
A Software Infrastructure for Research in Textual Data Mining

Lars E. Holzman, Todd A. Fisher, Leon M. Galitsky, April Kontostathis, William M. Pottenger
Textual Data Mining Lab, Department of Computer Science and Engineering, Lehigh University

{leh7,taf2,lmg3,apk5,billp}@lehigh.edu

Abstract

 Few tools exist that address the challenges facing
researchers in the Textual Data Mining (TDM) field.
Some are too specific to their application, or are
prototypes not suitable for general use. More general
tools often are not capable of processing large volumes
of data.
 We have created a Textual Data Mining
Infrastructure (TMI) that incorporates both existing
and new capabilities in a reusable framework
conductive to developing new tools and components.
TMI adheres to strict guidelines that allow it to run in
a wide range of processing environments – as a result,
it accommodates the volume of computing and
diversity of research occurring in TDM. A unique
capability of TMI is support for optimization. This
facilitates text mining research by automating the
search for optimal parameters in text mining
algorithms.
 In this article we describe a number of applications
that use the TMI. We present several novel results
that have not been published elsewhere. We also
discuss how the TMI utilizes existing machine-learning
libraries, thereby enabling researchers to continue
and extend their endeavors with minimal effort.
Towards that end, TMI is available on the web at
hddi.cse.lehigh.edu.

1. Introduction

The Textual Data Mining (TDM) field was born in
part from the necessity to mine large amounts of text
automatically. The field involves both supervised and
unsupervised approaches to learning that are employed
in applications such as the automatic detection of
trends in textual data [12]. Such learning tasks are
costly both in terms of implementation and
computation due to a number of factors, including the
sparse nature of some textual data representations.

As a result, researchers often spend substantial time
creating tools necessary to access, clean and model

textual data. Many tools exist but are often specific to
the application for which they were designed or are not
publicly available. In response we have designed and
implemented a Text Mining Infrastructure (TMI),
which we have placed in the public domain. Our TMI
supports familiar tools and extends their capabilities.

In section 2 we discuss our framework for Textual
Data Mining using a simplified example. Use of TMI
is outlined in section 3. In section 4 we show the
practical advantages of the TMI in a discussion of
several novel TDM applications that are built upon the
TMI framework. TMI can be used for traditional
textual processing applications, such as search and
retrieval, as well for applications that merge text
processing and machine learning, such as Emerging
Trend Detection. Section 5 discusses the advantages of
TMI in comparison to other TDM systems. We offer
conclusions and outline future work in sections 6 and
7.

2. Background and Example Application

The TMI extends and enhances the Hierarchical
Distributed Dynamic Indexing [9] system developed
under the direction of William M. Pottenger, Ph.D. In
order to facilitate our research in TDM, we first
undertook a study of several text mining applications.
Based on this study, we identified three basic
components that appear regularly in TDM applications:
a repository of unprocessed text data (also known as a
corpus), a relational mapping between documents and
their features, and one or more machine-learning
methods.

Figure 1 depicts these three components for the TMI
implementation of a research system for the detection
of emerging trends in textual data. The figure outlines
the emerging trend detection process and demonstrates
how the various TMI components interact.

In the first step shown in Figure 1, items (e.g.,
documents) in repositories are parsed and words are
tagged with their part of speech prior to the extraction
of significant features. In this application, clusters of
textual features are identified using an unsupervised

learning technique that results in the generation of a
Semantic Model [2]. Statistical attributes from the
Semantic Model, along with a truth set composed of
both emerging and non-emerging trends, are used to
produce a training set for a machine-learning
algorithm.

In the example depicted in Figure 1, the machine
learning algorithms in the WEKA [20] library are used
to identify emerging trends. The system also provides
interfaces to MLC++ [15] and other libraries. A
researcher can easily design and integrate algorithms
into TMI. The performance of a given application is

evaluated using standard metrics such as precision and
recall.

The entire process depicted in Figure 1 is fully
automated in TMI and is described in more detail in
Section 4.1. A unique capability of TMI not shown in
Figure 1 is support for optimization. Applications
implemented using TMI can be automatically
optimized across a variety of parameters and
optimization targets. Support for optimization
facilitates text mining research by automating the
search for optimal parameters in, for example, machine
learning algorithms.

Figure 1. The emerging trend detection driver using TMI

3. An Overview of TMI

 In this section we give an overview of key aspects
of TMI. We focus on the concepts that are most
relevant to users of the system. A more detailed tutorial
for the use of TMI is available on the web at
hddi.cse.lehigh.edu.

3.1. Support for multiple platforms

 TMI supports many variants of the Unix operating
system as well as Windows 98, NT, 2000 and XP. The

GCC 3.2 and Visual Studio .Net 2003 C++ compilers
are supported in these environments, respectively.
Through the JNI, TMI also supports Java SDK 1.3 and
1.4. Many of these capabilities are employed in the
example application discussed in Section 4.1 on
emerging trend detection.

3.2. Use of a common object interface

 A set of abstract interfaces was created to represent
the framework for TDM described above. These
interfaces include representations for Repositories,

Items, Features, and the other concepts that will be
discussed in the applications presented in section 4.

3.3. Use of a component framework

TMI uses a component framework to allow rapid
and intuitive design of experiments. Components form
the building blocks for the experiments, with each
component representing some processing operation.
Thus, each component is responsible for either
producing an object or producing a scalar output. To
perform its operation a component may use any
number of other objects or scalar inputs. The user can
dynamically query a component for information about
its inputs and outputs.

3.4. Evaluation

TMI implements interfaces in support of a variety of
evaluation methodologies and metrics. For example,
TMI supports the evaluation of search and retrieval
applications using gold standard collections. Such gold
standard collections can be employed to automatically
assess performance of an information retrieval
algorithm based on the metrics of precision and recall.
TMI also supports the widely used method of n-fold
cross-validation for evaluation.

3.5. Use of component paths

To further ease experiment design TMI introduces
the concept of a component path. A component path
describes the serial execution of a set of components.
A component path is itself a component, and this is
useful because it allows more complex driver design
through abstraction. For example, a component path
may be designed for ten-fold cross-validation and then
reused in other component paths.

It is possible to loop over a particular component in
the execution path. This allows a researcher to
automatically iterate over a set of values for a
parameter. The ability to loop over a set of object
dependencies is also provided. We have found it
useful to loop over a number of different feature
generators, for instance, to perform the same
experiment on words, noun phrases, and collocations.

The component path also provides an optimization
framework. In this framework the researcher chooses a
set of parameters and an evaluation metric for a
particular component. An optimization method is then
selected and used to identify the values of the provided
parameters that maximize (or minimize) the given
metric.

4. Applications

The development of TMI was guided by several
applications in different domains of TDM. In this
section we review several of these applications. We
describe the emerging trend detection system in depth
and briefly discuss the others. These applications have
been implemented using TMI and we hope by
presenting them to shed light on the utility of the TMI
system.

We begin with some notation: A driver is a
component that assembles and coordinates other
components of TMI in a specific task. A driver
instantiates the components in a particular experiment,
describes their dependencies, places them in a
component path, and then executes the comp onent
path.

Repositories are divided into items. An item is a
textual object such as a document. Each item is
composed of features. For example, a noun phrase
(feature) may occur in a single article (item), in a
collection of documents (repository).

Many applications require a relational
representation of the textual data. We term one form
of this mapping an Item Feature Set (IFS). The IFS
maintains the relationship between items and features
(such as which features occur in which items). This
data structure serves as an interface from the repository
to one or more machine-learning methods.

4.1. Emerging Trend Detection

A trend can be classified as emerging if it is
growing in interest and utility over time. XML is an
example of such a trend that emerged in the mid-90s.
Emerging Trend Detection (ETD) in TDM is an active
research area, and to the best of our knowledge our
efforts represent the only attempts to fully automate the
process of trend detection. To this end we have
developed a new approach for ETD using the TMI. The
methods developed are extensions of those reported in
[19]. An overview of previous research and
commercial systems that can be used to track trends
can be found in [12].

At a high level, the operation of the TMI ETD
driver is depicted in Figure 1. Its purpose is to apply
both unsupervised and supervised learning techniques
in the construction of a model capable of predicting the
emergence of trends. The goal is to employ the model
in a classification task such as technology forecasting.

The data for the experiments reported in this article
was a selection of INSPEC® [10] abstracts drawn from
the fields of Data Mining and Object Oriented
Programming. The data was represented in an XML

format. An XML Repository Builder component was
used to create repositories from the INSPEC® source.
This supported selection of relevant years. We used the
Abstract field as our item text.

4.1.1. Feature Generation. Maximal noun-phrases
were used for features in these experiments. TMI was
used to parse and tag the text in the XML repositories
with part-of-speech markups per [3]. The feature
extractor was based on a lexical analyzer created with
GNU’s Flex [6]1.

4.1.2. Construction of Item Feature Sets. Four item
feature sets (IFSs) were built: one for the target year
(e.g., 2003), one for the year prior to the target year,
one for the year two years prior to the target year, and
one for remaining prior years. Three tables were
created in each IFS to efficiently store occurrence
statistics. The first contained all the items in the
repository and the second contained all the features in
those items. The third contained a set of item-feature
relations between the first two tables. Item-feature
relations record item-feature-specific information such
as the occurrence of a specific feature in a specific
item. Unique IDs were also assigned to items and
features so they could be represented uniformly
throughout the system and located efficiently.

4.1.3. Unsupervised Model Construction. The first
machine-learning process performed unsupervised
clustering of features in two stages: semantic network
generation and semantic network partitioning
(clustering).

Semantic Network Generation
A semantic network is a graph of nodes connected

by weighted arcs. In this case, each node represented
an extracted feature and arc weights between nodes
were computed using an asymmetric similarity
measure [18]. Since each IFS essentially consisted of
an inverse item index, similarity measures based on co-
occurrence frequencies were straightforward to
calculate.

Semantic Network Partitioning
One approach to network partitioning involved an

unsupervised learning process that discovered
significant regions of semantic locality (sLoc) within
each of the semantic networks [2].

A second attempt employed results from [13] in
which a new framework for understanding Latent

1 An early prototype of the feature generator was presented in
Bader et al. [1].

Semantic Index (LSI, [5]) was established. This
framework is based upon the concept of term co-
occurrences and, using this framework, an alternate
term clustering approach was applied.

Classes were derived from two TMI interfaces to
accomplish this: Semantic Model, which represented
the partitioning process, and Cluster, which
represented the regions of semantic locality.

4.1.4. Supervised Model Construction. The second
machine-learning process performed was supervised –
in this case, decision tree induction.

Attribute Interface
The TMI Attribute interface supports attributes in

one of four forms: nominal, Boolean, integer, or real.
An example attribute in this application is the
occurrence frequency of a feature (e.g., “XML”) two
years prior to the target year. As noted in section 4.1.2,
this frequency information is computed during
formation of item feature sets. Attribution occurs in
this case by passing the IFS to an attribute object. An
attribute must be implemented such that a check is
performed that ensures that the type and range of the
value is valid.

Truth Set Interface
Truth Set is an interface that supports input of

labeled data. For example, in this application the truth
set consisted of feature/classification pairs. Features
(e.g., noun phrases) were classified as emerging or
non-emerging by a domain expert.

TMI incorporates a standard for truth sets. Each set
consists of triples comprised of a textual representation
of the object being classified, a classification for the
object, and a relevance measure.

It will be helpful at this point to clarify the
difference between a truth set triple and an instance.
Traditionally an instance (or exemplar) is a single
example of the concept to be learned in a machine-
learning application. A triple in a truth set is related to,
but not the same, as an instance. In this application, a
single triple was a feature/classification pair such as
{“XML”, emerging, 1.0}. Each triple was used to
generate actual instances comprised of time -sensitive
statistical attribute values associated with the feature.

The TMI provides a parser that generates a truth set
object from an input file created by a domain expert.
This input file format (TFF) and the concept of a truth
set are specific to the TMI.

Training Set Interface

A training set is represented in the TMI as a set of
instances, where instances consist of a set of attributes

with an optional class. Any attribute can be
nondestructively ignored or activated at the training set
level to support attribute subset selection. An attribute
subset selection interface exists, but was not used in
this driver. The training set interface allows access to a
training set in one of three ways: through a WEKA or
MLC++ file format, or directly by iterating through the
instances in me mory. Each instance in the training set
in this application consisted of seven attributes:

• the occurrence of the feature in the target year
• the occurrence of the feature in the year preceding

the target year
• the occurrence of the feature two years before the

target year
• the occurrence of the feature in all years before the

target year
• the number of features in the cluster containing the

feature in the target year
• the number of features in the cluster containing the

feature in the year preceding the target year
• the number of words in the feature longer than

length four

The first four attributes were computed from the
item feature sets discussed in section 4.1.2, the second
two from the models discussed in section 4.1.3, and the
last one from the feature itself as an estimate of the
degree of semantics it bears.

Training Set Generation Interface

To ease the use of the various machine-learning
methods available in TMI, a training set generator
abstract class was designed to support creation of a
training set from a truth set. As noted, in this
application, the truth set contained features and their
domain expert classifications (emerging or non-
emerging). The generator first employed the parser to
read in the domain expert truth triples from a file.
Given the item feature sets and the models discussed
previously, the generator then created a training set
consisting of the seven attributes listed above, along
with a nominal value for the classification.

Machine-Learning Algorithm Interface
Since drivers may use multiple machine-learning

algorithms within the same framework, a separate
machine-learning algorithm abstract class was
designed in TMI. This interface supports access to
both predefined and programmer implemented training
and classification methods, whether supervised or
unsupervised in nature.

In this application an instantiation of a machine-
learning algorithm class used JNI to launch the JVM

and load a training set using WEKA utilities. The
driver then called the J48 decision tree classifier in the
WEKA library to perform training and testing using the
training set [20].

4.1.5. Evaluation in ETD. An Evaluator interface was
designed in TMI to handle the many forms of
evaluation required for validation of various techniques
and algorithms in TDM. A machine-learning driver, for
example, can employ evaluators to test a model that
results from training.

In this application, precision, recall and Fβ were
employed using true and false positives (TP and FP)
and false negatives (FN) where precision =
TP/(TP+FP) and recall = TP/(TP+FN), and Fβ
averages precision and recall when β=1. The machine-
learning driver evaluated the decision tree using ten-
fold cross validation implemented in TMI.

4.1.6. Experiments in ETD. The TMI driver for ETD
was compiled and executed using Visual Studio .Net
2003 in a Windows XP environment on a 2.0 GHz
Pentium 4 with 512 MB of main memory. Five
repositories were used for experimentation. The first
four repositories were formed from the INSPEC®
database using the search term “data mining”. The
repositories were formed by varying the current year
for the experiments between 1996, 1997, 1998, and
1999 (referred to as INSPEC® 96, 97, 98, and 99
respectively). All years after the target year were
discarded. The fifth repository was generated from
INSPEC® using the search term “object oriented
software engineering” (OOSE repository).

An example decision tree is presented in Figure 2.
This decision tree was generated using the LSI
clustering method and the INSPEC® 98 repository.
Note that the time sensitive Concepts_in_Cluster
(number of features in the cluster of a feature in the
target year) is used in this decision tree.

 Occurrences_in_All_Noncurrent_Years <= 2
 | Long_Words_In_Feature <= 1
 | | Concepts_in_Cluster <= 14: notrend
 | | Concepts_in_Cluster > 14: trend
 | Long_Words_In_Feature > 1: trend
 Occurrences_in_All_Noncurrent_Years > 2
 | Occurrences_in_Current_Year <= 21
 | | Occurrences_in_All_Noncurrent_Years <= 3
 | | | Occurrences_in_Year_Before_Previous_Year <= 1: notrend
 | | | Occurrences_in_Year_Before_Previous_Year > 1: trend
 | | Occurrences_in_All_Noncurrent_Years > 3: notrend
 | Occurrences_in_Current_Year > 21
 | | Long_Words_In_Feature <= 2: trend
 | | Long_Words_In_Feature > 2: notrend

Figure 2. Decision tree for the detection of
emerging trends

Both clustering methods were successful in
automatically detecting emerging trends. A summary
of the results can be found in Table 1. In the table the P
columns report precision, the R columns report recall,
and the Fβ columns report Fβ (β=1). As detailed in [11],
the results are of high quality overall with Fβ greater
than or equal to eighty percent in all cases .

Table 1. Automatic ETD results

4.1.7. Summary of ETD Application. The ETD driver
was written completely in C++ and used the JNI
interface to access the WEKA library in multiple
components. The driver compiled successfully under
GCC 2.96, GCC 3.1, GCC 3.2 and Microsoft Visual
Studio 6.0 and .Net 2003. It is composed of a set of
relatively small components that can be reused in other
applications. The LSI clustering was added to the
existing ETD framework in less than a day of
programming. Parameters that could be varied
automatically in the process of optimization include the
semantic network threshold, the semantic network
pruning parameter, and the attributes used in the
training set. This example also illustrates the use of
TMI to test competing algorithms, in this case sLoc
and our LSI-based clustering technique.

4.2. Massively Parallel Feature Extraction

One of the primary tasks in mining distributed
textual data is feature extraction. The widespread
digitization of information has created a wealth of data
that requires novel approaches to feature extraction in a
distributed environment. We have designed and
implemented a massively parallel model for feature
extraction in a highly distributed environment using
TMI.

In previous work, we have shown that speedups
linear in the number of processors are achievable for
applications involving reduction operations such as
feature extraction [14]. We are also in the process of
validating an analytical model for estimating
communication and execution time complexity with

2 Results are not reported for the INSPEC® 98 repository
using sLoc because these results were not available at the
time of writing.

empirical observations based on the extraction of
features from a large number of pages on the World
Wide Web. In this paper we present for the first time
our approach using the TMI architecture in this
application.

In this application, processors act in concert to
download items, extract features, and build an item
feature set in a parallel-pipelined fashion. There are
three TMI components in this application. The first
component handles the generation of features per the
algorithms discussed in section 4.1.1. The second
performs a merge operation in the construction of the
item feature set. The third performs a multithreaded
download of data from various web servers such as the
US Government Patent and Trademark Office server.
All three components are integrated into a Single
Program Multiple Data (SPMD) C++ Message Passing
Interface (MPI) framework.

4.3.1. Multithreaded Download. In this application
we implemented a multithreaded crawler that allows
the results from many web sites to be retrieved in
parallel. In this way we effectively use the web as a
massive repository. By overlapping network access
with on-the-fly conversion from HTML to XML, we
achieved the throughput required to sustain feature
generation and item feature set construction in the
parallel pipeline.

4.3.2. Feature Generation. Per the design goals of
TMI, as noted the ETD feature generation component
discussed in section 4.1.1 was reused in this
application. The feature generation component was
enhanced with the development of an XML parser to
handle multiple types of data. Thus, the generator used
a variety of feature extraction techniques in order to
process the different types of data involved (e.g.,
author lists vs. titles, etc.).

4.3.3. Construction of Item Feature Sets. The second
component implemented using TMI was the
construction of item feature sets. Figure 3 depicts the
merge operation that implements item feature set
construction in the context of the parallel-pipeline
model of execution.

The leaf nodes of different shades in Figure 3
represent the execution of the feature extraction task
and the interior nodes of each reduction tree represent
the merging operation. This figure depicts execution on
eight processors. The arrow edges represent the
communication that takes place between processors.
Dotted lines combined with arrow edges together form
reduction trees that compute item feature sets.

 P P R R Fβ Fβ
 sLoc LSI sLoc LSI sLoc LSI
INSPEC 96 0.90 0.87 0.79 0.89 0.84 0.88
INSPEC 97 0.83 0.82 0.77 0.93 0.80 0.87
INSPEC 98 NA2 0.71 NA2 0.93 NA2 0.81
INSPEC 99 0.82 0.79 0.84 0.92 0.83 0.85
OOSE 0.81 0.86 0.90 0.93 0.85 0.89

Figure 3. Item Feature Set construction in
Parallel-Pipeline model of execution

4.3.3 Summary of Massively Parallel Feature
Extraction. The massively parallel feature extraction
TMI components were written in C++. They compiled
successfully under GCC 2.7, GCC 3.1, and Microsoft
Visual Studio 6.0. The components were targeted at
and executed on the Los Lobos computational grid at
the National Computational Science Alliance High
Performance Computing Center at the University of
New Mexico in Albuquerque, NM. Los Lobos consists
of 256 IBM NetFinity 4500R dual processor servers
running the Red Hat Linux operating system and linked
via a Myrinet interconnect.

Preliminary results from execution on Los Lobos
confirm the near-linear speedups predicted by the
model reported in [14]. Further tests have been run on
the National Center for Supercomputing Applications
IA-32 grid, producing both consis tent and improved
results from those obtained on Los Lobos.

This second application highlights the reuse of the
ETD feature generator with a distributed variant of the
item feature set construction phase implemented in the
merge operation. We were able to achieve this readily
using TMI despite the very different execution
environments of these two applications.

4.4. Classification of Emotions in Chat

In this application of TMI, we present an approach
to discovering the emotion present in Internet chat
messages. The approach uses tools to reconstruct the
speech from chat messages and tallies the number of
distinct phonemes in each message. The method uses a
vector of the phoneme counts as well as other
statistically derived attributes in an N-Nearest-
Neighbor Instance-Based Learning model.

TMI was used as a utility to assist in the process of
training set development for this application. This
presents a relevant example of how TMI can be used to

assist with text processing to allow a more traditional
data mining approach to be applied to textual data.
This application’s organization is similar to the ETD
driver in this respect. Further details can be found in
[7].

4.4.1. Results of Emotion Classification. This
application performed well showing results exceeding
90% Fβ (β=1) in many cases. Table 2 portrays partial
results obtained. These results were obtained by
varying the number of nearest neighbors used for
classification between 10 and 42. Three different
attribute subsets were used as indicated by Full,
Phonemes, and Subset. The full attribute set used all
the variables including the statistical ones; the
phonemes set used only the phonemes; and the final
subset used a number of automatic attribute subset
selection techniques to identify an optimal subset. The
results reported utilized ten-fold cross validation on a
set of 1201 messages.

Table 2. K-Nearest -Neighbor instance based
learning to identify emotion in chat messages

4.3.2. Summary of Emotion Detection in Chat
Messages. This application was written in C++ and
successfully compiled using Microsoft Visual Studio
6.0. It was not suitable for use in a Linux environment
due to the reliance on a Microsoft library for speech
production. The components were executed on a
Pentium IV desktop PC. In this research we have
shown that phonemes are related to the emotion
expressed in a chat message. We have also shown that
a machine learning model can use this information to
detect emotion with reasonable accuracy. This will
provide a strong foundation for further higher-level
analysis of chat data.

TMI proved useful in designing this application
because it enabled easy conversion of raw tagged
textual data into a highly structured format. This is a
good example of the utility of TMI for handling the
many complexities that arise in the fields of text
mining and statistical natural language processing.

5. Related Work
In this section we discuss research in the

development of tools for automating machine learning

Neutral Happy
Prec. Recall F-beta Prec. Recall F-beta k

Full Avg 0.841 0.985 0.9074 0.829 0.594 0.6911
Max 0.840 0.993 0.9101 0.902 0.597 0.7185 37

Phonemes Avg 0.840 0.978 0.9035 0.778 0.606 0.6814
Max 0.840 0.979 0.9042 0.792 0.613 0.6911 23

Subset Avg 0.839 0.987 0.9072 0.859 0.595 0.7030
Max 0.841 0.993 0.9101 0.902 0.597 0.7185 37

and text processing tasks. In some cases, the TMI
provides an extension of these tools. We will also
contrast other systems with the TMI.

5.1. WEKA

WEKA is a machine-learning library developed at
the University of Waikato [20]. It provides Java
implementations of several methods for machine
learning, data preprocessing, and evaluation. WEKA
uses the Attribute-Relation File Format (ARFF) for
input of training and testing data.

WEKA is, however, primarily a generic machine
learning library, and as such lacks specific support for
certain functionality critical to text mining research.
WEKA, in fact, does not provide any functionality
outside of machine learning and some very basic
experiment design capabilities. Notably absent for our
purposes are pre/post-processing capabilities, and
training set generation. Finally, WEKA is written in
Java, which limits its performance in various ways.

WEKA through its experimenter interface also
provides some limited optimization capability. In
particular, it is possible to combine a number of
training sets with various machine learning methods
and a combination of options (which set parameter
values). The experimenter interface then generates
results for each possible combination. This is a naïve
method of search that does not employ optimization.
The experimenter also lacks the ability to optimize
entire applications such as our ETD example above;
rather it only isolates the machine learning step.

Nonetheless, TMI supports WEKA at several
junctures in order to provide a flexible environment for
rapid prototyping of text mining algorithms and
applications. For instance, a TMI training set object
can save itself as a WEKA ARFF file, and can be
seamlessly loaded into WEKA. Or, a WEKA method
can be wrapped in a machine-learning algorithm as
with the ETD driver and used in a TMI optimization
loop.

5.2. MLC++

MLC++ [15] is another well-known machine-
learning library. The most recent version is available
from SGI for use by data mining researchers. It is
comparable to WEKA but does not have the same
scope in that it only supports supervised learning.
MLC++ is however written in C++ and presents
opportunities for use in data-intensive applications that
WEKA may handle less readily. As a result, TMI also
supports seamless access to MLC++.

5.3. GATE

The General Architecture for Textual Engineering
(GATE) [8] is similar to TMI in some respects. Using
the Java beans component model, it however focuses
on feature generation. The highly developed GATE
library contains many advanced methods for extracting
and tagging textual features.

GATE offers more flexibility than the current
feature generation algorithms implemented in TMI.
GATE does not, however, provide a development
environment in which entire applications can be
evaluated in an optimization loop. This is a critical
point that needs to be emphasized, because it is for this
reason that we undertook the development of TMI. In
essence, we have found that it is not practical to
evaluate a text -mining algorithm outside the context of
an actual application. For this reason, we felt that the
time was ripe to develop a framework that facilitated
both algorithm development and evaluation in the
context of applications.

5.4. D2K

Data to Knowledge [4] is a rapid prototyping data
flow environment for data mining applications written
in Java. Like TMI, D2K provides modules for
assembly into a data mining system. It can also filter
data and visualize results.

TMI offers several advantages over D2K. First,
TMI is targeted specifically at text mining, and as
discussed earlier, thus has intrinsic support for textual
feature extraction and textual clustering. Second, as
with WEKA, D2K is a Java-based environment and as
such suffers from similar limitations. Finally, TMI has
been designed from the outset to support optimization,
something which none of these competing systems
have as an explicit design goal.

5.5. YALE

Yet Another Learning Environment (YALE) [21] is
another Java based machine learning library. An
important capability that is similar to (albeit simpler
than) our concept of a “component” is the YALE
concept of an “operator”. An operator (similar to a
C++ operator) performs a basic operation. Operators
can be embedded in the same way that component
paths are in TMI. The data dependencies of such paths
are however not explicitly established as in TMI. All
execution is performed sequentially with a few
exceptions. Specifically, YALE supports feature subset
selection and parameter search. Similar to WEKA, the

parameter search can only be performed using a naïve
method of search. Experiments are described either
through a GUI or XML configuration.

YALE is lacking a number of properties necessary
for the complexity of TDM. Primarily, there is the need
in TDM applications to describe more complex data
and execution paths. Due to the deficiencies described
above this is not possible with YALE. Secondly, naïve
search for optimal parameters becomes of little or no
use with complex applications such as ETD that often
occur in TDM. Finally, YALE essentially supports
only the manipulation of training sets , and as such is
clearly oriented at machine learning and not TDM in
general.

6. Future Work

It is our hope that TMI will prove useful to the point
that it becomes the basis for a standard framework for
textual data mining that co-exists with and leverages
other frameworks such as WEKA and MLC++. In this
way we hope to provide a suitable platform for
advancing TDM research. We anticipate that sharing
TMI openly will promote the advancement of the field.

One of the main remaining tasks that lie ahead is the
formal incorporation of customized optimization
algorithms in TMI. Currently only a small class of the
available optimization algorithms are suitable for our
purpose. We have experience in the field of
optimization [16] [17] and plan to release a version of
TMI that includes a variety of ‘off-the-shelf’
optimization algorithms. The current version provides
only one such algorithm, a gradient based bound
constrained quasi-Newton method.

Finally, we are developing a parallel component
path. This will take advantage of the modular
properties of our component architecture to allow
accurate description of experiments. In particular,
native parallelism will be described in the parallel
component path definition. This parallelism will then
be exploited when the driver is executed. We expect to
support both shared memory and message passing
environments in this way in the next release of TMI.

7. Conclusion

 We have detailed a novel infrastructure and library
that meet a real need on the part of textual data mining
(TDM) researchers. Our framework supports multiple
platforms, large data sets, existing tools and reusable
components. We have offered a number of novel
techniques in this infrastructure including the ability to
design arbitrarily complex systems and perform
advanced optimization. Meanwhile, our system

remains conducive to rapid prototyping and research.
We have discussed several applications that are already
using TMI successfully and illustrated these advances .
Our goal is to continue to refine TMI into a standard
framework that can be widely used for TDM research
and development. To that end we have officially
released TMI, available online at hddi.cse.lehigh.edu.

8. Acknowledgments

This research was supported in part by NSF CISE
EIA grant number 0087977. The authors wish to
thank family and friends for their love and support, as
well as the faculty and support staff in the Computer
Science and Engineering Department at Lehigh
University. The authors would also like to thank the
following co-workers for their contributions to this
work: Jirada Kuntraruk, Christopher J. Crowe, Daniel
G. and Sarah E. Darr, Eric D. Miller, Faisal M. Khan,
Mark R. Aevermann and Eduardo J. Freyre. Team
members Dan and Sarah Darr, Eric Miller and co-
author William M. Pottenger wish to express their
sincere gratitude to their Lord and Savior, Yeshua
(Jesus) the Messiah (Christ) for their salvation.

9. References

[1] Bader, R., M. Callahan, D. Grim, J. Krause, N.
Miller and William M. Pottenger. The Role of the
HDDITM Collection Builder in Hierarchical Distributed
Dynamic Indexing. Proceedings of the Textmine '01
Workshop, First SIAM International Conference on
Data Mining. April 2001. Available on WWW:
www.cse.lehigh.edu/~billp/pubs/HDDICB.doc

[2] Bouskila, F. D. and William M. Pottenger. The
Role of Semantic Locality in Hierarchical Distributed
Dynamic Indexing. In the Proceedings of the
International Conference on Artificial Intelligence (IC-
AI’2000), Las Vegas, NV, June 2000. Available on
WWW: www.cse.lehigh.edu/~billp/HDDI/sloc.ps.gz

[3] Brill, E. A Simple Rule -based Part of Speech
Tagger, In the Proceedings of the Third Conference on
Applied Natural Language Processing, Trento, Italy,
March/April 1992.

[4] Data To Knowledge. Available on WWW:
www.ncsa.uiuc.edu/TechFocus/Projects/NCSA/D2K_-
_Data_To_Knowledge.html

[5] Deerwester, Scott, Susan T. Dumais, George W.
Furnas, Thomas K. Landauer, and Richard Harshman.
Indexing by latent semantic analysis. Journal of the

American Society for Information Science, 41(6): 391-
407. 1990.

[6] Fast Lexical Analyzer Generator. Available on
WWW: www.gnu.org/software/flex/

[7] Holzman, Lars E. and William M. Pottenger.
Classification of Emotions in Internet Chat: An
Application of Machine Learning Using Speech
Phonemes. 2003. Available on WWW:
www.lehigh.edu/~leh7/papers/EmotionClassification.p
df

[8] General Architecture for Text Engineering.
Available on WWW: www.dcs.shef.ac.uk/
research/groups/nlp/gate/

[9] Hierarchical Distributed Dynamic Indexing.
Available on WWW: hddi.cse.lehigh.edu

[10] INSPEC® Bibliographic Information Service.
Available on WWW: www.iee.org/Publish/INSPEC/

[11] Kontostathis, April. A Term Co-occurrence
Based Framework for Understanding LSI: theory and
practice. Ph.D. Dissertation, Department of Computer
Science and Engineering at Lehigh University, August,
2003.

[12] Kontostathis, April, Leon Galitsky, William M.
Pottenger, Soma Roy and Daniel J. Phelps. A Survey
of Emerging Trend Detection in Textual Data Mining.
In A Comprehensive Survey of Text Mining, Michael
Berry, Ed., Springer-Verlag. 2003. Available on
WWW: www.cse.lehigh.edu/~billp/pubs/
ETDArticle.ps.gz

[13] Kontostathis , April and William M. Pottenger. A
framework for understanding LSI performance.
Proceedings of ACM SIGIR Workshop on
Mathematical/Formal Methods in Information
Retrieval (ACMSIGIR MF/IR ’03). 2003.

[14] Kuntraruk, Jirada, and William M. Pottenger.
Massively Parallel Distributed Feature Extraction in
Textual Data Mining Using HDDITM. In the
Proceedings of The Tenth IEEE International
Symposium on High Performance Distributed
Computing (HPDC-10). San Francisco, CA, August
2001. Available on WWW: www.cse.lehigh.edu/
~billp/pubs/IEEEArticle.ps.gz

[15] Machine Learning in C++. Available on WWW:
www.sgi.com/tech/mlc/

[16] Pinto, Vivek D., William M. Pottenger, and
William “Tilt” Thompkins. A Survey of Optimization
Techniques Being Used in the Field. In the
Proceedings of the Third International Meeting on
Research in Logistics (IMRL 2000). Quebec, Canada,
May. Available on WWW: www.cse.lehigh.edu/
~billp/pubs/SurveyOfOptimization.doc

[17] Pinto, Vivek D., William M. Pottenger, and
William “Tilt” Thompkins. A Multi-Level Multi-
Objective Optimization Of a Stochastic Enterprise
Resource Planning Model Using Simulated Annealing.
To appear in the European Journal of Operational
Research, Roman Slowinski, Ed. 2002 (Undergoing
first revision based on initial referee feedback.)

[18] Pottenger, William M., Yong-Bin Kim and Daryl
D. Meling. HDDITM: Hierarchical Distributed Dynamic
Indexing. In Data Mining for Scientific and
Engineering Applications, Robert Grossman,
Chandrika Kamath, Vipin Kumar and Raju Namburu,
Eds., Kluwer Academic Publishers, July 2001.
Available on WWW: www.cse.lehigh.edu/~billp/pubs/
HDDIFinalChapter.pdf

[19] Pottenger, William M. and Ting-hao Yang.
Detecting Emerging Concepts in Textual Data Mining.
In Computational Information Retrieval, Michael
Berry, Ed., SIAM, Philadelphia, PA, August 100`.
Available on WWW: www.cse.lehigh.edu/
~billp/pubs/SIAMETD.ps.gz

[20] Witten, I.H. and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann, San Francisco,
CA. 2000. Available on WWW:
www.cs.waikato.ac.nz/ml/weka

[21] Yet Another Learning Environment. Available on
WWW: yale.cs.uni-dortmund.de/index.eng.html

