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Abstract—Support Vector Machines are emerging as a 
powerful machine-learning tool.  Logarithmic Number 
Systems (LNS) utilize the property of logarithmic compression 
for numerical operations. We present an implementation of a 
digital Support Vector Machine (SVM) classifier using LNS in 
which considerable hardware savings are achieved with no 
significant loss in classification accuracy.  

I. INTRODUCTION 

Cognitive systems capable of gathering information, 
detecting significant events, making decisions and/or 
coordinating operations are of value in a wide variety of 
application domains, from biomedical devices to automated 
military units.   The core functionality of such machine 
learning involves mathematical kernels employing 
commonly used operators [6], typically implemented as 
software-based solutions executing on general-purpose 
machines. Unfortunately, such solutions require significant 
resources for execution and may consequently be unsuitable 
for portable applications.  Efficient hardware 
implementations of machine-learning techniques yield a 
variety of advantages over software solutions: increased 
processing speed, reliability and battery life as well as 
reduced cost and complexity.  

However, aside from a plethora of work in neural-network 
implementations [4], there are few hardware-based machine-
learning technologies.  This paper describes preliminary 
research towards the development of robust, hardware-based 
kernel solutions beyond neural networks for application-
specific deployment.  Specifically, the research employs 
Support Vector Machines (SVMs), a representative kernel-
based machine-learning technique especially suited to high-
dimensional data [6].   

We use logarithmic arithmetic for its energy-efficient 
properties [3,9].  Successful deployment of logarithmic 
functionality in neural networks has been shown to increase 
reliability and reduce power usage [2]. We anticipate further 
progress in kernel-based SVMs since the majority of 
machine-learning kernels employ multiplication and/or 

exponentiation operators, the performance of which 
logarithmic computation significantly improves. 

In the following sections, we review SVM and LNS 
backgrounds along with related work in hardware-based 
machine-learning.  We then present our design, its 
implementation and its verification.  We follow with a 
conclusion and a discussion of future work. 

II. SUPPORT VECTOR MACHINES 

The Support Vector Machine (SVM) algorithm is based 
on statistical learning theory [8].  It has a simple and intuitive 
algorithm.  It performs excellently for complex real-world 
problems that may be difficult to analyze theoretically. 

 SVMs are an extension of linear models that are capable 
of nonlinear classification.  Linear models are incapable of 
representing a concept with nonlinear boundaries between 
classes.  SVMs employ linear models to represent nonlinear 
class boundaries by transforming the input, or instance 
space, into a new space using a nonlinear mapping. 

 This transformation is facilitated through the use of 
kernels.  The SVM algorithm can be treated linearly within 
the instance space, whereas the choice of various kernels 
may map the core operations transparently to a higher 
dimensional space.  Consequently, complex pattern 
recognition and classification approaches can abstractly be 
represented linearly. 

 Following this transformation, a Maximum Margin 
Hyperplane (MMH) that separates the instances by class is 
learned, thereby forming a decision boundary. The MMH 
comes no closer to a given instance than it must; in the ideal 
case it optimally separates classes.  Support vectors are the 
training instances closest to the MMH.  A set of support 
vectors thus defines the decision boundary for a given set of 
instances. This simplifies the representation of the decision 
boundary since other training instances can be disregarded. 



SVM training is a complex quadratic optimization 

problem for obtaining the support vectors X
�

(with class 
values Y), their coefficients α, and a threshold value b. 

 Support Vector classification (in a simple two-class 
problem) simply looks at the sign of a decision function.  A 

test instance T
�

 is classified by the following decision 
function [6], [8]: 
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resultant feature space determines the functional form of the 
support vectors; thus, different kernels behave differently.  
Some common kernels are [6], [8]: 
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Radial Basis Function (RBF):    
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III.  HARDWARE-BASED MACHINE LEARNING 

 There exists a significant lack of hardware-based 
machine-learning systems.  With the exception of neural 
networks [4], the advantages of portable, dedicated machine-
learning ASICs are yet to be explored.  

 The Kerneltron [5], developed at John Hopkins is a 
recent SVM classification module.  The internally analog, 
externally digital computational structure employs a 
massively parallel kernel computation structure.  It 
implements linear and RBF kernels.  Due to the internal 
analog computation, the system is able to achieve a system 
precision resolution of no more than 8 bits. 

Anguita et al. [1] present a recent endeavor in the field.  
They propose the design of a fully digital architecture for 
SVM training and classification employing the linear and 
RBF kernels.  The result is a highly optimal SVM ideal for 
hardware synthesis.  The minimal word size they are able to 
use is 20 bits. 

IV.  LOGARITHMIC NUMBER SYSTEMS 

In contrast to [1,5], we use logarithmic arithmetic due to 
its high degree of suitability for machine-learning-kernel 
operations.  Based on the once ubiquitous engineer’s slide 
rule [3], Logarithmic Number Systems (LNS) are an 
alternative to fixed- and floating-point arithmetic.  LNS 
utilize the property of logarithmic compression for numerical 
operations.  Within the logarithmic domain, multiplication 
and division can be treated simply as addition or subtraction.  

Hardware computation of these operations is significantly 
faster with reduced complexity.  Employing LNS involves an 
overhead of conversion to and from the logarithmic domain 
that is insignificant relative to the reduction in kernel 
computational complexity [3].  

 Unlike Floating-Point (FP) systems, the relative error of 
LNS is constant and LNS can often achieve an equivalent 
signal-to-noise ratio with fewer bits of precision compared to 
conventional FP or fixed-point architectures [3,9].  Similar to 
FP architectures, LNS implementations can represent 
numbers with relative precision; numbers closer to zero such 
as those used in SVMs, are represented with better precision 
in LNS than in fixed-point systems. 

  LNS provide other benefits conducive to a low-power, 
reliable application.  The logarithmic conversion is 
inherently a compression algorithm as well.  LNS are 
particularly cost effective when an application performs 
acceptably with reduced precision. Given successful analog 
implementations of SVMs [5], we suspected digital low-
precision LNS SVMs would be feasible.  Such reduced 
precision permits a diminished word size. In turn, this offers 
lower power consumption.  Furthermore, in CMOS 
technology, power is consumed when individual bits switch.  
Conventional multiplication involves extensive computation 
and bit switching.  In LNS, since multiplication is a simple 
addition, the number of bits and the frequency of their 
switching are significantly reduced [9]. 

 A disadvantage of LNS is that more hardware is 
required for addition and subtraction than for multiplication 
and division.   Addition and subtraction in LNS are handled 
through lookup tables: s(z) = log2(1+2z) and d(z) = log2|1-2z|. 
For systems that tolerate low precision [2,3,9,10], this lookup 
often requires minimal hardware.  Upper case are for reals 
used in the SVM algorithm and lower case are for their 
corresponding LNS representations.  Thus, let x = log2| X | 
and y = log2| Y |.  LNS uses X+Y = Y (1+X/Y ), equivalent to 
log2 ( | X | + |Y | ) =  y + s(x-y), and log2| X - Y | = y + d(x-y). 
The function s(z) is used for sums, and d(z) is used for 
differences, depending on the signs of X and Y.  

 Neural-network implementations using LNS already 
exist [2] that exploit properties of s(z) and d(z) to 
approximate a sigmoid related to the RBF- and sigmoid-
SVM kernels. The mathematical nature of kernel-based 
operations, given the emphasis on multiplication and 
exponentiation operations, make LNS an attractive 
technology for SVMs.  

V. HARDWARE DESIGN AND SIMULATION 

A. Finite Precision Analysis 

In our previous work [7], we explored the necessary 
precision requirements for an implementation of SVM 
classification in LNS.  Additional statistical analysis 
presented here employing Analysis of Variance leads to the 
conclusion that in general an LNS architecture of three 
precision bits (leading to a word size of nine bits) has a 



statistically similar performance to a traditional floating-
point architecture. Thus, for the hardware implementation, it 
was decided to design an architecture with four bits of LNS 
precision.  Four bits of precision would require an LNS word 
size of ten bits, which is an attractively small requirement 
when compared with traditional architectures and existing 
analog and digital SVMs. 

B. Hardware Design 

We employed the linear SVM kernel.  Experiments in [7] 
indicated that the linear kernel was often either the best or 
second-best choice for implementation.  The linear kernel is 
a desirable choice for implementation due to a shortcut 
possible during classification.  During SVM training with a 
linear kernel, it is possible to store a weight vector 
representing the weight of each attribute.  As a result, linear-
kernel classification only requires a dot product of the 
unknown instance against the weight vector; there is no need 
to store all the support vectors and their alpha values.  
Consequently, hardware realization of a linear kernel SVM is 
simpler than other kernels, making it an attractive choice. 

The classifier can be utilized in a variety of situations.  It 
is conceivable that unknown instances may be presented in 
different manners.  For example, within the context of 
classifying whether a patient has diabetes, a medical lab 
could have many tests available that are systematically input, 
or the classifier could be part of a device that is applied to an 
individual person, testing one instance at a time.  A classifier 
architecture should be capable of being deployed in both 
environments. 

Our design is capable of being utilized in such multiple 
environments.  It can be part of a system systematically 
receiving instances to classify, perhaps from a ROM.  The 
system would provide the classifier a clock signal, and 
would input a new instance every set number of cycles.  On 
the other hand, the classifier could be part of a device that 
tests an instance intermittently.  In this case, the classifier 
would receive a new instance along with a clock signal.  
Upon completion of the classification, the clock signal would 
cease to be applied, thereby “deactivating” the classifier until 
a new instance is ready. 

Fig. 1 illustrates our architecture for a linear kernel SVM 
classifier in LNS.  In general when an unknown instance is 
presented to the classifier, the Register is initialized to b, 
from (1), and the Counter is initialized to zero.  The instance 
to be classified is stored in the unknown-instance buffer, and 
the support-vector information holds the weights.  Thus the 
Multiply-and-Accumulate (MAC) unit performs as many 
operations as there are attributes of the instance vectors.   
Finally, the SVM classification result is the sign of the value 
stored in the Register. 

 

Figure 1.  Linear Kernel SVM Classification LNS Architecture 

C. Design Simulations and Verification 

The design was simulated to ascertain the performance.  
Our work in [7] utilized certain machine-learning datasets to 
ascertain the classification accuracy of LNS implementations 
with varying precisions versus traditional floating-point 
results.  We thus compared the results of our four-bit 
precision hardware design against the results [7] of floating-
point software and four-bit precision LNS simulations.  This 
was done for four machine-learning datasets.  Table I 
summarizes the results.   

As Table I indicates, the LNS hardware realization seems 
to yield results comparable to experimental LNS software 
results [7].  The differences have been traced to the fact that 
an exact representation of zero is not available in LNS.  Thus 
results extremely close to or exactly zero may be 
misclassified.  A study of SVM operations, however, 
indicated that this is a rare circumstance.   

A statistical analysis of the results was performed using a 
two-sample t-test.  The t-test indicated a p-value of 0.9155 
when comparing the LNS hardware and FP software results, 
and a p-value of 0.9528 when comparing LNS hardware and 
software results.  The p-value is also known as the observed 
significance level.  A simplified explanation of the p-value 
that compares two methods is that the closer a p-value is to 
1.0, the more similar the two results are.  Thus, it can be 
stated with confidence that the differences between the 
accuracies of the LNS hardware and LNS software 
implementations are statistically insignificant. 

 

 

 



TABLE I.  CLASSIFICATION ACCURACY LINEAR KERNEL WITH 4-BIT 
PRECISION 

 

Dataset  LNS  
Hardware 

LNS 
Software 

Simulation 

Floating 
Point 

Software 
Diabetes 75.0 78.5 79.2 

Votes 93.8 94.3 94.4 
Heart Risk 79.2 81.2 81.2 
SONAR 83.6 78.2 74.0 

 

The hardware synthesis of the various LNS SVM 
classifiers indicates a reduced and efficient hardware 
complexity.  Table II indicates the slices out of the 768 used 
on a simple Xilinx FPGA, the Spartan3 XC3s50pq208-5 
device.  In order to evaluate the complexity of the LNS-
based operations, Table II also lists the slices used for 
comparison systems using conventional arithmetic. 

TABLE II.  SLICES USED ON XILINX FPGA DURING SYNTHESIS 

Dataset 10-bit LNS 10-bit FX 20-bit FX 
Diabetes 218 181 358 

Votes 244 245 490 
Heart Risk 246 232 455 
SONAR 629 638 1244 

D. Comparision with Fixed-Point Implementation 

In order to evaluate the efficiency of an LNS-based SVM 
classifier, it is necessary to compare it against a traditional 
standard.  To that extent, 10- and 20-bit Fixed Point (FX) 
implementations were synthesized, and the resulting number 
of slices are shown in Table II.  The 10-bit FX version 
classifies less accurately than is acceptable and is shown here 
for comparison because the LNS design also uses a 10-bit 
word size.  For example, on the diabetes problem, the 10-bit 
FX has an accuracy of only 34.9.    According to [1], a 20-bit 
FX version offers adequate accuracy, and therefore is a more 
realistic benchmark to compare the LNS against.  It is 
noteworthy that on most datasets, the fully functional LNS 
version takes roughly the same number of slices as the 
inadequate 10-bit FX version.  When compared against the 
more realistic 20-bit FX version, the LNS classifiers are 
about one-half the size of the FX classifiers.  (The 20-bit FX 
SONAR dataset is too big to fit in the Spartan3 
XC3s50pq208-5 device.)  Such area savings should translate 
into equivalent reduction in power consumption. 

VI.  CONCLUSIONS AND FUTURE WORK 

A. Conclusions 

We have presented a novel digital SVM employing 
logarithmic arithmetic.  The LNS SVM compares favorably 
with the only other work done in digital SVM hardware [1], 
and a sample fixed-point implementation.  The hardware 
realization of the LNS SVM Classification module is 
efficient in terms of hardware complexity and word size, and 

statistically has the same performance as software 
simulations.  Logarithmic Number Systems represent an 
extremely attractive technology for realizing digital hardware 
implementations of SVMs and possibly other machine 
learning approaches. 

B. Future Work 

This paper has described the first steps towards 
developing robust, kernel-based hardware machine-learning 
platforms employing logarithmic arithmetic.  These 
platforms will serve as foundations for low-power machine-
learning research, and for porting software solutions to 
hardware configurations.   

 Our future goals include exploring precision 
requirements for hardware LNS-based SVM training. With 
the singular exception of the (non-LNS) recent work in [1], 
to the best of our knowledge no research into hardware-
based training has been accomplished.  Our other goals 
include employing an increased range of possible kernels, 
and expanding LNS hardware architectures to other 
machine-learning algorithms. 
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