
Hardware-Based Support Vector Machine
Classification in Logarithmic Number Systems

Faisal M. Khan, Mark G. Arnold and William M. Pottenger
Computer Science and Engineering

Lehigh University
Bethlehem, Pennsylvania

faisalmkhan@gmail.com,{marnold,billp}@cse.lehigh.edu

Abstract—Support Vector Machines are emerging as a
powerful machine-learning tool. Logarithmic Number
Systems (LNS) utilize the property of logarithmic compression
for numerical operations. We present an implementation of a
digital Support Vector Machine (SVM) classifier using LNS in
which considerable hardware savings are achieved with no
significant loss in classification accuracy.

I. INTRODUCTION

Cognitive systems capable of gathering information,
detecting significant events, making decisions and/or
coordinating operations are of value in a wide variety of
application domains, from biomedical devices to automated
military units. The core functionality of such machine
learning involves mathematical kernels employing
commonly used operators [6], typically implemented as
software-based solutions executing on general-purpose
machines. Unfortunately, such solutions require significant
resources for execution and may consequently be unsuitable
for portable applications. Efficient hardware
implementations of machine-learning techniques yield a
variety of advantages over software solutions: increased
processing speed, reliability and battery life as well as
reduced cost and complexity.

However, aside from a plethora of work in neural-network
implementations [4], there are few hardware-based machine-
learning technologies. This paper describes preliminary
research towards the development of robust, hardware-based
kernel solutions beyond neural networks for application-
specific deployment. Specifically, the research employs
Support Vector Machines (SVMs), a representative kernel-
based machine-learning technique especially suited to high-
dimensional data [6].

We use logarithmic arithmetic for its energy-efficient
properties [3,9]. Successful deployment of logarithmic
functionality in neural networks has been shown to increase
reliability and reduce power usage [2]. We anticipate further
progress in kernel-based SVMs since the majority of
machine-learning kernels employ multiplication and/or

exponentiation operators, the performance of which
logarithmic computation significantly improves.

In the following sections, we review SVM and LNS
backgrounds along with related work in hardware-based
machine-learning. We then present our design, its
implementation and its verification. We follow with a
conclusion and a discussion of future work.

II. SUPPORT VECTOR MACHINES

The Support Vector Machine (SVM) algorithm is based
on statistical learning theory [8]. It has a simple and intuitive
algorithm. It performs excellently for complex real-world
problems that may be difficult to analyze theoretically.

 SVMs are an extension of linear models that are capable
of nonlinear classification. Linear models are incapable of
representing a concept with nonlinear boundaries between
classes. SVMs employ linear models to represent nonlinear
class boundaries by transforming the input, or instance
space, into a new space using a nonlinear mapping.

 This transformation is facilitated through the use of
kernels. The SVM algorithm can be treated linearly within
the instance space, whereas the choice of various kernels
may map the core operations transparently to a higher
dimensional space. Consequently, complex pattern
recognition and classification approaches can abstractly be
represented linearly.

 Following this transformation, a Maximum Margin
Hyperplane (MMH) that separates the instances by class is
learned, thereby forming a decision boundary. The MMH
comes no closer to a given instance than it must; in the ideal
case it optimally separates classes. Support vectors are the
training instances closest to the MMH. A set of support
vectors thus defines the decision boundary for a given set of
instances. This simplifies the representation of the decision
boundary since other training instances can be disregarded.

SVM training is a complex quadratic optimization

problem for obtaining the support vectors X
�

(with class
values Y), their coefficients α, and a threshold value b.

 Support Vector classification (in a simple two-class
problem) simply looks at the sign of a decision function. A

test instance T
�

 is classified by the following decision
function [6], [8]:

)),(()(bXTKYsignTf
i

iii += �
���

α (1)

 The choice of the kernel function),(ji XXK
��

and the

resultant feature space determines the functional form of the
support vectors; thus, different kernels behave differently.
Some common kernels are [6], [8]:

Linear:)(),(YXYXK
����

•= (2)

Polynomial: dYXYXK)(),(
����

•= (3)

Radial Basis Function (RBF):

))2/(||||exp(),(22 σYXYXK
����

−−= (4)

Sigmoid:))(tanh(),(Θ+•Κ= YXYXK
����

 (5)

III. HARDWARE-BASED MACHINE LEARNING

 There exists a significant lack of hardware-based
machine-learning systems. With the exception of neural
networks [4], the advantages of portable, dedicated machine-
learning ASICs are yet to be explored.

 The Kerneltron [5], developed at John Hopkins is a
recent SVM classification module. The internally analog,
externally digital computational structure employs a
massively parallel kernel computation structure. It
implements linear and RBF kernels. Due to the internal
analog computation, the system is able to achieve a system
precision resolution of no more than 8 bits.

Anguita et al. [1] present a recent endeavor in the field.
They propose the design of a fully digital architecture for
SVM training and classification employing the linear and
RBF kernels. The result is a highly optimal SVM ideal for
hardware synthesis. The minimal word size they are able to
use is 20 bits.

IV. LOGARITHMIC NUMBER SYSTEMS

In contrast to [1,5], we use logarithmic arithmetic due to
its high degree of suitability for machine-learning-kernel
operations. Based on the once ubiquitous engineer’s slide
rule [3], Logarithmic Number Systems (LNS) are an
alternative to fixed- and floating-point arithmetic. LNS
utilize the property of logarithmic compression for numerical
operations. Within the logarithmic domain, multiplication
and division can be treated simply as addition or subtraction.

Hardware computation of these operations is significantly
faster with reduced complexity. Employing LNS involves an
overhead of conversion to and from the logarithmic domain
that is insignificant relative to the reduction in kernel
computational complexity [3].

 Unlike Floating-Point (FP) systems, the relative error of
LNS is constant and LNS can often achieve an equivalent
signal-to-noise ratio with fewer bits of precision compared to
conventional FP or fixed-point architectures [3,9]. Similar to
FP architectures, LNS implementations can represent
numbers with relative precision; numbers closer to zero such
as those used in SVMs, are represented with better precision
in LNS than in fixed-point systems.

 LNS provide other benefits conducive to a low-power,
reliable application. The logarithmic conversion is
inherently a compression algorithm as well. LNS are
particularly cost effective when an application performs
acceptably with reduced precision. Given successful analog
implementations of SVMs [5], we suspected digital low-
precision LNS SVMs would be feasible. Such reduced
precision permits a diminished word size. In turn, this offers
lower power consumption. Furthermore, in CMOS
technology, power is consumed when individual bits switch.
Conventional multiplication involves extensive computation
and bit switching. In LNS, since multiplication is a simple
addition, the number of bits and the frequency of their
switching are significantly reduced [9].

 A disadvantage of LNS is that more hardware is
required for addition and subtraction than for multiplication
and division. Addition and subtraction in LNS are handled
through lookup tables: s(z) = log2(1+2z) and d(z) = log2|1-2z|.
For systems that tolerate low precision [2,3,9,10], this lookup
often requires minimal hardware. Upper case are for reals
used in the SVM algorithm and lower case are for their
corresponding LNS representations. Thus, let x = log2| X |
and y = log2| Y |. LNS uses X+Y = Y (1+X/Y), equivalent to
log2 (| X | + |Y |) = y + s(x-y), and log2| X - Y | = y + d(x-y).
The function s(z) is used for sums, and d(z) is used for
differences, depending on the signs of X and Y.

 Neural-network implementations using LNS already
exist [2] that exploit properties of s(z) and d(z) to
approximate a sigmoid related to the RBF- and sigmoid-
SVM kernels. The mathematical nature of kernel-based
operations, given the emphasis on multiplication and
exponentiation operations, make LNS an attractive
technology for SVMs.

V. HARDWARE DESIGN AND SIMULATION

A. Finite Precision Analysis

In our previous work [7], we explored the necessary
precision requirements for an implementation of SVM
classification in LNS. Additional statistical analysis
presented here employing Analysis of Variance leads to the
conclusion that in general an LNS architecture of three
precision bits (leading to a word size of nine bits) has a

statistically similar performance to a traditional floating-
point architecture. Thus, for the hardware implementation, it
was decided to design an architecture with four bits of LNS
precision. Four bits of precision would require an LNS word
size of ten bits, which is an attractively small requirement
when compared with traditional architectures and existing
analog and digital SVMs.

B. Hardware Design

We employed the linear SVM kernel. Experiments in [7]
indicated that the linear kernel was often either the best or
second-best choice for implementation. The linear kernel is
a desirable choice for implementation due to a shortcut
possible during classification. During SVM training with a
linear kernel, it is possible to store a weight vector
representing the weight of each attribute. As a result, linear-
kernel classification only requires a dot product of the
unknown instance against the weight vector; there is no need
to store all the support vectors and their alpha values.
Consequently, hardware realization of a linear kernel SVM is
simpler than other kernels, making it an attractive choice.

The classifier can be utilized in a variety of situations. It
is conceivable that unknown instances may be presented in
different manners. For example, within the context of
classifying whether a patient has diabetes, a medical lab
could have many tests available that are systematically input,
or the classifier could be part of a device that is applied to an
individual person, testing one instance at a time. A classifier
architecture should be capable of being deployed in both
environments.

Our design is capable of being utilized in such multiple
environments. It can be part of a system systematically
receiving instances to classify, perhaps from a ROM. The
system would provide the classifier a clock signal, and
would input a new instance every set number of cycles. On
the other hand, the classifier could be part of a device that
tests an instance intermittently. In this case, the classifier
would receive a new instance along with a clock signal.
Upon completion of the classification, the clock signal would
cease to be applied, thereby “deactivating” the classifier until
a new instance is ready.

Fig. 1 illustrates our architecture for a linear kernel SVM
classifier in LNS. In general when an unknown instance is
presented to the classifier, the Register is initialized to b,
from (1), and the Counter is initialized to zero. The instance
to be classified is stored in the unknown-instance buffer, and
the support-vector information holds the weights. Thus the
Multiply-and-Accumulate (MAC) unit performs as many
operations as there are attributes of the instance vectors.
Finally, the SVM classification result is the sign of the value
stored in the Register.

Figure 1. Linear Kernel SVM Classification LNS Architecture

C. Design Simulations and Verification

The design was simulated to ascertain the performance.
Our work in [7] utilized certain machine-learning datasets to
ascertain the classification accuracy of LNS implementations
with varying precisions versus traditional floating-point
results. We thus compared the results of our four-bit
precision hardware design against the results [7] of floating-
point software and four-bit precision LNS simulations. This
was done for four machine-learning datasets. Table I
summarizes the results.

As Table I indicates, the LNS hardware realization seems
to yield results comparable to experimental LNS software
results [7]. The differences have been traced to the fact that
an exact representation of zero is not available in LNS. Thus
results extremely close to or exactly zero may be
misclassified. A study of SVM operations, however,
indicated that this is a rare circumstance.

A statistical analysis of the results was performed using a
two-sample t-test. The t-test indicated a p-value of 0.9155
when comparing the LNS hardware and FP software results,
and a p-value of 0.9528 when comparing LNS hardware and
software results. The p-value is also known as the observed
significance level. A simplified explanation of the p-value
that compares two methods is that the closer a p-value is to
1.0, the more similar the two results are. Thus, it can be
stated with confidence that the differences between the
accuracies of the LNS hardware and LNS software
implementations are statistically insignificant.

TABLE I. CLASSIFICATION ACCURACY LINEAR KERNEL WITH 4-BIT
PRECISION

Dataset LNS
Hardware

LNS
Software

Simulation

Floating
Point

Software
Diabetes 75.0 78.5 79.2

Votes 93.8 94.3 94.4
Heart Risk 79.2 81.2 81.2
SONAR 83.6 78.2 74.0

The hardware synthesis of the various LNS SVM
classifiers indicates a reduced and efficient hardware
complexity. Table II indicates the slices out of the 768 used
on a simple Xilinx FPGA, the Spartan3 XC3s50pq208-5
device. In order to evaluate the complexity of the LNS-
based operations, Table II also lists the slices used for
comparison systems using conventional arithmetic.

TABLE II. SLICES USED ON XILINX FPGA DURING SYNTHESIS

Dataset 10-bit LNS 10-bit FX 20-bit FX
Diabetes 218 181 358

Votes 244 245 490
Heart Risk 246 232 455
SONAR 629 638 1244

D. Comparision with Fixed-Point Implementation

In order to evaluate the efficiency of an LNS-based SVM
classifier, it is necessary to compare it against a traditional
standard. To that extent, 10- and 20-bit Fixed Point (FX)
implementations were synthesized, and the resulting number
of slices are shown in Table II. The 10-bit FX version
classifies less accurately than is acceptable and is shown here
for comparison because the LNS design also uses a 10-bit
word size. For example, on the diabetes problem, the 10-bit
FX has an accuracy of only 34.9. According to [1], a 20-bit
FX version offers adequate accuracy, and therefore is a more
realistic benchmark to compare the LNS against. It is
noteworthy that on most datasets, the fully functional LNS
version takes roughly the same number of slices as the
inadequate 10-bit FX version. When compared against the
more realistic 20-bit FX version, the LNS classifiers are
about one-half the size of the FX classifiers. (The 20-bit FX
SONAR dataset is too big to fit in the Spartan3
XC3s50pq208-5 device.) Such area savings should translate
into equivalent reduction in power consumption.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We have presented a novel digital SVM employing
logarithmic arithmetic. The LNS SVM compares favorably
with the only other work done in digital SVM hardware [1],
and a sample fixed-point implementation. The hardware
realization of the LNS SVM Classification module is
efficient in terms of hardware complexity and word size, and

statistically has the same performance as software
simulations. Logarithmic Number Systems represent an
extremely attractive technology for realizing digital hardware
implementations of SVMs and possibly other machine
learning approaches.

B. Future Work

This paper has described the first steps towards
developing robust, kernel-based hardware machine-learning
platforms employing logarithmic arithmetic. These
platforms will serve as foundations for low-power machine-
learning research, and for porting software solutions to
hardware configurations.

 Our future goals include exploring precision
requirements for hardware LNS-based SVM training. With
the singular exception of the (non-LNS) recent work in [1],
to the best of our knowledge no research into hardware-
based training has been accomplished. Our other goals
include employing an increased range of possible kernels,
and expanding LNS hardware architectures to other
machine-learning algorithms.

ACKNOWLEDGMENTS

The authors would like to acknowledge Jie Ruan and
Philip Garcia for their contributions. Co-author William M.
Pottenger gratefully acknowledges His Lord and Savior,
Yeshua the Messiah (Jesus the Christ).

REFERENCES
[1] Davide Anguita, et al., “A Digital Architecture for Support Vector

Machines: Theory, Algorithm, and FPGA Implementation,” IEEE
Trans. Neural Networks, vol. 14, no. 5, pp. 993-1009, Sept. 2003.

[2] Mark Arnold, et al. "On the Cost Effectiveness of Logarithmic
Arithmetic for Back Propagation Training on SIMD Processors," Intl.
Conf. Neural Networks, Houston, TX, pp. 933-936, June 9-12, 1997.

[3] Mark Arnold. "Slide Rules for the 21st Century: Logarithmic
Arithmetic as a High-speed, Low-cost, Low-power Alternative to
Fixed Point Arithmetic," Online Seminar Elec. Engr., 2001.

http://www.techonline.com/community/20140

[4] Gert Cauwenberghs, Ed., Learning on Silicon: Adaptive VLSI Neural
Systems. Boston: Kluwer Academic Publishers, 1999.

[5] Roman Genov and Gert Cauwenberghs. "Kerneltron: Support Vector
Machine in Silicon," IEEE Trans. Neural Networks, vol. 14, no. 5,
pp. 1426-1434, 2003.

[6] Ralf Herbich. Learning Kernel Classifiers: Theory and Algorithms.
Cambridge: The MIT Press, 2002.

[7] Faisal M. Khan, Mark G. Arnold and William M. Pottenger. “Finite
Precision Analysis of Support Vector Machine Classification in
Logarithmic Number Systems,” IEEE Euromicro Symp.Digital
System Design (DSD), pp. 254-261, Sept. 2004.

[8] Vladimir Vapnik, The Nature of Statistical Learning Theory, Springer
Verlag, 1995.

[9] V. Paliouras and T. Stouraitis, “Low-power Properties of the
Logarithmic Number System,” Proc. 15th Symp. ARITH, Vail, CO,
pp. 229-236, June 2001.

[10] V. Paliouras, “Optimization of LNS Operations for Embedded Signal
Processing Applications,” Proc. ISCAS, Scottsdale, AZ, pp. 744-747,
2002.

