
Massively Parallel Distributed Feature Extraction
in Textual Data Mining Using HDDITM

Jirada Kuntraruk and William M. Pottenger
Computer Science and Engineering Department

Lehigh University
Bethlehem, PA 18015 USA
fjak5,billpg@cse.lehigh.edu

Abstract

One of the primary tasks in mining distributed textual
data is feature extraction. The widespread digitization of in-
formation has created a wealth of data that requires novel
approaches to feature extraction in a distributed environ-
ment. We propose a massively parallel model for fea-
ture extraction that employs unused cycles on networks
of PCs/workstations in a highly distributed environment.
We have developed an analytical model of the time and
communication complexity of the feature extraction pro-
cess in this environment based on feature extraction algo-
rithms developed in our textual data mining research with
HDDITM [1] [18] [20]. We show that speedups linear in
the number of processors are achievable for applications
involving reduction operations based on a novel, parallel
pipelined model of execution. We are in the process of val-
idating our analytical model with empirical observations
based on the extraction of features from a large number of
pages on the World Wide Web.

1 Introduction

Recent advances in computer technology are fueling rad-
ical changes in the nature of information management. In-
creasing computational capacities coupled with the ubiquity
of networking have resulted in widespread digitization of
information, thereby creating fundamentally new possibili-
ties for managing information. One such opportunity lies in
the budding area of textual data mining. With roots in the
fields of statistics, machine learning and information theory,
data mining is emerging as a field of study in its own right.
The marriage of data mining techniques to applications in
textual information management has created unprecedented
opportunity for the development of automatic approaches to
tasks heretofore considered intractable.

One of the primary tasks in mining distributed textual
data is feature extraction. As noted, the widespread digitiza-
tion of information has created a wealth of data that requires
novel approaches to feature extraction in a distributed envi-
ronment. Our approach incorporates the development of a
massively parallel model for feature extraction that employs
unused cycles on networks of PCs/workstations in a highly
distributed environment. The model has two components:
an analytical component and an empirical component. The
analytical component models the time and communication
complexity of the feature extraction process in a massively
parallel distributed environment. Based on feature extrac-
tion algorithms developed in our textual data mining re-
search with HDDITM [1] [18] [20], we are also performing
empirical validation of the analytical model.

In the following sections we first discuss the related
work. We outline the feature extraction process based on
our previous work in [1], and then develop our analytical
model. Validation of the model is discussed in Section 6.

2 Related Work

Massively parallel and distributed processing is widely
recognized as a key technology of the future. The increase
in microprocessor performance coupled with greater mem-
ory capacities and network bandwidth are indicative of the
fact that massively parallel, distributed systems are an at-
tractive alternative to supercomputers in terms of both price
and performance for many applications. One of the out-
comes of research in such scalable systems has been the
development of various models of performance.

For example, [9], [13] and [15] discuss various aspects
of speedup and efficiency of parallel systems. Although
insightful, these do not provide explicit analytical models.
One goal of our research is to identify an analytical model
that predicts the execution time of an application given a
set of parameters for a massively parallel distributed frame-

work.
There are two important factors that dominate the execu-

tion time in parallel and distributed processing: the compu-
tation time and the communication time. [6], [8] and [16]
present communication models for various distributed-
memory architectures. Of these, we have chosen to base
our analytical model on [8]. We discuss this model further
in Section 4.

[10] and [11] propose models that predict the execution
time of an application that incorporates both the computa-
tion time and the communication time. However, [10] does
not model the communication in sufficient detail. [11] has
a reasonable model for the communication, but bases the
computational model on the average execution time of the
processors in the system. It is our contention that a more
accurate model of computation time would measure the ex-
ecution time of a parallel distributed application by the wall-
clock time from the start of computation until the last pro-
cessor to finish a task has done so. As a result, the com-
putational model presented in [11] was deemed less than
optimal and we decided to develop our own model. This
model is presented in Section 4.

3 Feature Extraction in HDDITM

In this section we review the three functional parts of the
HDDITM feature extraction process: input, part of speech
tagging, and concept extraction.

3.1 Terminology

Before we introduce the functional parts of the system,
we must introduce some terminology:

� Items: Item refers to the basic unit of data content that
is used in textual data mining. We generally use item
to refer to a single document; however as explained
in [2], other units of information, such as subsections
of a document or sentences, could be used as well. For
simplicity we will assume that item refers to a docu-
ment in this article.

� Collections: A collection refers to a group of items
that will be indexed in the HDDITM textual data mining
system.

� Concepts: We use concept to refer to a maximal length
English-language noun phrase that is extracted from a
collection’s items. Concepts are extracted as features
and used as keywords in the HDDITM textual data min-
ing system.

3.2 Input

Since a collection can originate from any source, we
need to handle different input formats including SGML and
various subsets such as HTML and XML. In addition, the
feature extraction process requires us to identify particular
fields of data in the input collection that are of interest (e.g.,
the title of an item). In order to accomplish these tasks
we developed an extensible, reusable object-oriented input
parser. See [1] for details.

3.3 Part of Speech Tagging

After identifying fields of interest, our feature extrac-
tion algorithms perform part of speech tagging. The part
of speech tagger is a rule-based system for tagging English
parts of speech. This system is based on the SemanTag sys-
tem developed in [7], which in turn is based on [3] [4] [5].
The tagger uses three levels of rule sets to determine the part
of speech of each word, and tags words with their English
part of speech tag, as specified in the Brown tagset [12].

DT - determiner
IN - preposition or subordinating conjunction
NN - noun - singular or mass
PP - personal pronoun
VBD - verb - past tense
. - literal period

Figure 1. Selected Brown part of speech tags and their
definitions

3.4 Feature Extraction

A key part of textual data mining is feature, or concept
extraction. For this purpose, we have designed and imple-
mented a sophisticated English language noun phrase ex-
tractor. Our premise is that maximal length noun phrases
are high quality discriminators and should therefore be used
as keyword features for indexing purposes by the HDDITM

textual data mining system. In order to identify maximal
length noun phrases from the tagged text, a finite state ma-
chine capable of handling complex noun phrases was gen-
erated [1].

Concurrently with the extraction of noun phrases, other
information that is used later in the HDDITM model building
stage is extracted and preserved. For example, a frequency
of occurrence is calculated for each concept in each item as
well as the character offset of each concept in the original
item. Also, the field in which the concept occurred (e.g.,
title) is preserved.

The following is an example of the functionality of the
feature extractor. If the extractor received the input “She
built an apparatus for the transformation of picture infor-
mation.” as the original text of an item, and “She//PP
built//VBD an//DT apparatus//NN for//IN the//DT transfor-
mation//NN of//IN picture//NN information//NN .//.” as the
marked up text (see Figure 1 for an explanation of the part
of speech tags), the noun phrase “apparatus for the trans-
formation of picture information” would be extracted with
a character offset of 14. This concept would be given a fre-
quency of occurrence of one since it occurs only once in
this simple one sentence example. Features of this nature
are useful in a variety of textual data mining tasks [18].

4 Analytical Model

To adapt the feature extraction algorithms to a dis-
tributed environment, we added an initial retrieval step.
Given a list of URLs as input, feature extraction consists
of the following four functional parts: URL content re-
trieval, input, part of speech tagging and concept extraction.

4.1 Computational Model

The approximate time and space complexity of each of
the four modules in the feature extraction process is shown
in Table 1. The computational model incorporates the fol-
lowing parameters:

� m is the average size of the content of the input URLs,

� L is the size of the Lexicon,

� LR is the number of Lexical rules,

� LRF is the size of the Lexical rules file,

� CR is the number of Contextual rules,

� CRF is the size of the Contextual rules file.

Module Runtime Space
Retrieval O�m� O�m�
Input O�m� O�m�
Tagging O�m � �LR� CR�� O�m � L �

LRF � CRF �
Concept
Extraction

O�m� O�m�

Table 1. Time and Space Complexity of the HDDITM Fea-
ture Extraction Modules

These four modules are packed into a monatomic com-
putational task. The computation time can be expressed as:

TComp � TRet � TInp � TTag � TExt (1)

Where

� TRet is the time for the retrieval module,

� TInp is the time for the input module,

� TTag is the time for the tagging module,

� TExt is the time for the concept extraction module.

4.2 Communication Model

We model the communication using the LogP model [8].
LogP is a model of a distributed-memory multiprocessor.
The processors communicate by point-to-point messages.
There are four main parameters of the model:

P: the number of processors.
L: an upper bound on the latency or the time that the mes-
sage spends in the interconnection network.
o: the overhead or the time for the processor to inject the
message into or pull the message from the interconnection
network.
g: the gap or the minimum time interval between consecu-
tive message transmissions or receptions at a processor. It
is a reciprocal of available bandwidth of the interconnection
network.

We choose to use the LogP model because the model
specifies the performance characteristics of the intercon-
nection network but does not describe the structure of the
network, i.e., the model accounts for communication costs
without assuming a topology of the interconnection net-
work. Therefore, communication models based on LogP
are portable from one platform to another.

Using the LogP model, the time to deliver a message can
be expressed algebraically as

TComm � �o� L� �Msg size� � g (2)

This equation is similar to the equation presented in [16]
which is

TComm � �o� L�
Msg size

Bandwidth
(3)

In this analysis we assume that o � g. Then we have

TComm � L� �Msg size� � g (4)

We replace Msg size � k � i when we assume that the
average number of characters in a feature is i, and k is the
average number of features extracted from a URL of size
m. Then

TComm � L� �k � i� � g (5)

4.3 Parallel Pipelined Reduction Model

The ability to perform feature extraction in a parallel,
distributed environment relies on the fact that feature extrac-
tion is an associative operation and can, as a result, be paral-
lelized [19]. Note that feature extraction, like all associative
operations, requires that a reduction be performed. Com-
putationally, feature extraction can be modeled as two dif-
ferent tasks: first, the monatomic computational task noted
previously in Section 3, and second, a parallel merge as dis-
cussed in [17]. Of these two tasks, the parallel merge forms
the reduction stage of the computation. In a distributed
environment, communication takes place during the reduc-
tion. This communication is represented by the arrows in
an example reduction pictured in Figure 2. The complex-
ity of each step is modeled as cost = computation time +
communication time, where the cost is dominated by the
computation time of the monatomic feature extraction task.
We discuss this constraint on the model in what follows.

initial step

step 1

step 2

step 3

P1 P3 P4 P5 P6 P7 P8P2

step 4

To server

Figure 2. Reduction model. The white nodes repre-
sent the operation of feature extraction and the black nodes
represent the merging operation. This figure depicts exe-
cution on eight processors. The arrow edges represent the
communication that takes place. The dotted lines and the
arrow edges together form a reduction tree.

Figure 2 depicts an example of our reduction model on
eight processors. During the initial step (step 0) every
processor executes the monatomic feature extraction task.
Then, starting with step one, a reduction is completed every
lgP steps1. The system reaches a state of equilibrium after

1We make the simplifying assumption that the number of processors P
is a power of �. Note that lg x � log

�
x.

lgP steps at which time P
�

processors continuously perform
feature extraction and P

�
processors perform merging. This

forms, in essence, a pipelined, parallel reduction consisting
of � � lgP � � stages in which new content is continually
being processed in the feature extraction task, and pipelined
to the � � lgP stages of the reduction tree2. The lengths of
the � � lgP � � stages in the pipeline are constrained such
that all stages are equal in length, thus guaranteeing the op-
timality of the pipelined reduction [16].

4.3.1 The Merge

The implementation of distributed HDDITM feature extrac-
tion incorporates a binary tree data structure. The process
of feature extraction stores each feature present in the input
in lexicographical order in this data structure. At each node
of the reduction tree two such binary trees of features are
merged. The time complexity of the merge operation for
two binary trees is O�k � lg l�, where k and l are the number
of features of the two trees being merged. With no loss in
generality, we assume that l � k. Initially, we make the
assumption that there is no overlap of features (i.e., no noun
phrase occurs more than once). Because of this, our com-
plexity analysis will result in an upper bound for the merge
time.

Figure 2 depicts the merging operation for an example
of eight processors. Starting with the initial step, each pro-
cessor creates a tree of features. The features from P� are
then sent to P� to be merged with the features extracted by
P�. Likewise, P� sends its features to P� and so on as por-
trayed by the arrow edges in Figure 2. Thus merging takes
place on the processors that receive the data. This operation
continues until the binary feature trees have all been merged
(on P� in Figure 2 by Step 3). The dotted lines in Figure 2
aid in the visualization of the reduction.

Our reduction model employs a complete binary tree.
This is a data structure used in several known algorithms
for reductions (e.g., prefix summing [14] [21]). The use of
a complete tree is in this sense an optimal component of the
model.

4.4 Model Complexity and Optimality

Figure 3 depicts the same eight processors as Figure 2
with the number of messages being transmitted explicitly
noted on the communication paths3. Messages consist of
binary trees of features as discussed previously. As noted,
we assume that the number of features grows by a factor of

2Note that unlike a hardware pipeline, the communication between
stages in the reduction tree is significant and as a result is modeled as lgP
of the � � lgP � � stages.

3Again, for clarity in understanding the reduction tree, dotted lines are
added that record the number of messages currently retained in a given
node.

initial step

step 1

step 2

step 3

P1 P3 P5 P6 P7 P8P2

step 4

1 1

1 2 1 2

1 1 2 4

1 1 2 4

1 1 1 1

2 2

4

1

P4

1

To server

Figure 3. Reduction Tree. The dotted lines and the
arrow edges form a binary reduction tree. The weight of
each arrow edge represents the number of messages passing
through the communication channel.

two. This is a conservative estimate assuming no overlap
in feature space, and as such yields an upper bound on the
actual communication complexity.

At step j, there are P � j � P
�

URLs retrieved. It will
take another lgP additional steps to collect all the features
extracted from the content of these URLs into the central
repository. Therefore, the total time to process P � j � P

�

URLs is computed as:

TTotal � �j � lgP � � �TComp � TComm�

� �j � lgP � � �TComp� �

�fL� �k � i � g�g� fL� � � �k � i � g�g�

� � �� fL� �lgP�� � �k � i � g�g�

�j � �� � fL�
P

�
� �k � i � g�g� �

L� P � �k � i � g�

� �j � lgP � � �TComp� � �j � lgP � � L�

�k � i � g� �

lgP��X

n��

�i �

�j � �� �
P

�
� �k � i � g� � P � �k � i � g�

(6)

In the derivation above we have replaced TComm with
equation (5) and then multiplied the result by j � lgP , the
number of times communication takes place. As we men-
tioned at the beginning of this section, the number of fea-
tures k grows by a factor of two until it reaches the bound of
O�P

�
�. This results in an proportional increase in communi-

cations complexity. TComp can be replaced by equation (1).

4.4.1 The Optimality

Due to the nature of the binary reduction tree, message size
reaches a bound of O�P

�
� when the computation reaches

step lgP . After step lgP , message size remains constant.
As noted previously, the system reaches a state of equilib-
rium that optimally uses the processors and communica-
tion resources given the constraints of the feature extrac-
tion algorithm. This optimal use of resources depends on
the � � lgP � � stages being equal in length. These stages
consist of TComp, �lgP � �� � TMerge, lgP � TComm and
TCommServer as depicted in Figure 4. From the model
we know that TComm and TCommServer are bounded by
L� P � �k � i � g�. Thus, if we constrain TMerge � TComp,
the stages will be of equal length given that the following is
satisfied:

TComp � L� P � �k � i � g� (7)

 NP S M S M S S(Server)

 NP S M S M S M

 NP S M S M S S(Server)

 NP S M S M S M

(1,3,5,7) (1,5) (3,7) (3) (7) (7) (8)

 (1,2,5,6) (1,2) (5,6) (5) (6) (6) (8)

 (1,2,3,4) (1,3) (2,4) (2) (4) (4) (8)

 (1,3,5,7) (1,5) (3,7) (3) (7) (7) (8)

Figure 4. Parallel Pipeline. The parallel reduction
pipeline of seven stages used in execution on eight proces-
sors

4.5 The Speedup Model

The speedup model incorporates speedups due to both
parallel and pipelined execution as depicted in Figure 4 for
an eight processor example. Assume that N is the number
of items (pages) and P is the number of processors. The
sequential execution time is

TSeq � N � TComp � �N � �� � TMerge (8)

Where TComp is the time to perform feature extraction
on one item and TMerge is the merge time for adding the
extracted features from a new item to the existing list of
features.

The parallel execution time for one item-set of P
�

items
is

TPar �
N
P
�

� TComp �
N
P
�

�

�TMerge � TComm� � lgP

(9)

Here TComp is the feature extraction time for one item,
TMerge is an upper bound on the merge time, and TComm

is an upper bound on the communication time for one or
more items. The first term, N

P
�

� TComp, represents the exe-

cution time to extract features from N items using P
�

pro-
cessors. The second term, N

P
�

� �TMerge � TComm� � lgP ,

represents the reduction (combination) of the N
P
�

item-sets.

Each reduction of P
�

items in a set takes lgP merges
and lgP communications on a single set of P

�
proces-

sors, so the total reduction time for each set of P
�

items is
�TMerge � TComm� � lgP .

Generalizing from Figure 4 we have

Pipeline depth � � � lgP � � (10)

This derives directly from the model. However, the ac-
tual maximum theoretical speedup is � � lgP due to a func-
tional hazard in the first two stages of the pipeline (for ex-
ample in Figure 4 processors �,�,	,
 perform feature ex-
traction in pipeline stage one, then �,	 send to �,
, so none
of these four processors are free until the end of stage two
and no other processors are available because they are being
use in other (e.g., reduction) operations when the pipeline is
full).

The speedup due to parallel execution of one item-set on
a single set of P

�
processors is

SPar �
TSeq

TPar

�
P

� � lgP � �

(11)

This assumes that TComp � TMerge during sequential
execution and that TComp � TMerge � TComm during par-
allel execution (i.e., all pipeline stages are approximately
equal4.

Our model assumes continuous, never-ending opera-
tion of the feature extraction process in an application
such as updating a large search engine database (e.g.,
www.google.com). We thus assume that the overall
speedup is the product of the speedup resulting from par-
allel extraction of features from a group of P

�
items (i.e.,

TSeq
TPar

above) multiplied by the depth of the pipeline. The
overall speedup is thus

4Note that the constraint of equal pipeline stages is required for opti-
mality of the pipeline operation as discussed previously in Section 4

Soverall � Spar � SPipeline

�
TSeq

TPar
� Pipeline depth

�
P

� � lgP � �
� � � lgP

(12)

Note that the � � lgP in the numerator approaches the
� � lgP � � in the denominator as P grows5. Thus, in the
limit Soverall approaches P , a linear speedup.

5 Implementation

In this section we outline pseudo-code for the core com-
putation and communication pattern of the implementation
of our parallel, pipelined reduction model. The while loop
in the code below implements continuous, never-ending
feature extraction as discussed in Section 4.5. The for
loop and the parameter blksize control the communication
pattern described and depicted in Section 4.3 (Figure 2).
The if clause determines whether a processor sends or
receives a message. It is these loops that are (software)
pipelined and executed in parallel.

MPI Init(&argc, &argv);
MPI Comm size(&size);
P=size;
MPI Comm rank(&rank);
output=NP extractor(url);
while(true)
f

blksize=2;
for(i=1:i=lg(P):i++)
f

if(rank%blksize�0 and rank%blksize�blksize/2)
f

buf=output;
dest=rank+blksize/2;
MPI Send(buf,dest);
output=NP extractor(url);

g
else
f

source=rank-blksize/2;
MPI Recv(buf,source);
list=buf;
Merge(output,list);

g
blksize=blksize*2;

5Note that no speedup is achieved from parallelism alone until P � �,
but as our results indicate speedups are achievable for P � � due to the
presence of the pipeline

g
g

6 Results

In this section we present empirical results that support
the speedup model presented in Section 4.5. In the empiri-
cal results depicted below, the merge operation is insignif-
icant and as a result we have a sequential execution time
of

TSeq � n � TComp (13)

The empirical results also do not include the final stage
of the pipeline depicted in Figure 4, which is the merge or
send to server. Thus we have

Pipeline depth � � � lgP (14)

Due to the functional hazard outlined in Section 4.5, the
pipeline depth is actually � � lgP � �.

Parallel execution time is now

TPar �
n
P
�

� TComp �
n
P
�

�

�TMerge � TComm� � �lgP � ��

(15)

Therefore, the overall speedup is

Soverall �
P

� � lgP � �
� �� � lgP � �� (16)

Input
Size

Runtime on
1 processor

Runtime on
4 processors

Speedup

50 ����

 �
�
� ���

150 �	��
� �
���	 ��
�
450
	��	� �	
�

 ����
1350 ���
��� �����
 ����
4050 	�����
 �
����� ���

12150 �	
�
�
�
��	��� ����

Table 2. Speedup results on four processors (in seconds)

For 4 processors, Soverall � �
�����

� �� � �� �� � �.

For 8 processors, Soverall � �
�����

� �� � �� �� � �.

This speedup is confirmed by the results presented in Ta-
ble 2 and Table 3. As the input size grows, the speedup
approaches Soverall as predicted by the speedup model.

Input
Size

Runtime on
1 processor

Runtime on
8 processors

Speedup

50 ����

���� ��
�
150 �	��
� ��	��� ���	
450
	��	� ������ ����
1350 ���
��� 	�	��� ��	�
4050 	�����
 ���
��� ����
12150 �	
�
�
� ������� ����

Table 3. Speedup results on eight processors (in seconds)

7 Conclusion and Future Work

We have presented an analytical model for textual fea-
ture extraction in a highly distributed, massively paral-
lel environment. The model can be employed to esti-
mate parameters for optimally efficient use of a network of
PCs/workstations. The model is thus suitable for use on
a web-based mega-cluster such as that being developed by
Data Synapse, Inc. [22] that scales to thousands of PCs in a
highly distributed environment.

We have also presented a framework that combines the
speedup achieved from both parallel and pipelined execu-
tion in one model. This is the only model that we are aware
of that achieves a linear speedup with a parallelized asso-
ciative operation (that involves a reduction). The class of
applications that leverages this model is not “embarrass-
ingly parallel” and as such encompasses a wide range of
algorithms that heretofore have not been amenable to linear
speedup.

The model is currently undergoing verification and scal-
ing on a large number of PCs in a series of experiments
being conducted by our research team at Lehigh University
in conjunction with Data Synapse, Inc. We also extend a
welcome to research efforts involved in the construction of
extremely large clusters of PCs/workstations that have sup-
port for MPI-like runtime systems - we would like to per-
form additional scalability experiments on such platforms.

8 Acknowledgements

Co-author William M. Pottenger expresses his deep grat-
itude for his salvation to his Lord and Savior, Jesus Christ.
We also gratefully acknowledge the assistance of Peter Lee
and Jamie Bernardin, President and CTO of Data Synapse,
Inc. In addition, we are quite grateful to Tianhao Wu and
Faisal M. Khan for their diligent aid in coding and making
the runs recorded in the results section of this article. Fi-
nally, our thanks to Denise Williams, HPDC-10 editor at
IEEE, for her gracious extension of the deadline in the ex-
tenuating circumstances that existed at the time of writing.

References

[1] R. Bader, M. Callahan, D. Grim, J. Krause, N. Miller, and
W. Pottenger. The role of the HDDItm collection builder in
hierarchical distributed dynamic indexing. In Proceedings
of Textmine ’01 Workshop, First SIAM International Con-
ference on Data Mining, April 2001.

[2] F. Bouskila. The role of semantic locality in hierarchical dis-
tributed dynamic indexing and information retrieval. Mas-
ter’s thesis, University of Illinois at Urbana-Champaign, De-
partment of Electrical and Computer Engineering, 1999.

[3] E. Brill. A simple rule-based part of speech tagger. In Pro-
ceedings of the Third Conference on Applied Natural Lan-
guage Processing. ACL, 1992.

[4] E. Brill. A corpus-based approach to Language learn-
ing. PhD thesis, University of Pennsylvania, Department
of Computer and Information Science, 1993.

[5] E. Brill. Some advances in rule-based part of speech tag-
ging. In Proceedings of the Twelfth National Conference on
Artificial Intelligence, 1994.

[6] C. T. Center. Fundamentals of distributed memory comput-
ing, 1999. www.tc.cornell.edu/Services/Edu.

[7] G. Cooke. Semantag. gcooke@rt66.com,
http://www.rt66.com/gcooke/.

[8] D. Culler, R. Karp, D. Patterson, A. Sahay, E. Santos,
K. Schauser, R.Subramonian, and T. Eicken. LogP: A prac-
tical model of parallel computation. Commun. ACM, 39(11),
1996.

[9] D. Eager, J. Zahorjan, and E. Lazowska. Speedup versus
efficiency in parallel systems. IEEE Trans. Computs., 38(3),
1989.

[10] H. Flatt and K. Kennedy. Performance of parallel proces-
sors. Parallel Computing, 12(1), 1989.

[11] I. T. Foster. Designing and Building Parallel Programs.
Addison-Wesley, 1994.

[12] W. Francis and H. Kucera. Brown corpus manual. De-
partment of Liguistics, Brown University, 1979 revision,
http://www.hit.uib.no/icame/brown/bcm.html.

[13] A. Karp and H. Flatt. Measuring parallel processor perfor-
mance. Commun. ACM, 33(5), 1990.

[14] F. Leighton. Introduction to Parallel Algorithms and Archi-
tectures. Morgan Kaufmann, 1992.

[15] D. Nussbaum and A. Agarwal. Scalability of parallel ma-
chines. Commun. ACM, 34(3), 1991.

[16] D. Patterson and J. Hennessy. Computer Architecture A
Quantitative Approach. Morgan Kaufmann, 1996.

[17] W. Pottenger. Theory, Techniques, and Experiments in Solv-
ing Recurrences in Computer Programs. PhD thesis, Univer-
sity of Illinois at Urbana-Champaign, Department of Com-
puter Science, May 1997.

[18] W. Pottenger, Y. Kim, and D. Meling. Data Mining for Sci-
entific and Engineering Applications, chapter HDDITM: Hi-
erarchical Distributed Dynamic Indexing. Kluwer Academic
Publishers, 2001.

[19] W. M. Pottenger. The role of associativity and commutativ-
ity in the detection and transformation of loop-level paral-
lelism. In Proceedings of the 12th ACM International Con-
ference on Supercomputing, July 1998.

[20] W. M. Pottenger and T. Yang. Computational Information
Retrieval, chapter Detecting Emerging Concepts in Textual
Data Mining. SIAM, 2001.

[21] J. Sanz and R. Cypher. Data reduction and fast routing: A
strategy for efficient algorithms for message-passing parallel
computers. Algorithmica, 1992.

[22] www.datasynapse.com.

