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Few tools exist that address the challenges facing researchers in the Textual Data Mining (TDM) 
field.  Some are too specific to their application, or are prototypes not suitable for general use.  More 
general tools often are not capable of processing large volumes of data. We have created a Textual 
Data Mining Infrastructure (TMI) that incorporates both existing and new capabilities in a reusable 
framework conducive to developing new tools and components.  TMI adheres to strict guidelines 
that allow it to run in a wide range of processing environments – as a result, it accommodates the 
volume of computing and diversity of research occurring in TDM. A unique capability of TMI is 
support for optimization. This facilitates text mining research by automating the search for optimal 
parameters in text mining algorithms. In this article we describe a number of applications that use 
the TMI.  A brief tutorial is provided on the use of TMI. We present several novel results that have 
not been published elsewhere. We also discuss how the TMI utilizes existing machine-learning 
libraries, thereby enabling researchers to continue and extend their endeavors with minimal effort. 
Towards that end, TMI is available on the web at hddi.cse.lehigh.edu. 
 

1. Introduction 
 
The Textual Data Mining (TDM) field was born in part from the necessity to mine large 
amounts of text automatically. The field involves both supervised and unsupervised 
approaches to learning that are employed in applications such as the automatic detection 
of trends in textual data1. Such learning tasks are costly both in terms of implementation 



and computation due to a number of factors, including the sparse nature of some textual 
data representations. 

As a result, researchers often spend substantial time creating tools necessary to access, 
clean and model textual data.  Many tools exist but are often specific to the application 
for which they were designed or are not publicly available.  In response we have designed 
and implemented a Text Mining Infrastructure (TMI), which we have placed in the public 
domain.  Our TMI supports familiar tools and extends their capabilities. 

In section 2 we discuss our framework for Textual Data Mining using a simplified 
example.  Some of the basic terminology adopted in the TMI is outlined in section 3.  In 
section 4 we show the practical advantages of the TMI in a discussion of several novel 
TDM applications that are built upon the TMI framework.  TMI can be used for 
traditional textual processing applications, such as search and retrieval, as well for 
applications that merge text processing and machine learning, such as Emerging Trend 
Detection.  Section 5 discusses the advantages of TMI in comparison to other TDM 
systems.  In section 6 we provide a brief tutorial on the use of TMI by examining a 
simple example. We offer conclusions and outline future work in sections 7 and 8. 

 

2. Background and Example Application 
 
The TMI extends and enhances the Hierarchical Distributed Dynamic Indexing2 system 
developed under the direction of William M. Pottenger, Ph.D. In order to facilitate our 
research in TDM, we first undertook a study of several text mining applications. Based 
on this study, we identified three basic components that appear regularly in TDM 
applications: a repository of unprocessed text data (also known as a corpus), a relational 
mapping between documents and their features, and one or more machine-learning 
methods. 

Figure 1 depicts these three components for the TMI implementation of a research 
system for the detection of emerging trends in textual data. The figure outlines the 
emerging trend detection process and demonstrates how the various TMI components 
interact. 

In the first step shown in Figure 1, items (e.g., documents) in repositories are parsed 
and words are tagged with their part of speech prior to the extraction of significant 
features.  In this application, clusters of textual features are identified using an 
unsupervised learning technique that results in the generation of a Semantic Model3. 
Statistical attributes from the Semantic Model, along with a truth set composed of both 
emerging and non-emerging trends, are used to produce a training set for a machine-
learning algorithm. 



In the example depicted in Figure 1, the machine learning algorithms in the WEKA4 
library are used to identify emerging trends. The system also provides interfaces to 
MLC++5 and other libraries. A researcher can easily design and integrate algorithms into 
TMI. The performance of a given application is evaluated using standard metrics such as 
precision and recall. 

Fig. 1. The emerging trend detection driver using TMI 
The entire process depicted in Figure 1 is fully automated in TMI and is described in 

more detail in Section 4.1. A unique capability of TMI not shown in Figure 1 is support 
for optimization. Applications implemented using TMI can be automatically optimized 
across a variety of parameters and optimization targets. Support for optimization 
facilitates text mining research by automating the search for optimal parameters in, for 
example, machine learning algorithms. 

 
 
 
 



3.  An Overview of TMI 
 
 In this section we give an overview of key aspects of TMI.  We focus on the concepts 
that are most relevant to users of the system. A more detailed tutorial for the use of TMI 
is available on the web at hddi.cse.lehigh.edu. 
 
 
3.1. Support for multiple platforms 
 
TMI supports many variants of the Unix operating system as well as Windows 98, NT, 
2000 and XP. The GCC 3.2 and Visual Studio .Net 2003 C++ compilers are supported in 
these environments, respectively. Through the JNI, TMI also supports Java SDK 1.3 and 
1.4.  Many of these capabilities are employed in the example application discussed in 
Section 4.1 on emerging trend detection. 
 
 
3.2. Use of a common object interface 
 
A set of abstract interfaces was created to represent the framework for TDM described 
above. These interfaces include representations for Repositories, Items, Features, and the 
other concepts that will be discussed in the applications presented in Section 4a. 
 
 
3.3. Use of a component framework 
 
TMI uses a component framework to allow rapid and intuitive design of experiments. 
Components form the building blocks for the experiments, with each component 
representing some processing operation. Thus, each component is responsible for either 
producing an object or producing a scalar output. To perform its operation a component 
may use any number of other objects or scalar inputs.  The user can dynamically query a 
component for information about its inputs and outputs. 

 
 

3.4. Use of configurations 
 
To enable these generic components to perform specific experiments they must be 
configured. A Configuration object is provided for this purpose. This object holds a 
number of scalars that can be used by the component. Components may have optional or 
required inputs which obtain their values from the configuration. The values in the 

                                                 
a For a complete listing of the interfaces that are provided and descriptions of their use see the online 
documentation at http://hddi.cse.lehigh.edu. 



configuration need not be singular values and ranges and sets of values can be specified 
for looping and optimization applications. 
 
 
3.5. Evaluation 
 
TMI implements interfaces in support of a variety of evaluation methodologies and 
metrics. For example, TMI supports the evaluation of search and retrieval applications 
using gold standard collections. Such gold standard collections can be employed to 
automatically assess performance of an information retrieval algorithm based on the 
metrics of precision and recall.  TMI also supports the widely used method of n-fold 
cross-validation for evaluation. 
 
 
3.6. Use of component paths 
 
To further ease experiment design TMI introduces the concept of a component path. A 
component path describes the serial execution of a set of components.  A component path 
is itself a component, and this is useful because it allows more complex driver design 
through abstraction. For example, a component path may be designed for ten-fold cross-
validation and then reused in other component paths. 

It is possible to loop over a particular component in the execution path. This allows a 
researcher to automatically iterate over a set of values for a parameter. The ability to loop 
over a set of object dependencies is also provided.  We have found it useful to loop over a 
number of different feature generators, for instance, to perform the same experiment on 
words, noun phrases, and collocations.  

The component path also provides an optimization framework. In this framework the 
researcher chooses a set of parameters and an evaluation metric for a particular 
component. An optimization method is then selected and used to identify the values of 
the provided parameters that maximize (or minimize) the given metric.  

 
 

4. Applications 
 
The development of TMI was guided by several applications in different domains of 
TDM. In this section we review several of these applications. We describe the emerging 
trend detection system in depth and briefly discuss the others. These applications have 
been implemented using TMI and we hope by presenting them to shed light on the utility 
of the TMI system. 

We begin with some notation:  A driver is a component that assembles and 
coordinates other components of TMI in a specific task.  A driver instantiates the 
components in a particular experiment, describes their dependencies, places them in a 
component path, and then executes the component path. 



Repositories are divided into items.  An item is a textual object such as a document.  
Each item is composed of features. For example, a noun phrase (feature) may occur in a 
single article (item), in a collection of documents (repository). 

Many applications require a relational representation of the textual data.  We term one 
form of this mapping an Item Feature Set (IFS). The IFS maintains the relationship 
between items and features (such as which features occur in which items). This data 
structure serves as an interface from the repository to one or more machine-learning 
methods.   

 

4.1. Emerging Trend Detection 
 
A trend can be classified as emerging if it is growing in interest and utility over time.  
XML is an example of such a trend that emerged in the mid-90s. Emerging Trend 
Detection (ETD) in TDM is an active research area, and to the best of our knowledge our 
efforts represent the only attempts to fully automate the process of trend detection.  To 
this end we have developed a new approach for ETD using the TMI. The methods 
developed are extensions of those reported in6. An overview of previous research and 
commercial systems that can be used to track trends can be found in1.  

At a high level, the operation of the TMI ETD driver is depicted in Figure 1. Its 
purpose is to apply both unsupervised and supervised learning techniques in the 
construction of a model capable of predicting the emergence of trends. The goal is to 
employ the model in a classification task such as technology forecasting. 

The data for the experiments reported in this article was a selection of INSPEC®7 
abstracts drawn from the fields of Data Mining and Object Oriented Programming. The 
data was represented in an XML format. An XML Repository Builder component was 
used to create repositories from the INSPEC® source. This supported selection of 
relevant years. We used the Abstract field as our item text. 

 
 

4.1.1. Feature Generation.  
 
Maximal noun-phrases were used for features in these experiments.  TMI was used to 
parse and tag the text in the XML repositories with part-of-speech markups per Ref. 8.  
The feature extractor was based on a lexical analyzer created with GNU’s Flex (Ref. 9) b.    
 
 
4.1.2. Construction of Item Feature Sets  
 
Four item feature sets (IFSs) were built: one for the target year (e.g., 2003), one for the 
year prior to the target year, one for the year two years prior to the target year, and one 

                                                 
b An early prototype of the feature generator was presented in Bader et al.  (Ref. 13). 



for remaining prior years.  Three tables were created in each IFS to efficiently store 
occurrence statistics.  The first contained all the items in the repository and the second 
contained all the features in those items.  The third contained a set of item-feature 
relations between the first two tables. Item-feature relations record item-feature-specific 
information such as the occurrence of a specific feature in a specific item.  Unique IDs 
were also assigned to items and features so they could be represented uniformly 
throughout the system and located efficiently. 
 
 
4.1.3. Unsupervised Model Construction 
 
The first machine-learning process performed unsupervised clustering of features in two 
stages: semantic network generation and semantic network partitioning (clustering).   

Semantic Network Generation 
A semantic network is a graph of nodes connected by weighted arcs.  In this case, each 

node represented an extracted feature and arc weights between nodes were computed 
using an asymmetric similarity measure10.  Since each IFS essentially consisted of an 
inverse item index, similarity measures based on co-occurrence frequencies were 
straightforward to calculate.   

Semantic Network Partitioning 
One approach to network partitioning involved an unsupervised learning process that 

discovered significant regions of semantic locality (sLoc) within each of the semantic 
networks 3.  

A second attempt employed results from Ref. 11  in which a new framework for 
understanding Latent Semantic Index12 was established. This framework is based upon 
the concept of term co-occurrences and, using this framework, an alternate term 
clustering approach was applied.  

Classes were derived from two TMI interfaces to accomplish this: Semantic Model, 
which represented the partitioning process, and Cluster, which represented the regions of 
semantic locality.   

 
 

4.1.4. Supervised Model Construction 
 
The second machine-learning process performed was supervised – in this case, decision 
tree induction.  

Attribute Interface 
The TMI Attribute interface supports attributes in one of four forms: nominal, 

Boolean, integer, or real.  An example attribute in this application is the occurrence 



frequency of a feature (e.g., “XML”) two years prior to the target year. As noted in 
section 4.1.2, this frequency information is computed during formation of item feature 
sets. Attribution occurs in this case by passing the IFS to an attribute object.  An attribute 
must be implemented such that a check is performed that ensures that the type and range 
of the value is valid. 

Truth Set Interface 
Truth Set is an interface that supports input of labeled data. For example, in this 

application the truth set consisted of feature/classification pairs.  Features (e.g., noun 
phrases) were classified as emerging or non-emerging by a domain expert. 

TMI incorporates a standard for truth sets.  Each set consists of triples comprised of a 
textual representation of the object being classified, a classification for the object, and a 
relevance measure. 

It will be helpful at this point to clarify the difference between a truth set triple and an 
instance. Traditionally an instance (or exemplar) is a single example of the concept to be 
learned in a machine-learning application.  A triple in a truth set is related to, but not the 
same, as an instance.  In this application, a single triple was a feature/classification pair 
such as {“XML”, emerging, 1.0}.  Each triple was used to generate actual instances 
comprised of time-sensitive statistical attribute values associated with the feature.   

The TMI provides a parser that generates a truth set object from an input file created 
by a domain expert. This input file format (TFF) and the concept of a truth set are 
specific to the TMI. 

Training Set Interface 
A training set is represented in the TMI as a set of instances, where instances consist 

of a set of attributes with an optional class. Any attribute can be nondestructively ignored 
or activated at the training set level to support attribute subset selection.  An attribute 
subset selection interface exists, but was not used in this driver.  The training set interface 
allows access to a training set in one of three ways: through a WEKA or MLC++ file 
format, or directly by iterating through the instances in memory.  Each instance in the 
training set in this application consisted of seven attributes: 

 
• the occurrence of the feature in the target year 
• the occurrence of the feature in the year preceding the target year 
• the occurrence of the feature two years before the target year 
• the occurrence of the feature in all years before the target year 
• the number of features in the cluster containing the feature in the target year 
• the number of features in the cluster containing the feature in the year preceding the 

target year 
• the number of words in the feature longer than length four  
 



The first four attributes were computed from the item feature sets discussed in section 
4.1.2, the second two from the models discussed in section 4.1.3, and the last one from 
the feature itself as an estimate of the degree of semantics it bears. 

Training Set Generation Interface 
To ease the use of the various machine-learning methods available in TMI, a training 

set generator abstract class was designed to support creation of a training set from a truth 
set.  As noted, in this application, the truth set contained features and their domain expert 
classifications (emerging or non-emerging). The generator first employed the parser to 
read in the domain expert truth triples from a file.  Given the item feature sets and the 
models discussed previously, the generator then created a training set consisting of the 
seven attributes listed above, along with a nominal value for the classification. 

Machine-Learning Algorithm Interface 
Since drivers may use multiple machine-learning algorithms within the same 

framework, a separate machine-learning algorithm abstract class was designed in TMI.  
This interface supports access to both predefined and programmer implemented training 
and classification methods, whether supervised or unsupervised in nature. 

In this application an instantiation of a machine-learning algorithm class used JNI to 
launch the JVM and load a training set using WEKA utilities. The driver then called the 
J48 decision tree classifier in the WEKA library to perform training and testing using the 
training set 4. 
 
 
4.1.5. Evaluation in ETD 
 
An Evaluator interface was designed in TMI to handle the many forms of evaluation 
required for validation of various techniques and algorithms in TDM. A machine-learning 
driver, for example, can employ evaluators to test a model that results from training. 

In this application, precision, recall and Fβ were employed using true and false 
positives (TP and FP) and false negatives (FN) where precision = TP/(TP+FP) and 
recall = TP/(TP+FN), and Fβ averages precision and recall when β=1. The machine-
learning driver evaluated the decision tree using ten-fold cross validation implemented in 
TMI. 
 
 
4.1.6. Experiments in ETD. 
 
The TMI driver for ETD was compiled and executed using Visual Studio .Net 2003 in a 
Windows XP environment on a 2.0 GHz Pentium 4 with 512 MB of main memory.  Five 
repositories were used for experimentation. The first four repositories were formed from 
the INSPEC® database using the search term “data mining”.  The repositories were 



formed by varying the current year for the experiments between 1996, 1997, 1998, and 
1999 (referred to as INSPEC® 96, 97, 98, and 99 respectively). All years after the target 
year were discarded. The fifth repository was generated from INSPEC® using the search 
term “object oriented software engineering” (OOSE repository).  

An example decision tree is presented in Figure 2. This decision tree was generated 
using the LSI clustering method and the INSPEC® 98 repository. Note that the time 
sensitive Concepts_in_Cluster (number of features in the cluster of a feature in the target 
year) is used in this decision tree. 

Both clustering methods were successful in automatically detecting emerging trends. 
A summary of the results can be found in Table 1. In the table the P columns report 
precision, the R columns report recall, and the Fβ columns report Fβ (β=1). As detailed in 
Ref. 14, the results are of high quality overall with Fβ greater than or equal to eighty 
percent in all cases. 

 
  Occurrences_in_All_Noncurrent_Years <= 2 
  |   Long_Words_In_Feature <= 1 
  |   |   Concepts_in_Cluster <= 14: notrend  
  |   |   Concepts_in_Cluster > 14: trend  
  |   Long_Words_In_Feature > 1: trend       
  Occurrences_in_All_Noncurrent_Years > 2 
  |   Occurrences_in_Current_Year <= 21 
  |   |   Occurrences_in_All_Noncurrent_Years <= 3 
  |   |   |   Occurrences_in_Year_Before_Previous_Year <= 1: notrend  
  |   |   |   Occurrences_in_Year_Before_Previous_Year > 1: trend  
  |   |   Occurrences_in_All_Noncurrent_Years > 3: notrend  
  |   Occurrences_in_Current_Year > 21 
  |   |   Long_Words_In_Feature <= 2: trend  
  |   |   Long_Words_In_Feature > 2: notrend  

 
Fig. 2. Decision tree for the detection of emerging trends 

Table 1. Automatic ETD results 
 
 
 
 
 
 
 
 
 
 
 
                                                 
c Results are not reported for the INSPEC® 98 repository using sLoc because these results were not 
available at the time of writing. 

 P P R R Fβ Fβ 
 sLoc LSI sLoc LSI sLoc LSI 
INSPEC 96 0.90 0.87 0.79 0.89 0.84 0.88 
INSPEC 97 0.83 0.82 0.77 0.93 0.80 0.87 
INSPEC 98 NAc 0.71 NAc 0.93 NAc 0.81 
INSPEC 99 0.82 0.79 0.84 0.92 0.83 0.85 
OOSE 0.81 0.86 0.90 0.93 0.85 0.89 



4.1.7. Summary of ETD Application 

The ETD driver was written completely in C++ and used the JNI interface to access the 
WEKA library in multiple components.  The driver compiled successfully under GCC 
2.96, GCC 3.1, GCC 3.2 and Microsoft Visual Studio 6.0 and .Net 2003.  It is composed 
of a set of relatively small components that can be reused in other applications. The LSI 
clustering was added to the existing ETD framework in less than a day of programming. 
Parameters that could be varied automatically in the process of optimization include the 
semantic network threshold, the semantic network pruning parameter, and the attributes 
used in the training set. This example also illustrates the use of TMI to test competing 
algorithms, in this case sLoc and our LSI-based clustering technique. 

 
 

4.2. Massively Parallel Feature Extraction 
 
One of the primary tasks in mining distributed textual data is feature extraction. The 
widespread digitization of information has created a wealth of data that requires novel 
approaches to feature extraction in a distributed environment. We have designed and 
implemented a massively parallel model for feature extraction in a highly distributed 
environment using TMI.  

In previous work, we have shown that speedups linear in the number of processors are 
achievable for applications involving reduction operations such as feature extraction15. 
We are also in the process of validating an analytical model for estimating 
communication and execution time complexity with empirical observations based on the 
extraction of features from a large number of pages on the World Wide Web.  In this 
paper we present for the first time our approach using the TMI architecture in this 
application. 

In this application, processors act in concert to download items, extract features, and 
build an item feature set in a parallel-pipelined fashion. There are three TMI components 
in this application. The first component handles the generation of features per the 
algorithms discussed in section 4.1.1. The second performs a merge operation in the 
construction of the item feature set. The third performs a multithreaded download of data 
from various web servers such as the US Government Patent and Trademark Office 
server. All three components are integrated into a Single Program Multiple Data (SPMD) 
C++ Message Passing Interface (MPI) framework. 

 
 

4.2.1. Multithreaded Download. 
 
In this application we implemented a multithreaded crawler that allows the results from 
many web sites to be retrieved in parallel. In this way we effectively use the web as a 
massive repository. By overlapping network access with on-the-fly conversion from 



HTML to XML, we achieved the throughput required to sustain feature generation and 
item feature set construction in the parallel pipeline. 
 
 
4.2.2. Feature Generation 
 
Per the design goals of TMI, as noted the ETD feature generation component discussed in 
section 4.1.1 was reused in this application. The feature generation component was 
enhanced with the development of an XML parser to handle multiple types of data. Thus, 
the generator used a variety of feature extraction techniques in order to process the 
different types of data involved (e.g., author lists vs. titles, etc.).  
 
 
4.2.3. Construction of Item Feature Sets 
 
The second component implemented using TMI was the construction of item feature sets. 
Figure 3depicts the merge operation that implements item feature set construction in the 
context of the parallel-pipeline model of execution. 

The leaf nodes of different shades in Figure 3 represent the execution of the feature 
extraction task and the interior nodes of each reduction tree represent the merging 
operation. This figure depicts execution on eight processors. The arrow edges represent 
the communication that takes place between processors. Dotted lines combined with 
arrow edges together form reduction trees that compute item feature sets. 

Fig. 3. Item Feature Set construction in Parallel-Pipeline model of execution 

 

4.2.4. Summary of Massively Parallel Feature Extraction 

The massively parallel feature extraction TMI components were written in C++.  They 
compiled successfully under GCC 2.7, GCC 3.1, and Microsoft Visual Studio 6.0.  The 
components were targeted at and executed on the Los Lobos computational grid at the 



National Computational Science Alliance High Performance Computing Center at the 
University of New Mexico in Albuquerque, NM. Los Lobos consists of 256 IBM 
NetFinity 4500R dual processor servers running the Red Hat Linux operating system and 
linked via a Myrinet interconnect.  

Preliminary results from execution on Los Lobos confirm the near-linear speedups 
predicted by the model reported in 15. Further tests have been run on the National Center 
for Supercomputing Applications IA-32 grid, producing both consistent and improved 
results from those obtained on Los Lobos. 

This second application highlights the reuse of the ETD feature generator with a 
distributed variant of the item feature set construction phase implemented in the merge 
operation. We were able to achieve this readily using TMI despite the very different 
execution environments of these two applications. 

 

4.3. Classification of Emotions in Chat 
 
In this application of TMI, we present an approach to discovering the emotion present in 
Internet chat messages. The approach uses tools to reconstruct the speech from chat 
messages and tallies the number of distinct phonemes in each message. The method uses 
a vector of the phoneme counts as well as other statistically derived attributes in an N-
Nearest-Neighbor Instance-Based Learning model.  

TMI was used as a utility to assist in the process of training set development for this 
application. This presents a relevant example of how TMI can be used to assist with text 
processing to allow a more traditional data mining approach to be applied to textual data.  
This application’s organization is similar to the ETD driver in this respect. Further details 
can be found in Ref. 16. 
 
 
4.3.1. Results of Emotion Classification 
 
This application performed well showing results exceeding 90% Fβ (β=1) in many cases. 
Table 2 portrays partial results obtained. These results were obtained by varying the 
number of nearest neighbors used for classification between 10 and 42. Three different 
attribute subsets were used as indicated by Full, Phonemes, and Subset. The full attribute 
set used all the variables including the statistical ones; the phonemes set used only the 
phonemes; and the final subset used a number of automatic attribute subset selection 
techniques to identify an optimal subset. The results reported utilized ten-fold cross 
validation on a set of 1201 messages. 
 



Table 2. K-Nearest-Neighbor instance based learning to  
identify emotion in chat messages 

 
 
4.3.2. Summary of Emotion Detection in Chat Messages 
 
This application was written in C++ and successfully compiled using Microsoft Visual 
Studio 6.0. It was not suitable for use in a Linux environment due to the reliance on a 
Microsoft library for speech production. The components were executed on a Pentium IV 
desktop PC. In this research we have shown that phonemes are related to the emotion 
expressed in a chat message. We have also shown that a machine learning model can use 
this information to detect emotion with reasonable accuracy. This will provide a strong 
foundation for further higher-level analysis of chat data. 

TMI proved useful in designing this application because it enabled easy conversion of 
raw tagged textual data into a highly structured format. This is a good example of the 
utility of TMI for handling the many complexities that arise in the fields of text mining 
and statistical natural language processing. 

5. Related Work 

 
In this section we discuss research in the development of tools for automating machine 
learning and text processing tasks.  In some cases, the TMI provides an extension of these 
tools.  We will also contrast other systems with the TMI.  
 

5.1. WEKA 
 
WEKA is a machine-learning library developed at the University of Waikato 4.  It 
provides Java implementations of several methods for machine learning, data 
preprocessing, and evaluation.  WEKA uses the Attribute-Relation File Format (ARFF) 
for input of training and testing data. 

WEKA is, however, primarily a generic machine learning library, and as such lacks 
specific support for certain functionality critical to text mining research. WEKA, in fact, 
does not provide any functionality outside of machine learning and some very basic 
experiment design capabilities. Notably absent for our purposes are pre/post-processing 
capabilities, and training set generation. Finally, WEKA is written in Java, which limits 
its performance in various ways. 

Neutral Happy
Prec. Recall F-beta Prec. Recall F-beta k

Full Avg 0.841 0.985 0.9074 0.829 0.594 0.6911
Max 0.840 0.993 0.9101 0.902 0.597 0.7185 37

Phonemes Avg 0.840 0.978 0.9035 0.778 0.606 0.6814
Max 0.840 0.979 0.9042 0.792 0.613 0.6911 23

Subset Avg 0.839 0.987 0.9072 0.859 0.595 0.7030
Max 0.841 0.993 0.9101 0.902 0.597 0.7185 37



WEKA through its experimenter interface also provides some limited optimization 
capability. In particular, it is possible to combine a number of training sets with various 
machine learning methods and a combination of options (which set parameter values). 
The experimenter interface then generates results for each possible combination. This is a 
naïve method of search that does not employ optimization. The experimenter also lacks 
the ability to optimize entire applications such as our ETD example above; rather it only 
isolates the machine learning step. 

Nonetheless, TMI supports WEKA at several junctures in order to provide a flexible 
environment for rapid prototyping of text mining algorithms and applications.  For 
instance, a TMI training set object can save itself as a WEKA ARFF file, and can be 
seamlessly loaded into WEKA.  Or, a WEKA method can be wrapped in a machine-
learning algorithm as with the ETD driver and used in a TMI optimization loop. 

 

5.2. MLC++ 
 
MLC++ 5 is another well-known machine-learning library.  The most recent version is 
available from SGI for use by data mining researchers.  It is comparable to WEKA but 
does not have the same scope in that it only supports supervised learning.  MLC++ is 
however written in C++ and presents opportunities for use in data-intensive applications 
that WEKA may handle less readily. As a result, TMI also supports seamless access to 
MLC++. 

 

5.3. GATE 
 
The General Architecture for Textual Engineering (GATE) 17  is similar to TMI in some 
respects.  Using the Java beans component model, it however focuses on feature 
generation.  The highly developed GATE library contains many advanced methods for 
extracting and tagging textual features. 

GATE offers more flexibility than the current feature generation algorithms 
implemented in TMI.  GATE does not, however, provide a development environment in 
which entire applications can be evaluated in an optimization loop. This is a critical point 
that needs to be emphasized, because it is for this reason that we undertook the 
development of TMI.  In essence, we have found that it is not practical to evaluate a text-
mining algorithm outside the context of an actual application.  For this reason, we felt 
that the time was ripe to develop a framework that facilitated both algorithm development 
and evaluation in the context of applications. 

 
 



5.4. D2K 
 
Data to Knowledge18 is a rapid prototyping data flow environment for data mining 
applications written in Java. Like TMI, D2K provides modules for assembly into a data 
mining system.  It can also filter data and visualize results. 

TMI offers several advantages over D2K.  First, TMI is targeted specifically at text 
mining, and as discussed earlier, thus has intrinsic support for textual feature extraction 
and textual clustering. Second, as with WEKA, D2K is a Java-based environment and as 
such suffers from similar limitations. Finally, TMI has been designed from the outset to 
support optimization, something which none of these competing systems have as an 
explicit design goal. 

 

5.5. YALE 
 
Yet Another Learning Environment (YALE) 19 is another Java based machine learning 
library. An important capability that is similar to (albeit simpler than) our concept of a 
“component” is the YALE concept of an “operator”. An operator (similar to a C++ 
operator) performs a basic operation. Operators can be embedded in the same way that 
component paths are in TMI. The data dependencies of such paths are however not 
explicitly established as in TMI. All execution is performed sequentially with a few 
exceptions. Specifically, YALE supports feature subset selection and parameter search. 
Similar to WEKA, the parameter search can only be performed using a naïve method of 
search. Experiments are described either through a GUI or XML configuration. 

YALE is lacking a number of properties necessary for the complexity of TDM. 
Primarily, there is the need in TDM applications to describe more complex data and 
execution paths. Due to the deficiencies described above this is not possible with YALE. 
Secondly, naïve search for optimal parameters becomes of little or no use with complex 
applications such as ETD that often occur in TDM. Finally, YALE essentially supports 
only the manipulation of training sets, and as such is clearly oriented at machine learning 
and not TDM in general. 
 

6. A Brief Tutorial 

 
In this section we will provide a brief tutorial for the use of TMI. A more in depth tutorial 
is provided at: http://hddi.cse.lehigh.edu/docs/tutorial.pdf. The brief tutorial provided 
here only gives a brief sketch of how to create an experiment in TMI. Anyone who 
wishes to do serious work in TMI should read the full tutorial. This brief tutorial will 
examine the construction of a sample TDM system and then the conversion of this system 
to TMI code. 
 



 
6.1. The System Description 
 
The example system that will be described here is implemented in the ClusterTest driver 
that is supplied with the default install of TMI. The ClusterTest driver performs the 
following operation: load a set of files, extract words from the files, create a graph from 
these words using a co-occurrence metric for arc weight, and finally partition this graph 
to create semantic clusters of the words. This process has a number of applications 
including emerging trend detection and document clustering. 

The method that will be used to design the example system has three main steps. First, 
the components to be used are selected from the component library. Next, diagrams are 
constructed to describe the relationship and configuration of these components. Finally, 
these diagrams are converted to C++ code that utilizes TMI. Converting the diagrams to 
code is straightforward as there are ways to directly describe the relationships that occur 
in the diagrams through code. We plan to automate this process using a Graphical User 
Interface that we are currently designing. 
 
 
6.2. The Components 
 
The first step to creating a TMI experiment is selecting the proper components to perform 
the desired experiment. To select these components one must decide how to obtain the 
data, what operations to perform on the data, and in most cases how to evaluate the 
results of these operations. 

A number of components will be used to build the example system. A brief 
description is provided here of each of these components. 
 
FileRepBuilder: Builds a Repository from a list of files 
CCTagger: Brill’s part of speech Tagger 20. 
WordExtractor: Extracts word Features from text 
GenFg: Coordinates Feature generation/extraction  
GenIfs: Coordinates statistics about Items and Features 
CoNetImp: Builds a SemanticNetwork which is represented as an asymmetric graph with 

features as nodes and a co-occurrence metric used for arc weight between the nodes. 
TarModel: Creates a semantic model by partitioning the SemanticNetwork described 

above using the sLoc algorithm 3. 
ModelBuilder: Coordinates the unsupervised feature clustering process  
 
 
6.3. Data and Execution Flow Design 
 
After the proper components are selected they must be organized in two ways. First, a 
model of the data flow must be constructed. All TDM applications on some level involve 



progressive processing from a data source to some eventual result. The data flow model 
for the example we are examining can be seen in Figure 4. This model uses three types of 
relations represented by light lines, dark lines with one dot, and dark lines with two dots. 
The light lines represent inputs that must be obtained from a configuration object. The 
single dot lines represent a dependency in which the object with the dot is using the 
object without a dot. The double dot lines represent that the object to the right is using as 
an input an output from the object on the left. Thus, FileRepBuilder takes an input 
LOCATION which is the location of the file to build a repository out of and has an 
output REPOSITORY, the produced repository, which is used by GenIfs. 

Next, an execution flow diagram is designed. This diagram contains the same items 
that are present in the data flow model. An order of execution is designed for these 
components. In the simplest case this will be a sequential execution which will be 
represented by lines with arrows indicating the order of execution. This is the case for our 
sample application and the diagram can be seen in Figure 5. Not all objects must be 
included as the execution of some objects is implicit (e.g., CoNetImp and TarModel in 
the diagram).  

 
Fig. 4. Data Flow Diagram 

 
Fig. 5. Execution Flow Diagram 

 

 
6.4. Coding the Data Flow Diagram 
 
Components can be declared in the code in any order as long as all components exist 
before they are used. Configurations are also declared here to account for the necessary 
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inputs. The first Component in Figure 4 is the FileRepBuilder. It is instantiated with the 
following code: 
 
TdmPtr<RepositoryBuilder>  

 rm(new FileRepBuilder("…")); 
 
Notice that this is simply the instantiation of the FileRepBuilder object which is 
represented in Figure 4. The configuration can be created as follows: 
 
TdmPtr<Configuration> cRm = new  

Configuration("…"); 
cRm->setParameter("LOCATION",input); 
 
This sets the parameter LOCATION to the value held in the value input. The rest of the 
components are created similarly.  With these components created it is possible to begin 
describing the relationships between the components. An example is that the GenFg 
(instantiated as fg) uses the CCTagger (instantiated as cc). This is described as follows: 
 
fg->usesAs("TAGGER",cc.generic()); 
 
In this example TAGGER is the name of the input on fg that cc is being used for.  
Another type of relationship that is described is the relationship where a product of a 
component is used as an input, for example in the case of the RepositoryBuilder 
(instantiated as rm) and GenIfs (instantiated as ifs). This relationship is described as 
follows: 
 
ifs->usesProductAs 

("REPOSITORY",*rm,"REPOSITORY"); 
 
This code declares that the output REPOSITORY of rm is used to satisfy the input 
REPOSITORY of ifs. The complete code for this example can be found in the full 
tutorial available online and is included with the default install of TMI. 
 
 
6.5. Coding the Execution Flow Diagram 
 
Since the execution of this example is sequential it is straightforward to code the 
execution flow. The first step is to define a component path as follows:  
 
TdmPtr<TdmComponentPath> path =  

new TdmComponentPath(…,true); 
 



The first value is the name of the component path and the second value specifies whether 
to use debug or quiet execution. Once the component path is created the components 
must be added in order. For this example the code would look like this: 
 
path->addSequential(rm->component(),cRm); 
path->addSequential(cc->component()); 
path->addSequential(fe->component()); 
path->addSequential(fg->component()); 
path->addSequential(ifs->component()); 
path->addSequential(mb->component(),mbConf); 
 
Notice that the components which are connected in the execution diagram occur in this 
code in the order that they are to be executed. Also, the components which require inputs 
have the appropriate Configurations specified. Finally, the process method is called to 
begin the execution path specified utilizing the data flow that has been designed. This 
will begin execution of the experiment that has been designed. 
 

7. Future Work 
 
It is our hope that TMI will prove useful to the point that it becomes the basis for a 
standard framework for textual data mining that co-exists with and leverages other 
frameworks such as WEKA and MLC++. In this way we hope to provide a suitable 
platform for advancing TDM research.  We anticipate that sharing TMI openly will 
promote the advancement of the field.  

One of the main remaining tasks that lie ahead is the formal incorporation of 
customized optimization algorithms in TMI. Currently only a small class of the available 
optimization algorithms are suitable for our purpose. We have experience in the field of 
optimization 21,22 and plan to release a version of TMI that includes a variety of ‘off-the-
shelf’ optimization algorithms. The current version provides only one such algorithm, a 
gradient based bound constrained quasi-Newton method.  

Finally, we are developing a parallel component path. This will take advantage of the 
modular properties of our component architecture to allow accurate description of 
experiments. In particular, native parallelism will be described in the parallel component 
path definition. This parallelism will then be exploited when the driver is executed. We 
expect to support both shared memory and message passing environments in this way in 
the next release of TMI. 

 
 
 



8. Conclusion 
 
We have detailed a novel infrastructure and library that meet a real need on the part of 
textual data mining (TDM) researchers.  Our framework supports multiple platforms, 
large data sets, existing tools and reusable components.  We have offered a number of 
novel techniques in this infrastructure including the ability to design arbitrarily complex 
systems and perform advanced optimization. Meanwhile, our system remains conducive 
to rapid prototyping and research. We have discussed several applications that are already 
using TMI successfully and illustrated these advances.  Our goal is to continue to refine 
TMI into a standard framework that can be widely used for TDM research and 
development. To that end we have officially released TMI, available online at 
hddi.cse.lehigh.edu. 
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