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Abstract 
 
 Few tools exist that address the challenges facing 
researchers in the Textual Data Mining (TDM) field.  
Some are too specific to their application, or are 
prototypes not suitable for general use.  More general 
tools often are not capable of processing large volumes 
of data. 
 We have created a Textual Data Mining 
Infrastructure (TMI) that incorporates both existing 
and new capabilities in a reusable framework 
conductive to developing new tools and components.  
TMI adheres to strict guidelines that allow it to run in 
a wide range of processing environments – as a result, 
it accommodates the volume of computing and 
diversity of research occurring in TDM. A unique 
capability of TMI is support for optimization. This 
facilitates text mining research by automating the 
search for optimal parameters in text mining 
algorithms. 
 In this article we describe a number of applications 
that use the TMI.  We present several novel results 
that have not been published elsewhere. We also 
discuss how the TMI utilizes existing machine-learning 
libraries, thereby enabling researchers to continue 
and extend their endeavors with minimal effort. 
Towards that end, TMI is available on the web at 
hddi.cse.lehigh.edu. 

 

1. Introduction 
 

The Textual Data Mining (TDM) field was born in 
part from the necessity to mine large amounts of text 
automatically. The field involves both supervised and 
unsupervised approaches to learning that are employed 
in applications such as the automatic detection of 
trends in textual data [12]. Such learning tasks are 
costly both in terms of implementation and 
computation due to a number of factors, including the 
sparse nature of some textual data representations. 

As a result, researchers often spend substantial time 
creating tools necessary to access, clean and model 

textual data.  Many tools exist but are often specific to 
the application for which they were designed or are not 
publicly available.  In response we have designed and 
implemented a Text Mining Infrastructure (TMI), 
which we have placed in the public domain.  Our TMI 
supports familiar tools and extends their capabilities. 

In section 2 we discuss our framework for Textual 
Data Mining using a simplified example.  Use of TMI 
is outlined in section 3.  In section 4 we show the 
practical advantages  of the TMI in a discussion of 
several novel TDM applications that are built upon the 
TMI framework.  TMI can be used for traditional 
textual processing applications, such as search and 
retrieval, as well for applications that merge text 
processing and machine learning, such as Emerging 
Trend Detection.  Section 5 discusses the advantages of 
TMI in comparison to other TDM systems.  We offer 
conclusions and outline future work in sections 6 and 
7. 

2. Background and Example Application 
 

The TMI extends and enhances the Hierarchical 
Distributed Dynamic Indexing [9] system developed 
under the direction of William M. Pottenger, Ph.D. In 
order to facilitate our research in TDM, we first 
undertook a study of several text mining applications. 
Based on this study, we identified three basic 
components that appear regularly in TDM applications: 
a repository of unprocessed text data (also known as a 
corpus), a relational mapping between documents and 
their features, and one or more machine-learning 
methods. 

Figure 1 depicts these three components for the TMI 
implementation of a research system for the detection 
of emerging trends in textual data. The figure outlines 
the emerging trend detection process and demonstrates 
how the various TMI components interact. 

In the first step shown in Figure 1, items (e.g., 
documents) in repositories are parsed and words are 
tagged with their part of speech prior to the extraction 
of significant features.  In this application, clusters of 
textual features are identified using an unsupervised 



learning technique that results in the generation of a 
Semantic Model [2]. Statistical attributes from the 
Semantic Model, along with a truth set composed of 
both emerging and non-emerging trends, are used to 
produce a training set for a machine-learning 
algorithm. 

In the example depicted in Figure 1, the machine 
learning algorithms in the WEKA [20] library are used 
to identify emerging trends. The system also provides 
interfaces to MLC++ [15] and other libraries. A 
researcher can easily design and integrate algorithms 
into TMI. The performance of a given application is 

evaluated using standard metrics such as precision and 
recall. 

The entire process depicted in Figure 1 is fully 
automated in TMI and is described in more detail in 
Section 4.1. A unique capability of TMI not shown in 
Figure 1 is support for optimization. Applications 
implemented using TMI can be automatically 
optimized across a variety of parameters and 
optimization targets. Support for optimization 
facilitates text mining research by automating the 
search for optimal parameters in, for example, machine 
learning algorithms. 

Figure 1. The emerging trend detection driver using TMI 

 

3.  An Overview of TMI 
 
 In this section we give an overview of key aspects 
of TMI.  We focus on the concepts that are most 
relevant to users of the system. A more detailed tutorial 
for the use of TMI is available on the web at 
hddi.cse.lehigh.edu. 
 
3.1.  Support for multiple platforms  
 
 TMI supports many variants of the Unix operating 
system as well as Windows 98, NT, 2000 and XP. The 

GCC 3.2 and Visual Studio .Net 2003 C++ compilers 
are supported in these environments, respectively. 
Through the JNI, TMI also supports Java SDK 1.3 and 
1.4.  Many of these capabilities are employed in the 
example application discussed in Section 4.1 on 
emerging trend detection. 
 
3.2. Use of a common object interface 
 
 A set of abstract interfaces was created to represent 
the framework for TDM described above. These 
interfaces include representations for Repositories, 



Items, Features, and the other concepts that will be 
discussed in the applications presented in section 4.  
 
3.3. Use of a component framework 
 

TMI uses a component framework to allow rapid 
and intuitive design of experiments. Components form 
the building blocks for the experiments, with each 
component representing some processing operation. 
Thus, each component is responsible for either 
producing an object or producing a scalar output. To 
perform its operation a component may use any 
number of other objects or scalar inputs.  The user can 
dynamically query a component for information about 
its inputs and outputs. 
 
3.4. Evaluation 
 

TMI implements interfaces in support of a variety of 
evaluation methodologies and metrics. For example, 
TMI supports the evaluation of search and retrieval 
applications using gold standard collections. Such gold 
standard collections can be employed to automatically 
assess performance of an information retrieval 
algorithm based on the metrics of precision and recall.  
TMI also supports the widely used method of n-fold 
cross-validation for evaluation. 
 
3.5. Use of component paths  
 

To further ease experiment design TMI introduces 
the concept of a component path. A component path 
describes the serial execution of a set of components.  
A component path is itself a component, and this is 
useful because it allows more complex driver design 
through abstraction. For example, a component path 
may be designed for ten-fold cross-validation and then 
reused in other component paths. 

It is possible to loop over a particular component in 
the execution path. This allows a researcher to 
automatically iterate over a set of values for a 
parameter. The ability to loop over a set of object 
dependencies is also provided.  We have found it 
useful to loop over a number of different feature 
generators, for instance, to perform the same 
experiment on words, noun phrases, and collocations.  

The component path also provides an optimization 
framework. In this framework the researcher chooses a 
set of parameters and an evaluation metric for a 
particular component. An optimization method is then 
selected and used to identify the values of the provided 
parameters that maximize (or minimize) the given 
metric.  

 

4.  Applications  
 

The development of TMI was guided by several 
applications in different domains of TDM. In this 
section we review several of these applications. We 
describe the emerging trend detection system in depth 
and briefly discuss the others. These applications have 
been implemented using TMI and we hope by 
presenting them to shed light on the utility of the TMI 
system. 

We begin with some notation:  A  driver is a 
component that assembles and coordinates other 
components of TMI in a specific task.  A driver 
instantiates the components in a particular experiment, 
describes their dependencies, places them in a 
component path, and then executes the comp onent 
path. 

Repositories are divided into items.  An item is a 
textual object such as a document.  Each item is 
composed of features. For example, a noun phrase 
(feature) may occur in a single article (item), in a 
collection of documents (repository). 

Many applications require a relational 
representation of the textual data.  We term one form 
of this mapping an Item Feature Set (IFS). The IFS 
maintains the relationship between items and features 
(such as which features occur in which items). This 
data structure serves as an interface from the repository 
to one or more machine-learning methods.   

4.1. Emerging Trend Detection 
 

A trend can be classified as emerging if it is 
growing in interest and utility over time.  XML is an 
example of such a trend that emerged in the mid-90s. 
Emerging Trend Detection (ETD) in TDM is an active 
research area, and to the best of our knowledge our 
efforts represent the only attempts to fully automate the 
process of trend detection.  To this end we have 
developed a new approach for ETD using the TMI. The 
methods developed are extensions of those reported in 
[19]. An overview of previous research and 
commercial systems that can be used to track trends 
can be found in [12].  

At a high level, the operation of the TMI ETD 
driver is depicted in Figure 1. Its purpose is to apply 
both unsupervised and supervised learning techniques 
in the construction of a model capable of predicting the 
emergence of trends. The goal is to employ the model 
in a classification task such as technology forecasting. 

The data for the experiments reported in this article 
was a selection of INSPEC® [10] abstracts drawn from 
the fields of Data Mining and Object Oriented 
Programming. The data was represented in an XML 



format. An XML Repository Builder component was 
used to create repositories from the INSPEC® source. 
This supported selection of relevant years. We used the 
Abstract field as our item text. 

 
4.1.1. Feature Generation. Maximal noun-phrases 
were used for features in these experiments.  TMI was 
used to parse and tag the text in the XML repositories 
with part-of-speech markups per [3].  The feature 
extractor was based on a lexical analyzer created with 
GNU’s Flex [6]1.    
 
4.1.2. Construction of Item Feature Sets. Four item 
feature sets (IFSs) were built: one for the target year 
(e.g., 2003), one for the year prior to the target year, 
one for the year two years prior to the target year, and 
one for remaining prior years.  Three tables were 
created in each IFS to efficiently store occurrence 
statistics.  The first contained all the items in the 
repository and the second contained all the features in 
those items.  The third contained a set of item-feature 
relations between the first two tables. Item-feature 
relations record item-feature-specific information such 
as the occurrence of a specific feature in a specific 
item.  Unique IDs were also assigned to items and 
features so they could be represented uniformly 
throughout the system and located efficiently. 
 
4.1.3. Unsupervised Model Construction. The first 
machine-learning process performed unsupervised 
clustering of features in two stages: semantic network 
generation and semantic network partitioning 
(clustering).   

Semantic Network Generation 
A semantic network is a graph of nodes connected 

by weighted arcs.  In this case, each node represented 
an extracted feature and arc weights between nodes 
were computed using an asymmetric similarity 
measure [18].  Since each IFS essentially consisted of 
an inverse item index, similarity measures based on co-
occurrence frequencies were straightforward to 
calculate.   

Semantic Network Partitioning 
One approach to network partitioning involved an 

unsupervised learning process that discovered 
significant regions of semantic locality (sLoc) within 
each of the semantic networks [2].  

A second attempt employed results from [13] in 
which a new framework for understanding Latent 

                                                 
1 An early prototype of the feature generator was presented in 
Bader et al.  [1]. 

Semantic Index (LSI, [5]) was established. This 
framework is based upon the concept of term co-
occurrences and, using this framework, an alternate 
term clustering approach was applied.  

Classes were derived from two TMI interfaces to 
accomplish this: Semantic Model, which represented 
the partitioning process, and Cluster, which 
represented the regions of semantic locality.   

 
4.1.4. Supervised Model Construction. The second 
machine-learning process performed was supervised – 
in this case, decision tree induction.  

Attribute Interface 
The TMI Attribute interface supports attributes in 

one of four forms: nominal, Boolean, integer, or real.  
An example attribute in this application is the 
occurrence frequency of a feature (e.g., “XML”) two 
years prior to the target year. As noted in section 4.1.2, 
this frequency information is computed during 
formation of item feature sets. Attribution occurs in 
this case by passing the IFS to an attribute object.  An 
attribute must be implemented such that a check is 
performed that ensures that the type and range of the 
value is valid. 

Truth Set Interface 
Truth Set is an interface that supports input of 

labeled data. For example, in this application the truth 
set consisted of feature/classification pairs.  Features 
(e.g., noun phrases) were classified as emerging or 
non-emerging by a domain expert. 

TMI incorporates a standard for truth sets.  Each set 
consists of triples comprised of a textual representation 
of the object being classified, a classification for the 
object, and a relevance measure. 

It will be helpful at this point to clarify the 
difference between a truth set triple and an instance. 
Traditionally an instance (or exemplar) is a single 
example of the concept to be learned in a machine-
learning application.  A triple in a truth set is related to, 
but not the same, as an instance.  In this application, a 
single triple was a feature/classification pair such as 
{“XML”, emerging, 1.0}.  Each triple was used to 
generate actual instances comprised of time -sensitive 
statistical attribute values associated with the feature.   

The TMI provides a parser that generates a truth set 
object from an input file created by a domain expert. 
This input file format (TFF) and the concept of a truth 
set are specific to the TMI. 

Training Set Interface 

A training set is represented in the TMI as a set of 
instances, where instances consist of a set of attributes 



with an optional class. Any attribute can be 
nondestructively ignored or activated at the training set 
level to support attribute subset selection.  An attribute 
subset selection interface exists, but was not used in 
this driver.  The training set interface allows access to a 
training set in one of three ways: through a WEKA or 
MLC++ file format, or directly by iterating through the 
instances in me mory.  Each instance in the training set 
in this application consisted of seven attributes: 

 
• the occurrence of the feature in the target year 
• the occurrence of the feature in the year preceding 

the target year 
• the occurrence of the feature two years before the 

target year 
• the occurrence of the feature in all years before the 

target year 
• the number of features in the cluster containing the 

feature in the target year 
• the number of features in the cluster containing the 

feature in the year preceding the target year 
• the number of words in the feature longer than 

length four  
 

The first four attributes were computed from the 
item feature sets discussed in section 4.1.2, the second 
two from the models discussed in section 4.1.3, and the 
last one from the feature itself as an estimate of the 
degree of semantics it bears. 

Training Set Generation Interface 

To ease the use of the various machine-learning 
methods available in TMI, a training set generator 
abstract class was designed to support creation of a 
training set from a truth set.  As noted, in this 
application, the truth set contained features and their 
domain expert classifications (emerging or non-
emerging). The generator first employed the parser to 
read in the domain expert truth triples from a file.  
Given the item feature sets and the models discussed 
previously, the generator then created a training set 
consisting of the seven attributes listed above, along 
with a nominal value for the classification. 

Machine-Learning Algorithm Interface 
Since drivers may use multiple machine-learning 

algorithms within the same framework, a separate 
machine-learning algorithm abstract class was 
designed in TMI.  This interface supports access to 
both predefined and programmer implemented training 
and classification methods, whether supervised or 
unsupervised in nature. 

In this application an instantiation of a machine-
learning algorithm class used JNI to launch the JVM 

and load a training set using WEKA utilities. The 
driver then called the J48 decision tree classifier in the 
WEKA library to perform training and testing using the 
training set [20]. 
 
4.1.5. Evaluation in ETD. An Evaluator interface was 
designed in TMI to handle the many forms of 
evaluation required for validation of various techniques 
and algorithms in TDM. A machine-learning driver, for 
example, can employ evaluators to test a model that 
results from training. 

In this application, precision, recall and Fβ were 
employed using true and false positives (TP and FP) 
and false negatives (FN) where precision = 
TP/(TP+FP)  and recall = TP/(TP+FN), and Fβ 
averages precision and recall when β=1. The machine-
learning driver evaluated the decision tree using ten-
fold cross validation implemented in TMI. 
 
4.1.6. Experiments in ETD.  The TMI driver for ETD 
was compiled and executed using Visual Studio .Net 
2003 in a Windows XP environment on a 2.0 GHz 
Pentium 4 with 512 MB of main memory.  Five 
repositories were used for experimentation. The first 
four repositories were formed from the INSPEC® 
database using the search term “data mining”.  The 
repositories were formed by varying the current year 
for the experiments between 1996, 1997, 1998, and 
1999 (referred to as INSPEC® 96, 97, 98, and 99 
respectively). All years after the target year were 
discarded. The fifth repository was generated from 
INSPEC® using the search term “object oriented 
software engineering” (OOSE repository).  

An example decision tree is presented in Figure 2. 
This decision tree was generated using the LSI 
clustering method and the INSPEC® 98 repository. 
Note that the time sensitive Concepts_in_Cluster 
(number of features in the cluster of a feature in the 
target year) is used in this decision tree. 

 
  Occurrences_in_All_Noncurrent_Years <= 2 
  |   Long_Words_In_Feature <= 1 
  |   |   Concepts_in_Cluster <= 14: notrend  
  |   |   Concepts_in_Cluster > 14: trend  
  |   Long_Words_In_Feature > 1: trend       
  Occurrences_in_All_Noncurrent_Years > 2 
  |   Occurrences_in_Current_Year <= 21 
  |   |   Occurrences_in_All_Noncurrent_Years <= 3 
  |   |   |   Occurrences_in_Year_Before_Previous_Year <= 1: notrend  
  |   |   |   Occurrences_in_Year_Before_Previous_Year > 1: trend  
  |   |   Occurrences_in_All_Noncurrent_Years > 3: notrend  
  |   Occurrences_in_Current_Year > 21 
  |   |   Long_Words_In_Feature <= 2: trend  
  |   |   Long_Words_In_Feature > 2: notrend  

 

Figure 2. Decision tree for the detection of 
emerging trends 



Both clustering methods were successful in 
automatically detecting emerging trends. A summary 
of the results can be found in Table 1. In the table the P 
columns report precision, the R columns report recall, 
and the Fβ columns report Fβ (β=1). As detailed in [11], 
the results are of high quality overall with Fβ greater 
than or equal to eighty percent in all cases . 

Table 1. Automatic ETD results 

4.1.7. Summary of ETD Application. The ETD driver 
was written completely in C++ and used the JNI 
interface to access the WEKA library in multiple 
components.  The driver compiled successfully under 
GCC 2.96, GCC 3.1, GCC 3.2 and Microsoft Visual 
Studio 6.0 and .Net 2003.  It is composed of a set of 
relatively small components that can be reused in other 
applications. The LSI clustering was added to the 
existing ETD framework in less than a day of 
programming. Parameters that could be varied 
automatically in the process of optimization include the 
semantic network threshold, the semantic network 
pruning parameter, and the attributes used in the 
training set. This example also illustrates  the use of 
TMI to test competing algorithms, in this case sLoc 
and our LSI-based clustering technique. 

 
4.2. Massively Parallel Feature Extraction 
 

One of the primary tasks in mining distributed 
textual data is feature extraction. The widespread 
digitization of information has created a wealth of data 
that requires novel approaches to feature extraction in a 
distributed environment. We have designed and 
implemented a massively parallel model for feature 
extraction in a highly distributed environment using 
TMI. 

In previous work, we have shown that speedups 
linear in the number of processors are achievable for 
applications involving reduction operations such as 
feature extraction [14]. We are also in the process of 
validating an analytical model for estimating 
communication and execution time complexity with 
                                                 
2 Results are not reported for the INSPEC® 98 repository 
using sLoc because these results were not available at the 
time of writing. 

empirical observations based on the extraction of 
features from a large number of pages on the World 
Wide Web.  In this paper we present for the first time 
our approach using the TMI architecture in this 
application. 

In this application, processors act in concert to 
download items, extract features, and build an item 
feature set in a parallel-pipelined fashion. There are 
three TMI components in this application. The first 
component handles the generation of features per the 
algorithms discussed in section 4.1.1. The second 
performs a merge operation in the construction of the 
item feature set. The third performs a multithreaded 
download of data from various web servers such as the 
US Government Patent and Trademark Office server. 
All three components are integrated into a Single 
Program Multiple Data (SPMD) C++ Message Passing 
Interface (MPI) framework. 

 
4.3.1. Multithreaded Download. In this application 
we implemented a multithreaded crawler that allows 
the results from many web sites to be retrieved in 
parallel. In this way we effectively use the web as a 
massive repository. By overlapping network access 
with on-the-fly conversion from HTML to XML, we 
achieved the throughput required to sustain feature 
generation and item feature set construction in the 
parallel pipeline. 
 
4.3.2. Feature Generation. Per the design goals of 
TMI, as noted the ETD feature generation component 
discussed in section 4.1.1 was reused in this 
application. The feature generation component was 
enhanced with the development of an XML parser to 
handle multiple types of data. Thus, the generator used 
a variety of feature extraction techniques in order to 
process the different types of data involved (e.g., 
author lists vs. titles, etc.).  
 
4.3.3. Construction of Item Feature Sets. The second 
component implemented using TMI was the 
construction of item feature sets. Figure 3 depicts the 
merge operation that implements item feature set 
construction in the context of the parallel-pipeline 
model of execution. 

The leaf nodes of different shades  in Figure 3 
represent the execution of the feature extraction task 
and the interior nodes of each reduction tree represent 
the merging operation. This figure depicts execution on 
eight processors. The arrow edges represent the 
communication that takes place between processors. 
Dotted lines combined with arrow edges together form 
reduction trees that compute item feature sets. 

 P P R R Fβ Fβ 
 sLoc LSI sLoc LSI sLoc LSI 
INSPEC 96 0.90 0.87 0.79 0.89 0.84 0.88 
INSPEC 97 0.83 0.82 0.77 0.93 0.80 0.87 
INSPEC 98 NA2 0.71 NA2 0.93 NA2 0.81 
INSPEC 99 0.82 0.79 0.84 0.92 0.83 0.85 
OOSE 0.81 0.86 0.90 0.93 0.85 0.89 



Figure 3. Item Feature Set construction in 
Parallel-Pipeline model of execution 

4.3.3 Summary of Massively Parallel Feature 
Extraction. The massively parallel feature extraction 
TMI components were written in C++.  They compiled 
successfully under GCC 2.7, GCC 3.1, and Microsoft 
Visual Studio 6.0.  The components were targeted at 
and executed on the Los Lobos computational grid at 
the National Computational Science Alliance High 
Performance Computing Center at the University of 
New Mexico in Albuquerque, NM. Los Lobos consists 
of 256 IBM NetFinity 4500R dual processor servers 
running the Red Hat Linux operating system and linked 
via a Myrinet interconnect.  

Preliminary results from execution on Los Lobos 
confirm the near-linear speedups predicted by the 
model reported in [14]. Further tests have been run on 
the National Center for Supercomputing Applications 
IA-32 grid, producing both consis tent and improved 
results from those obtained on Los Lobos. 

This second application highlights the reuse of the 
ETD feature generator with a distributed variant of the 
item feature set construction phase implemented in the 
merge operation. We were able to achieve this readily 
using TMI despite the very different execution 
environments of these two applications. 

4.4. Classification of Emotions in Chat 
 

In this application of TMI, we present an approach 
to discovering the emotion present in Internet chat 
messages. The approach uses tools to reconstruct the 
speech from chat messages and tallies the number of 
distinct phonemes in each message. The method uses a 
vector of the phoneme counts as well as other 
statistically derived attributes in an N-Nearest-
Neighbor Instance-Based Learning model.  

TMI was used as a utility to assist in the process of 
training set development for this application. This 
presents a relevant example of how TMI can be used to 

assist with text processing to allow a more traditional 
data mining approach to be applied to textual data.  
This application’s organization is similar to the ETD 
driver in this respect. Further details can be found in 
[7]. 
 
4.4.1. Results of Emotion Classification. This 
application performed well showing results exceeding 
90% Fβ (β=1) in many cases. Table 2 portrays partial 
results obtained. These results were obtained by 
varying the number of nearest neighbors used for 
classification between 10 and 42. Three different 
attribute subsets were used as indicated by Full, 
Phonemes, and Subset. The full attribute set used all 
the variables including the statistical ones; the 
phonemes set used only the phonemes; and the final 
subset used a number of automatic attribute subset 
selection techniques to identify an optimal subset. The 
results reported utilized ten-fold cross validation on a 
set of 1201 messages. 

Table 2. K-Nearest -Neighbor instance based 
learning to identify emotion in chat messages 

 
4.3.2. Summary of Emotion Detection in Chat 
Messages. This application was written in C++ and 
successfully compiled using Microsoft Visual Studio 
6.0. It was not suitable for use in a Linux environment 
due to the reliance on a Microsoft library for speech 
production. The components were executed on a 
Pentium IV desktop PC. In this research we have 
shown that phonemes are related to the emotion 
expressed in a chat message. We have also shown that 
a machine learning model can use this information to 
detect emotion with reasonable accuracy. This will 
provide a strong foundation for further higher-level 
analysis of chat data. 

TMI proved useful in designing this application 
because it enabled easy conversion of raw tagged 
textual data into a highly structured format. This is a 
good example of the utility of TMI for handling the 
many complexities that arise in the fields of text 
mining and statistical natural language processing. 

5. Related Work 
In this section we discuss research in the 

development of tools for automating machine learning 

Neutral Happy
Prec. Recall F-beta Prec. Recall F-beta k

Full Avg 0.841 0.985 0.9074 0.829 0.594 0.6911
Max 0.840 0.993 0.9101 0.902 0.597 0.7185 37

Phonemes Avg 0.840 0.978 0.9035 0.778 0.606 0.6814
Max 0.840 0.979 0.9042 0.792 0.613 0.6911 23

Subset Avg 0.839 0.987 0.9072 0.859 0.595 0.7030
Max 0.841 0.993 0.9101 0.902 0.597 0.7185 37



and text processing tasks.  In some cases, the TMI 
provides an extension of these tools.  We will also 
contrast other systems with the TMI.  

5.1. WEKA 
 

WEKA is a machine-learning library developed at 
the University of Waikato [20].  It provides Java 
implementations of several methods for machine 
learning, data preprocessing, and evaluation.  WEKA 
uses the Attribute-Relation File Format (ARFF) for 
input of training and testing data. 

WEKA is, however, primarily a generic machine 
learning library, and as such lacks specific support for 
certain functionality critical to text mining research. 
WEKA, in fact, does not provide any functionality 
outside of machine learning and some very basic 
experiment design capabilities. Notably absent for our 
purposes are pre/post-processing capabilities, and 
training set generation. Finally, WEKA is written in 
Java, which limits its performance in various ways. 

WEKA through its experimenter interface also 
provides some limited optimization capability. In 
particular, it is possible to combine a number of 
training sets with various machine learning methods 
and a combination of options (which set parameter 
values). The experimenter interface then generates 
results for each possible combination. This is a naïve 
method of search that does not employ optimization. 
The experimenter also lacks the ability to optimize 
entire applications such as our ETD example above; 
rather it only isolates the machine learning step. 

Nonetheless, TMI supports WEKA at several 
junctures in order to provide a flexible environment for 
rapid prototyping of text mining algorithms and 
applications.  For instance, a TMI training set object 
can save itself as a WEKA ARFF file, and can be 
seamlessly loaded into WEKA.  Or, a WEKA method 
can be wrapped in a machine-learning algorithm as 
with the ETD driver and used in a TMI optimization 
loop. 

5.2. MLC++ 
 

MLC++ [15] is another well-known machine-
learning library.  The most recent version is available 
from SGI for use by data mining researchers.  It is 
comparable to WEKA but does not have the same 
scope in that it only supports supervised learning.  
MLC++ is however written in C++ and presents 
opportunities for use in data-intensive applications that 
WEKA may handle less readily. As a result, TMI also 
supports seamless access to MLC++. 

5.3. GATE 
 

The General Architecture for Textual Engineering 
(GATE) [8]  is similar to TMI in some respects.  Using 
the Java beans component model, it however focuses 
on feature generation.  The highly developed GATE 
library contains many advanced methods for extracting 
and tagging textual features. 

GATE offers more flexibility than the current 
feature generation algorithms implemented in TMI.  
GATE does not, however, provide a development 
environment in which entire applications can be 
evaluated in an optimization loop. This is a critical 
point that needs to be emphasized, because it is for this 
reason that we undertook the development of TMI.  In 
essence, we have found that it is not practical to 
evaluate a text -mining algorithm outside the context of 
an actual application.  For this reason, we felt that the 
time was ripe to develop a framework that facilitated 
both algorithm development and evaluation in the 
context of applications. 

5.4. D2K 
 

Data to Knowledge [4] is a rapid prototyping data 
flow environment for data mining applications written 
in Java. Like TMI, D2K provides modules for 
assembly into a data mining system.  It can also filter 
data and visualize results. 

TMI offers several advantages over D2K.  First, 
TMI is targeted specifically at text mining, and as 
discussed earlier, thus has intrinsic support for textual 
feature extraction and textual clustering. Second, as 
with WEKA, D2K is a Java-based environment and as 
such suffers from similar limitations. Finally, TMI has 
been designed from the outset to support optimization, 
something which none of these competing systems 
have as an explicit design goal. 

 

5.5. YALE 
 

Yet Another Learning Environment (YALE) [21] is 
another Java based machine learning library. An 
important capability that is similar to (albeit simpler 
than) our concept of a “component” is the YALE 
concept of an “operator”. An operator (similar to a 
C++ operator) performs a basic operation. Operators 
can be embedded in the same way that component 
paths are in TMI. The data dependencies of such paths 
are however not explicitly established as in TMI. All 
execution is performed sequentially with a few 
exceptions. Specifically, YALE supports  feature subset 
selection and parameter search. Similar to WEKA, the 



parameter search can only be performed using a naïve 
method of search. Experiments are described either 
through a GUI or XML configuration. 

YALE is lacking a number of properties necessary 
for the complexity of TDM. Primarily, there is the need 
in TDM applications to describe more complex data 
and execution paths. Due to the deficiencies described 
above this is not possible with YALE. Secondly, naïve 
search for optimal parameters becomes of little or no 
use with complex applications such as ETD that often 
occur in TDM. Finally, YALE essentially supports 
only the manipulation of training sets , and as such is 
clearly oriented at machine learning and not TDM in 
general. 

6. Future Work 
 

It is our hope that TMI will prove useful to the point 
that it becomes the basis for a standard framework for 
textual data mining that co-exists with and leverages 
other frameworks such as WEKA and MLC++. In this 
way we hope to provide a suitable platform for 
advancing TDM research.  We anticipate that sharing 
TMI openly will promote the advancement of the field.  

One of the main remaining tasks that lie ahead is the 
formal incorporation of customized optimization 
algorithms in TMI. Currently only a small class of the 
available optimization algorithms are suitable for our 
purpose. We have experience in the field of 
optimization [16] [17] and plan to release a version of 
TMI that includes a variety of ‘off-the-shelf’ 
optimization algorithms. The current version provides 
only one such algorithm, a gradient based bound 
constrained quasi-Newton method.  

Finally, we are developing a parallel component 
path. This will take advantage of the modular 
properties of our component architecture to allow 
accurate description of experiments. In particular, 
native parallelism will be described in the parallel 
component path definition. This parallelism will then 
be exploited when the driver is executed. We expect to 
support both shared memory and message passing 
environments in this way in the next release of TMI. 

7. Conclusion 
 
 We have detailed a novel infrastructure and library 
that meet a real need on the part of textual data mining 
(TDM) researchers.  Our framework supports multiple 
platforms, large data sets, existing tools and reusable 
components.  We have offered a number of novel 
techniques in this infrastructure including the ability to 
design arbitrarily complex systems  and perform 
advanced optimization. Meanwhile, our system 

remains conducive to rapid prototyping and research. 
We have discussed several applications that are already 
using TMI successfully and illustrated these advances .  
Our goal is to continue to refine TMI into a standard 
framework that can be widely used for TDM research 
and development. To that end we have officially 
released TMI, available online at hddi.cse.lehigh.edu. 
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