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Abstract

Internet routing dynamics have been extensively studied
in the past few years. However, dynamics such as
interdomain Border Gateway Protocol (BGP) behavior
are dtll poorly understood. Anomalous BGP events
including misconfigurations, attacks and large-scale
power failures often affect the global routing
infrastructure. Thus, the ability to detect and categorize
such events is extremely useful. In this article we present
a novel anomaly detection technique for BGP that
distinguishes between different anomalies in BGP traffic.
This technique is termed Higher Order Path Analysis
(HOPA) and focuses on the discovery of patterns in
higher order paths in supervised learning datasets. Our
results demonstrate that not only worm events but also
different types of worms as well as blackout events are
cleanly separable and can be classified in real time based
on our incremental approach. This novel approach to
supervised learning has potential applications in
cybersecurity/forensics and text/data mining in general.

1. Introduction

Border Gateway Protocol (BGP) is the de facto
interdomain routing protocol. BGP is responsilie the
discovery and maintenance of paths between autom®mo
systems (ASes) in the Internet. The Internet is enafl

thousands of ASes, which are loosely defined as a

connected set of IP prefixes under a single adintisn
[18]. BGP provides reachability information to ASssd
distributes external reachability internally withéam AS.

With the exponential growth of ASes, BGP has become

one of the most critical components of the Intésnet
infrastructure. Within the last few years, intermetiting
dynamics have been extensively studied [1], [2], [&].
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the Internet, the ability to detect and categoriz@P
events is extremely useful. Different abnormal BGP
events can have different effects on the performafitche
Internet and may warrant different corrective awsioFor
example, some worm events may cause a surge in BGP
traffic on the control plane but may not cause gezble
degradation in the packet delivery performance loa t
Internet’s data plane [23]. Different worm quaraati
mechanisms may be needed for different attack types

In this article we propose a novel data mining
approach termed Higher Order Path Analysis (HORA) t
focuses on distinguishing different anomalous event
BGP traffic. To our knowledge this is the first buwork
to successfully distinguish between Slammer, Wy
Blackout events. Our work with the Witty worm is
especially notable because the Witty worm evenepos
challenges to detection algorithms and has not been
widely studied. Although in this work our main facis
interdomain routing, our supervised HOPA learning
algorithm is not limited to this application, butther can
be applied in other learning domains as well. HOPA
discovers higher-order link patterns in data based
relationships between entities. In this contextigher-
order link can be represented as a chain of coroences
of entities in different records as seen in figlire

Figure 1. Higher-order path as a chain of co-
occurrences

We also refer to such a link as a higher-order .path
Given a supervised learning dataset (i.e., lab&rkading
data), HOPA discovers patterns in sets of highdeor
links that distinguish between the classes in thé.d

However, interdomain routing dynamics such as BGP (Note that in this paper records correspond to vemet

activities are still poorly understood. Abnormal BG
events including misconfigurations [5], attacks, [&hd
large-scale power failures [7] often affect globaliting
infrastructure. For example, in January 2003, thenger
worm caused a surge of BGP updates [8]. In Augd8B2
the East Coast electricity blackout affected 31&tworks

usually referred to as instances in machine legriaind
our use of entities corresponds to attribute-valaies. We
use these pairs of terms interchangeably.) Ourtseate
based on statistical BGP data extracted from the
RouteViews archive [10]. Our target is to chardazteand
distinguish different anomalous BGP events sucivas

and many BGP routers were shut down [9]. Since attacks (e.g., Slammer, Witty) and power failursig

anomalous BGP events often cause major disruptions

our HOPA learning algorithm. In this paper we also



present and report results for an incremental HOPAterms, as terms semantically similar lie closeretxzh
algorithm for online (real time) detection and other inthe LSI vector space. In our prior worii] we
characterization of different abnormal BGP evehite analyzed a machine learning dataset from the UCI
tested our algorithm on BGP data from the Slamnwnw  repository and concluded that the classes of ins&im
attack, the Witty worm attack and the 2003 EastsCoa labeled training data may be separable using the
Blackout event. characteristics of higher-order paths. In this ipriglary
The rest of the article is organized as follows: in work we developed both theoretical and algorithmic

Section 2 we briefly review related work. In Senti®, we approaches to enumerating and characterizing higher
present our approach followed by results in Secfi@nd order paths between attribute-value pairs. Based on
discussion in Section 5. Section 6 outlines some statistical comparisons of distributions of higloeder
interesting research issues that we wish to expiore path itemset frequencies, we discovered evidene¢ th

future work, and our conclusions are drawn in ®ecT. classes of instances in a labeled dataset congainin
nominal attributes may be separable based on the
2. Related Work characteristics of higher-order paths.
One of the challenges facing us in this work is the
In [11] Li et al. use attributes derived from BGHffic complexity of enumerating the various higher-orpaths.

to detect internet routing anomalies. They emplayad We used graph representations of the data and graph
mining techniques, in particular a decision treechige ~ a@lgorithms to enumerate higher-order paths. In &nesa
learning algorithm, to train a model using labettmta. 100, fortunately, there has been prior work on \Whize
The authors use the counts of different types ofPBG ¢an build. In [13], Uno proposes efficient algonith for
messages divided into one minute bins. Their model€numerating chordless paths and cycles of a givaphg
consists of the rules learned, and is used to tletecG = (V, E). Given two vertices, this algorithm take
occurrences of abnormal events. Basically theitesys  O(IV|E) time for each path connecting them. Additionally
can distinguish between two classes — event anmialer ~ In related work, Uno [14] presents enumerating ialyms
but cannot differentiate between different typeewénts. ~ for perfect, maximum and maximal matchings in a
Thus one important drawback in their approach & th ~ Dipartite graph 6= (V1L V,, E). A matching is a set of
cannot distinguish between different anomalous &ven €dges that have no vertices in common betweenvibe t
and worms. In fact, in her public review, Dina Kata Sets of vertices in £ On the other hand, maximum
from MIT points out the importance of identifying matchings are defined as matchings whose cardesalit
whether an abnormal event is caused by a wormkblae ~ @re maximum among all matchings. An algorithm ties
or misconfiguration [11]. a time complexity of OV, V,|) per matching is
Several other efforts have been undertaken in [18],Proposed for maximum matchings in bipartite graphs.
[19], [20] and [21] of a similar nature. Zhang ét [20]
proposes two approaches, signature based andistatis 3. Approach
based detection. Zhang et al. [21] employs wavelats
k-means clustering to build an instance-learning We focus on discovering higher-order link patteims
framework that identifies anomalies for a givenfipras BGP traffic based on higher-order associations éetw
well as across prefixes. Most of these effortsofellthe elements of data termed entities. In this contentijties
same basic steps: first the system is trained Uaingjed can be aggregate counts of announce or withdraw BGP
training data, and then the system examines teatatal updates, and a higher-order link is representeal esain
flags anomalies. Our approach differs in the sénaewe of co-occurrences of such entities in differentpsiets of
characterize anomalous events and use models sé the BGP traffic taken over time. As noted we also rdfer
anomalous events to classify test data. In sumnigiry, such a link as a higher-order path. Given a supedvi

important to note that to the best of our knowledgee learning dataset (i.e., labeled training data) attempt to

of this prior work has successfully distinguishetviieen discover patterns in sets of higher-order linkst tha

different worm types. distinguish between the classes in the labeled. dsga
Higher order co-occurrence is closely related to ou such, our approach is a supervised learning teakniq

HOPA technique. In our previous work in [12], weped Our definition of a higher-order path is similar tteat

mathematically that Latent Semantic Indexing (LSl), found in graph theory, which states that given a-no
well-known approach to information retrieval, ingitly empty graph G = (V, E) of the form V ={xx;, ... , % },
depends on higher-order co-occurrences. We alsoE = { XgX1, XiXo, ..., %.1Xx } With nodes x distinct, two
demonstrated empirically that higher-order co-ommees vertices xand x are linked by a path P where the number
play a key role in the effectiveness of systemstam of edges in P is its length [15]. Our definitionaohigher-
LSI. LSI can reveal hidden or latent relationshgmsong order path differs from this in a couple of respeétirst,



vertices V = {g, &, ..., &} represent entities, and edges E and $ and the path corresponds to the orange-colored
= {ro, 1, ..., I} represents records, documents or maximum matching in the bipartite graph.
instances. Several edges may exist between givé@resn Motivated by the fact that the order of the ertitie a
Finally and most importantly, in a higher-ordertpabth higher-order path encapsulates information abowt th
vertices and edges must be distinct. We are intstan relations between records/instances as well as for
enumerating all such paths. performance reasons, we implemented our own method
In order to use conventional graph structures anddiscover frequent itemsets in the higher-order gatihus,
algorithms, we divided the above representatioa tato our definition of frequent itemsets is a bit diffat from
structures. First, we form a co-occurrence graph @V, the standard definition used in association rul@imgi
E) in which the vertices are the entities and thieran  (ARM). Itemsets in our framework are ordered, amast
edge between two entities if they co-occur in onenore ~ Must appear in order in a given supporting path.
records. A path (length 2) extracted from Gsatisfies the ~ Additionally, the items (entities) in an itemset shibe
first requirement of our higher-order path defmitisince ~ adiacent in the higher-order path. During compatei
the vertices in this path are distinct. The second €numeration of the paths, statistics are gathevéen
requirement entails that records on a path muslidiect, dealm_g with IabEIed ”"?"T"“g dat_a used in supedis
and another data structure that contains listeadnds for tnr:achlr;]e Iee:rn_mg,thwe d|V||?e thet ml;star?cre]s b}’t dchmi;
each edge is needed. We term this structypagragroup. en characterize the resulling sets by igherratemse

frequencies. The end result is a distribution eimiset
' ] ‘Anexamplez order path group e

frequencies for a given class. Actually we compute

distributions. The first is the frequencies of heglorder
e

itemsets for particular order paths (e.g., 3-itamdem
4™ order paths). These frequencies are similar to the
Figure 2. Extracting/enumerating higher-order paths
from co-occurrence graph

support metric in Apriori, a well-known ARM algdniin
[22]. However, instead of counting the number aforels
containing a given k-itemset, we count the numbgkr o
higher order paths containing a given higher-orler
itemset. The second distribution is the counts arhes
frequency itemsets. Either of these distributioas be
compared for different classes using simple stedilt

Using the path group representation, we need tomeaSUreS such as the t-test. If two distributions a
identify the system of distinct representatives R3Df the statistically significantly different, we concludbat the
record sets. Each distinct representative in thie geoup ~ higher-order path patterns (i.e., itemset frequesjci
satisfies the second requirement and corresponds to Separate the classes.
higher order path. In order to enumerate all tretirttit
representatives in a given path group, a bipagtiggh G
= (V.U V, E) is formed such that \Vis the sets of
records (§ S,...) in a given path group and,\is the We developed an incremental HOPA algorithm for use
records themselves. A maximum matching with in online BGP anomaly detection as well as othenilar
cardinality |\{| in this bipartite graph yields the SDR for applications. In our algorithm the main data suetis
the higher order path. This process is summarized i the path group, which consists of entities and @déts

4. Incremental HOPA Algorithm

figure 2. In figure 2 we can see an exampfeazder path

group (e-{1,2}-e,-{1,2,4}-e5) that is extracted from the

co-occurrence graph (GThis particular ? order path
group includes two sets of records;=8,2} and
S,={1,2,4}. S, corresponds to the records in whighaed
e, co-occur, and Sis the set of records in which &nd g
co-occur. A bipartite graph & (V. V,, E) is formed
where V is the two sets of records and, 6 the all
records in these sets. Enumerating all maximum made
in this graph vyields all higher-order paths in tphath
group. The fourth diagram (depicted in figure 2)wh an

records. There are several path groups formed them

dataset. In the incremental algorithm, a slidingndeiw

moves forward in time and new records are addecdb&ihd
records deleted as appropriate. The size of thdingli

window is a parameter of the algorithm, and inrémults

reported herein we employed windows composed of 120
instances, with three seconds per instance (jinge, bin).

This approach results in changes in some of thé pat
groups. Specifically for BGP data, however, we have
observed that only a small fraction of these pattugs

need to be updated. There are two update operatans

example of the many paths in this path group. s th we check to see if any new entities are introdunedew

higher-order path, edge labels &d R are records in S

records from the next window or whether any exgstin

entities are no longer referenced after deletionolof



records from the previous window. If changes oceue,
need to first update the entity co-occurrence gi@pand

then the corresponding bipartite graph @& each path
group impacted by a change. Recall from the Apgroac
section 3 that extracting path groups frogigsquite fast.

in C++. We performed the experiments to discover th
higher-order path statistics on the National Cerfter
Supercomputing  Applications  (NCSA)  Tungsten
Supercluster (Xeon Linux) as well as on Windowselias
PCs in our lab. We performed experiments to discthe

For deleted records we need only modify path groupshigher order path statistics in sets of BGP dataaeted

which include deleted records. Following this the
maximum matchings in (of the path group are re-
enumerated. Once this step is complete, eitheiteheset
counts or the counts of same-frequency itemsetsbean
updated and a statistical test performed to asnerta
significance. The algorithm is given below.

Algorithm 1. (INCREMENTAL HOPA)
Ew: the set of distinct entities in the window
Ep: the set of distinct entities in deleted records
Ea: the set of distinct entities in added records
Rp: deleted records
Ra: added records
Gp: bipartite graph of a single path group
G¢: entity co-occurrence graph

For window x
1. delete records fRfrom window (x-1)
2. update
3.if Ep-EwA} [/* some entities are no longer
referenced after deletion of Rp*/
a.delete path groups which has entities froprHg
b.update Gby deleting vertices g&=Ey
c.enumerate path groups in G
4. for each path group containing entities from E
a.delete nodes §from G,
b.enumerate maximum matchings ig G
5. add records Rto window (x-1)
6. if EA-EwA{} /* new entities are introduced from Ry*/
a.update Gby adding vertices E£Ey
b.enumerate path groups in G
c.for each path group containing entities from-Eyy
i. form G,
ii. enumerate maximum matchings ig G
7. else /* no new entities are introduced from R, */
a.for each path group that has entities from E
i. add appropriate records tq G
ii. enumerate maximum matchings ig G

from the RouteViews archive [10]. The anomalousnéve
we experimented with were a Slammer worm attack, a
Witty worm attack and a Blackout (i.e., power fady On
January 25, 2003 the Slammer worm infected between
75,000 and 100,000 computers and caused network
outages The Witty worm infected only about 12,000
hosts on March 19, 2084Finally, the 2003 USA east
coast power blackout occurred on August 14, 2003 [9
The data was collected and divided into three-sg&:con
bins. Each bin became a single instance in ounib@gi
data and was labeled with the appropriate eveati{®ler,
Witty or Blackout) or non-event class. We employbd
first six attributes used in [11] since they ardidgators of
the routing dynamics and were straightforward timaet.
Empirically we found that 240 instances (i.e., 720
second windows) are sufficient to characterizeréiqudar
abnormal event. After applying HOPA on this tragset,
the same-frequency 3-itemset counts frdfnodder paths
is the model learned for each event. Given a sample of
BGP traffic, the probability associated with thei®nt's
t-test is used to assess whether the sampdtistically
significantly different from the event models. Tabl
depicts the result of comparing the event modelk ome
another. These t-test results show <5% two-tall
probability, meaning that with a high degree off@ence
(greater than 95%) our event models are statiftical
significantly different from one another. We alsdested
non-Slammer, non-Witty and non-Blackout data sample
and tested them against our event models. Thege als
resulted in statistically significant differences.

Real Time Classification of Abnormal Events

Given our success in developing models of abnormal
events, our next task was to develop an approach to
classify events in real time. To do so, as noted we
developed an incremental algorithm and employetingi
windows to allow events to be recognized in realeti
Specifically, sliding windows samples of 120 instes

8. delete n-itemsets supported only by deleted path(360 seconds) were extracted every 30 secondsgilfea

groups

9. update n-itemset frequencies supported by changedSlammer,

path groups
10.form n-itemsets from new path groups

5. Results

As noted previously, the implementation of our
algorithm is based on the TMI [16] and thus impleted

sliding window matched one of our learned models
Witty, or Blackout), we detected the
corresponding event. In order to ascertain a matshyith

the aforementioned model comparisons, we compined t
two-tail probability using the t-test. This apprbac
provides a robust mechanism for detecting anomalous

! http://mww.caida.org/publications/papers/2003/samgsh
2 http://mww.caida.org/analysis/security/witty/



events because it does not rely on only a single In contrast to existing supervised learning aldponi,
comparison, but rather numerous comparisons aremad however, HOPA is not performing single-instance
The sliding window samples include instances from prediction. Rather, HOPA classifies a set of instmn
given event periods starting with the™&indow. By the This approach is an especially good fit for thigndn
time the 28 window is reached, the sample overlaps the since prediction of an abnormal event from a single
first 360 seconds of the given abnormal event modelinstance is not feasible. By using a window of anses,

completely. This point in time is indicated by artical HOPA also exploits additional information from the
dotted line in the figures below. From this poiatvward, relations/links between entities and instancesrethe
the window continues sliding through the given éven giving a better characterization of the overallrgve
period. Figures 4, 5 and 6 below depict the charigbe This approach to event detection and classificatam

probability associated with the t-test as the samglide be used as part of an online classification andgatibn

with time. The significance threshold of 5% is irated system. Since anomalous BGP events often causer majo
by the red horizontal line at 0.05 on the y-axis. A disruptions in the Internet, the ability to deteamhd
probability below the red line indicates that tretigular categorize BGP events is extremely useful.

sliding window is statistically significantly diffent from

the given abnormal event model. In this sense, wieat 6, Discussion

expect is for the probability to increase from nearo in

window number one to a value greater than 0.05has t The really interesting question here is “Why do
windows slide through time into the event period. patterns in higher-order paths correlate with thgs?” In

a sense it hearkens back to our prior work withehat

Table iaive;tisvsﬁ Event e Semantic Indexing (LSI) [12] — in that work, as et we
Event 1 E\F/)ent > | ttest determined that the ‘Latent’ aspects of te_rm sintifehat
results LSI reveals are dependent on the higher-order paths

Sammer | Witty 0.00023 between terms. Likewise, in real-world supervised
Blackout | Witty 0.00016 A B ALV machine learning datasets, the goal is to learmelagion
Slammer | Blackout | 0.018 T T T a e es  between the attributes and the class. It is notéawydhat
Figure 3. Probabilities attributes are certainly not equally importantabidition,
associated with t-tests neither attributes nor instances are independendnef
from sliding windows of another, given the class. As we found with LSlsibur
Slammer contention that the ‘latent semantics’, if you withf

attribute-attribute relations also depend on thghdi-
order paths linking attribute-value pairs. By takin
attribute-value pairs as our base unit of ‘semahtmnd
linking them via higher-order co-occurrence relasiowe
reveal these latent semantics, or patterns, tistinduish

sliding window (Witty) sliding window (Blackout)

P two-tail

sievel wsleve M instances of different classes. These results xrermely

S Ty i as w1 s o o g5 2 2 o1 Sy 3 5 75 w13 95 1 % ol 2 35 21 20 m @ B interesting given that we have uncovered evidente o
Figure 4. Probabilities associated with t-tests from separability based on the higher order path pattaione.
sliding windows of Witty (left) and Blackout (right) We consider this achievement significant, and shingt

that can be exploited in many different domainshwit
For the Slammer worm and Blackout events, as can bejifferent data as long as there is a meaningfutecdrof

seen from figures 3 and 4, the t-test probabiltgrts entities that allows us to leverage co-occurreetaions.
increasing as the sliding window approaches th& 25

window. When the number of abnormal event instances
inside the current window exceeds a certain thiesho
(around the 21 — 23 window), we observe a sharp
increase in the probability. After the 25vindow, the
probability stays above 5%, revealing that we arehie
event period and have detected and distinguish#édthe
Slammer and Blackout events using their respeeient
models. These results confirm that the HOPA tealmig
able to detect and distinguish these events insg80nds
or less. Results are similar for the Witty worm mtvan
figure 4, although the detection takes slightlygen

7. Conclusions and Future Work

In this work we analyzed higher-order path pattéms
data generated during interdomain routing. We 1sgre
the data as a machine learning dataset composed of
instances that correspond to three second samgles o
Border Gateway Protocol (BGP) traffic. Using thédsee
second bins, we successfully modeled anomalous BGP
events caused by power failures and worm attacks
including the Slammer worm attack, the Witty worm
attack and the 2003 USA East Coast blackout. Based



these results, in order to build a real time cfasgion

system, we proposed an incremental algorithm foPHO
To evaluate this approach we employed a slidinglaiwn
that starts in a non-event period and slides throag
event period. Our results show that the HOPA teplmis

able to detect abnormal events using an incremental

algorithm. To the best of our knowledge, this is fhst
work to accomplish both the detection and classiion

of these anomalous events with a high degree of
confidence. Since abnormal BGP events can causer maj

disruptions in Internet, the ability to detect aradlegorize
BGP events is extremely useful.

Our higher-order path analysis technique
applications in text mining as well. For instands
considering a document or paragraph as an instavee,
may determine higher order path characteristicisatahin
classifying text. We plan to explore this appro&atther
since it likely has important applications in setyr
counterterrorism and law enforcement.
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