 
maximum matchings in Gb of the path group are re-
enumerated. Once this step is complete, either the itemset 
counts or the counts of same-frequency itemsets can be 
updated and a statistical test performed to ascertain 
significance. The algorithm is given below. 

 
Algorithm 1. (INCREMENTAL HOPA) 

EW: the set of distinct entities in the window 
ED: the set of distinct entities in deleted records 
EA: the set of distinct entities in added records 
RD: deleted records 
RA: added records 
Gb: bipartite graph of a single path group 
Gc: entity co-occurrence graph 
 
For window x 
1. delete records RD from window (x-1) 
2. update EW 
3. if ED-EW≠{} /* some entities are no longer 

referenced after deletion of  RD */  
a. delete path groups which has entities from ED-EW 
b. update Gc by deleting vertices ED-EW 
c. enumerate path groups in Gc 

4. for each path group containing entities from ED 
a. delete nodes RD from Gb 
b. enumerate maximum matchings in Gb 

5. add records RA to window (x-1) 
6. if EA-EW≠{} /*new entities are introduced from RA*/   

a. update Gc by adding vertices EA-EW 
b. enumerate path groups in Gc 
c. for each path group containing entities from EA-EW 

i. form Gb 
ii.  enumerate maximum matchings in Gb 

7. else /* no new entities are introduced from RA */ 
a. for each path group that has entities from EA 

i. add appropriate records to Gb 
ii.  enumerate maximum matchings in Gb 

8. delete n-itemsets supported only by deleted path 
groups 

9. update n-itemset frequencies supported by changed 
path groups 

10. form n-itemsets from new path groups 
 

5. Results 
 
As noted previously, the implementation of our 

algorithm is based on the TMI [16] and thus implemented 

in C++. We performed the experiments to discover the 
higher-order path statistics on the National Center for 
Supercomputing Applications (NCSA) Tungsten 
Supercluster (Xeon Linux) as well as on Windows-based 
PCs in our lab. We performed experiments to discover the 
higher order path statistics in sets of BGP data extracted 
from the RouteViews archive [10]. The anomalous events 
we experimented with were a Slammer worm attack, a 
Witty worm attack and a Blackout (i.e., power failure). On 
January 25, 2003 the Slammer worm infected between 
75,000 and 100,000 computers and caused network 
outages1. The Witty worm infected only about 12,000 
hosts on March 19, 20042. Finally, the 2003 USA east 
coast power blackout occurred on August 14, 2003 [9].  

The data was collected and divided into three-second 
bins. Each bin became a single instance in our training 
data and was labeled with the appropriate event (Slammer, 
Witty or Blackout) or non-event class. We employed the 
first six attributes used in [11] since they are indicators of 
the routing dynamics and were straightforward to extract.  

Empirically we found that 240 instances (i.e., 720 
second windows) are sufficient to characterize a particular 
abnormal event. After applying HOPA on this training set, 
the same-frequency 3-itemset counts from 4th order paths 
is the model learned for each event. Given a sample of 
BGP traffic, the probability associated with the Student’s 
t-test is used to assess whether the sample is statistically 
significantly different from the event models. Table 1 
depicts the result of comparing the event models with one 
another. These t-test results show <5% two-tail 
probability, meaning that with a high degree of confidence 
(greater than 95%) our event models are statistically 
significantly different from one another. We also selected 
non-Slammer, non-Witty and non-Blackout data samples 
and tested them against our event models. These also 
resulted in statistically significant differences. 

 
Real Time Classification of Abnormal Events 

Given our success in developing models of abnormal 
events, our next task was to develop an approach to 
classify events in real time. To do so, as noted we 
developed an incremental algorithm and employed sliding 
windows to allow events to be recognized in real time. 
Specifically, sliding windows samples of 120 instances 
(360 seconds) were extracted every 30 seconds. If a given 
sliding window matched one of our learned models 
(Slammer, Witty, or Blackout), we detected the 
corresponding event. In order to ascertain a match, as with 
the aforementioned model comparisons, we computed the 
two-tail probability using the t-test. This approach 
provides a robust mechanism for detecting anomalous 

                                                 
1 http://www.caida.org/publications/papers/2003/sapphire/ 
2 http://www.caida.org/analysis/security/witty/ 



events because it does not rely on only a single 
comparison, but rather numerous comparisons are made.  

The sliding window samples include instances from 
given event periods starting with the 13th window. By the 
time the 25th window is reached, the sample overlaps the 
first 360 seconds of the given abnormal event model 
completely. This point in time is indicated by a vertical 
dotted line in the figures below. From this point forward, 
the window continues sliding through the given event 
period.  Figures 4, 5 and 6 below depict the change of the 
probability associated with the t-test as the samples slide 
with time. The significance threshold of 5% is indicated 
by the red horizontal line at 0.05 on the y-axis. A 
probability below the red line indicates that the particular 
sliding window is statistically significantly different from 
the given abnormal event model. In this sense, what we 
expect is for the probability to increase from near zero in 
window number one to a value greater than 0.05 as the 
windows slide through time into the event period.  
 
Table 1. Event vs. Event 

comparison 
Event 1 Event 2 t-test 

results 

Slammer Witty 0.00023 
Blackout Witty 0.00016 
Slammer Blackout 0.018  

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

sliding window (Slammer)

P two-tail 
%5 level

 
Figure 3. Probabilities 
associated with t-tests 

from sliding windows of 
Slammer 

 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

sliding window (Witty)

P two-tail 
%5 level

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

sliding window (Blackout)

P two-tail 
%5 level

 
Figure 4. Probabilities associated with t-tests from 
sliding windows of Witty (left) and Blackout (right)  
 
For the Slammer worm and Blackout events, as can be 

seen from figures 3 and 4, the t-test probability starts 
increasing as the sliding window approaches the 25th 
window. When the number of abnormal event instances 
inside the current window exceeds a certain threshold 
(around the 21st – 23rd window), we observe a sharp 
increase in the probability. After the 25th window, the 
probability stays above 5%, revealing that we are in the 
event period and have detected and distinguished both the 
Slammer and Blackout events using their respective event 
models. These results confirm that the HOPA technique is 
able to detect and distinguish these events in 360 seconds 
or less. Results are similar for the Witty worm event in 
figure 4, although the detection takes slightly longer.  

In contrast to existing supervised learning algorithms, 
however, HOPA is not performing single-instance 
prediction. Rather, HOPA classifies a set of instances. 
This approach is an especially good fit for this domain 
since prediction of an abnormal event from a single 
instance is not feasible. By using a window of instances, 
HOPA also exploits additional information from the 
relations/links between entities and instances, thereby 
giving a better characterization of the overall event. 

This approach to event detection and classification can 
be used as part of an online classification and mitigation 
system. Since anomalous BGP events often cause major 
disruptions in the Internet, the ability to detect and 
categorize BGP events is extremely useful. 

 

6. Discussion 
 
The really interesting question here is “Why do 

patterns in higher-order paths correlate with the class?” In 
a sense it hearkens back to our prior work with Latent 
Semantic Indexing (LSI) [12] – in that work, as noted, we 
determined that the ‘Latent’ aspects of term similarity that 
LSI reveals are dependent on the higher-order paths 
between terms. Likewise, in real-world supervised 
machine learning datasets, the goal is to learn the relation 
between the attributes and the class. It is noteworthy that 
attributes are certainly not equally important. In addition, 
neither attributes nor instances are independent of one 
another, given the class. As we found with LSI, it is our 
contention that the ‘latent semantics’, if you will, of 
attribute-attribute relations also depend on the higher-
order paths linking attribute-value pairs. By taking 
attribute-value pairs as our base unit of ‘semantics’ and 
linking them via higher-order co-occurrence relations, we 
reveal these latent semantics, or patterns, that distinguish 
instances of different classes. These results are extremely 
interesting given that we have uncovered evidence of 
separability based on the higher order path patterns alone. 
We consider this achievement significant, and something 
that can be exploited in many different domains with 
different data as long as there is a meaningful context of 
entities that allows us to leverage co-occurrence relations. 

 

7. Conclusions and Future Work 
 
In this work we analyzed higher-order path patterns in 

data generated during interdomain routing. We represent 
the data as a machine learning dataset composed of 
instances that correspond to three second samples of 
Border Gateway Protocol (BGP) traffic. Using these three 
second bins, we successfully modeled anomalous BGP 
events caused by power failures and worm attacks 
including the Slammer worm attack, the Witty worm 
attack and the 2003 USA East Coast blackout. Based on 



these results, in order to build a real time classification 
system, we proposed an incremental algorithm for HOPA. 
To evaluate this approach we employed a sliding window 
that starts in a non-event period and slides through an 
event period. Our results show that the HOPA technique is 
able to detect abnormal events using an incremental 
algorithm. To the best of our knowledge, this is the first 
work to accomplish both the detection and classification 
of these anomalous events with a high degree of 
confidence. Since abnormal BGP events can cause major 
disruptions in Internet, the ability to detect and categorize 
BGP events is extremely useful. 

Our higher-order path analysis technique has 
applications in text mining as well. For instance, by 
considering a document or paragraph as an instance, we 
may determine higher order path characteristics that aid in 
classifying text. We plan to explore this approach further 
since it likely has important applications in security, 
counterterrorism and law enforcement. 
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