Hardware-Based Support Vector Machine
Classification in Logarithmic Number Systems

Faisal M. Khan, Mark G. Arnold and William M. Pottenger

Computer Science and Engineering
Lehigh University
Bethlehem, Pennsylvania
faisalmkhan@gmail.com,{marnold,billp}@cse.lehighued

Abstract—Support Vector Machines are emerging as a
powerful machine-learning tool. Logarithmic Number

exponentiation operators, the performance of which

Systems (LNS) utilize the property of logarithmic empression
for numerical operations. We present an implementabn of a
digital Support Vector Machine (SVM) classifier ushg LNS in
which considerable hardware savings are achieved thi no
significant loss in classification accuracy.

l. INTRODUCTION

Cognitive systems capable of gathering information,
making decisions amnd/

detecting significant events,
coordinating operations are of value in a wide etgriof
application domains, from biomedical devices toomsted
military units. The core functionality of such chéne
learning involves mathematical kernels
commonly used operators [6], typically implementas

employing

logarithmic computation significantly improves.

In the following sections, we review SVM and LNS
backgrounds along with related work in hardwarestas
machine-learning. We then present our design, its
implementation and its verification. We follow tvita
conclusion and a discussion of future work.

1. SUPPORTVECTORMACHINES

The Support Vector Machine (SVM) algorithm is based
on statistical learning theory [8]. It has a sienphd intuitive
algorithm. It performs excellently for complex kerld
problems that may be difficult to analyze theowdtc

SVMs are an extension of linear models that apaloke
of nonlinear classification. Linear models areajpable of

software-based solutions executing on general-8po representing a concept with nonlinear boundaries/dsn

machines. Unfortunately, such solutions requirenifigant
resources for execution and may consequently beitabte
for portable applications. Efficient
implementations of machine-learning techniques dyial
variety of advantages over software solutions: éased
processing speed, reliability and battery life asllvas
reduced cost and complexity.

However, aside from a plethora of work in neuraiamek
implementations [4], there are few hardware-basadhine-
learning technologies. This paper describes pneding
research towards the development of robust, hasthased
kernel solutions beyond neural networks for apfibica
specific deployment. Specifically, the researchpleys
Support Vector Machines (SVMSs), a representativiendde
based machine-learning technique especially stitdugh-
dimensional data [6].

We use logarithmic arithmetic for its energy-effict
properties [3,9]. Successful deployment of lodanitc
functionality in neural networks has been showintwease
reliability and reduce power usage [2]. We antitgplarther

classes. SVMs employ linear models to represenlimear
class boundaries by transforming the input, ingtance

hardware space, into a new space using a nonlinear mapping.

This transformation is facilitated through the use
kernels. The SVM algorithm can be treated lineavithin
the instance space, whereas the choice of varieusels
may map the core operations transparently to aehigh
dimensional space. Consequently, complex pattern
recognition and classification approaches can attyyr be
represented linearly.

Following this transformation, a Maximum Margin
Hyperplane (MMH) that separates the instances agscls
learned, thereby forming a decision boundary. THéHV
comes no closer to a given instance than it moghe ideal
case it optimally separates classe®ipport vectors are the
training instances closest to the MMH. A set opmsurt
vectors thus defines the decision boundary forvargset of
instances. This simplifies the representation ef diecision
boundary since other training instances can beghsded.

progress in kernel-based SVMs since the majority of

machine-learning kernels employ multiplication amd/

SVM training is a complex quadratic optimization Hardware computation of these operations is sicpnifily

problem for obtaining the support vectodé (with class
values Y)their coefficientsr, and a threshold valle

Support Vector classification (in a simple twosda
problem) simply looks at the sign of a decisionclion. A

test instanceT is classified by the following decision
function [6], [8]:

(1) =sgn(aYK(T, X)+b)

The choice of the kernel functioK (X, ,)Zj)and the

resultant feature space determines the functiarat bf the
support vectors; thus, different kernels behavéeudiftly.
Some common kernels are [6], [8]:

Linear: K(X,Y)=(X*Y) 2
Polynomial: K(X,Y) = (X *Y)® (3)
Radial Basis Function (RBF):

K(X,Y) =expC || X - Y|P /(20%)) (@

Sigmoid: K(X,Y) =tanh (X *Y)+©) (5)

I1l. HARDWARE-BASED MACHINE LEARNING

There exists a significant lack of hardware-basegyng division.

machine-learning systems. With the exception afirale
networks [4], the advantages of portable, dedicatadhine-
learning ASICs are yet to be explored.

faster with reduced complexity. Employing LNS itxes an
overhead of conversion to and from the logarithdomain
that is insignificant relative to the reduction kernel
computational complexity [3].

Unlike Floating-Point (FP) systems, the relativeeof
LNS is constant and LNS can often achieve an etpnva
signal-to-noise ratio with fewer bits of precisicompared to
conventional FP or fixed-point architectures [3,Sjmilar to
FP architectures, LNS implementations can represent
numbers with relative precision; numbers closezei® such
as those used in SVMs, are represented with hatteision
in LNS than in fixed-point systems.

LNS provide other benefits conducive to a low-pow
reliable application. The logarithmic conversios i
inherently a compression algorithm as well. LN ar
particularly cost effective when an application fpens
acceptably with reduced precision. Given successfalog
implementations of SVMs [5], we suspected digitav4
precision LNS SVMs would be feasible. Such reduced
precision permits a diminished word size. In tuhis offers
lower power consumption. Furthermore, in CMOS
technology, power is consumed when individual bitstch.
Conventional multiplication involves extensive cartgtion
and bit switching. In LNS, since multiplication éassimple
addition, the number of bits and the frequency lodirt
switching are significantly reduced [9].

A disadvantage of LNS is that more hardware is
required for addition and subtraction than for nplittation
Addition and subtraction in LNS &@ndled
through lookup tables(z) = log,(1+Z) andd(2) = log,|1-Z|.

For systems that tolerate low precision [2,3,9,10% lookup
often requires minimal hardware. Upper case aredals

The Kerneltron [5], developed at John Hopkins is &S€d in the SVM algorithm and lower case are fairth

recent SVM classification module.
externally digital computational structure employs
massively parallel kernel computation structure. t
implements linear and RBF kernels. Due to theriate
analog computation, the system is able to achiesgstem
precision resolution of no more than 8 bits.

The internallyakng,

Anguita et al. [1] present a recent endeavor infigild.
They propose the design of a fully digital arcHitee for
SVM training and classification employing the lineand
RBF kernels. The result is a highly optimal SVMad for
hardware synthesis. The minimal word size theyadte to
use is 20 bits.

IV. LOGARITHMIC NUMBER SYSTEMS

In contrast to [1,5], we use logarithmic arithmedige to
its high degree of suitability for machine-learnkernel
operations. Based on the once ubiquitous engmestide
rule [3], Logarithmic Number Systems (LNS) are
alternative to fixed- and floating-point arithmeticLNS
utilize the property of logarithmic compression famerical
operations. Within the logarithmic domain, muligation
and division can be treated simply as additionubtrsiction.

corresponding LNS representations. Thusxletlog,| X |
andy = log| Y |. LNS usex+Y =Y (1+X/Y), equivalent to

11og (| X[+])=y+ s(xy), and log| X - Y| =y + d(x-y).

The functions(?) is used for sums, and(z) is used for
differences, depending on the signs of X and .

Neural-network implementations using LNS already
exist [2] that exploit properties of(z and d(z) to
approximate a sigmoid related to the RBF- and sigmo
SVM kernels. The mathematical nature of kernel-Base
operations, given the emphasis on multiplicationd an
exponentiation operations, make LNS an attractive
technology for SVMs.

V. HARDWARE DESIGN AND SIMULATION

A. Finite Precision Analysis
In our previous work [7], we explored the necessary

anprecision requirements for an implementation of SVM

classification in LNS. Additional statistical agsis
presented here employing Analysis of Variance ldadbe
conclusion that in general an LNS architecture lukeée
precision bits (leading to a word size of nine)bitss a

statistically similar performance to a traditionédating-
point architectureThus, for the hardware implementation, it
was decided to design an architecture with fous bftLNS
precision. Four bits of precision would requirelNS word
size of ten bits, which is an attractively smaljugement
when compared with traditional architectures andtig
analog and digital SVMs.

B. Hardware Design

We employed the linear SVM kernel. Experimentrin
indicated that the linear kernel was often either best or
second-best choice for implementation. The linesnel is
a desirable choice for implementation due to a tshor
possible during classification. During SVM traigimwith a
linear kernel, it is possible to store a weight teec
representing the weight of each attribute. Assaltelinear-
kernel classification only requires a dot produdt the
unknown instance against the weight vector; thereineed
to store all the support vectors and their alphtuesa
Consequently, hardware realization of a linear #e8VM is
simpler than other kernels, making it an attractieice.

The classifier can be utilized in a variety of atfans. It
is conceivable that unknown instances may be pteddn
different manners. For example, within the contexkt
classifying whether a patient has diabetes, a medab
could have many tests available that are systeatigtioput,
or the classifier could be part of a device thatgplied to an
individual person, testing one instance at a tirAeclassifier
architecture should be capable of being deployedbath
environments.

Our design is capable of being utilized in suchtipid
environments. It can be part of a system systeadbti
receiving instances to classify, perhaps from a ROMe
system would provide the classifier a clock sigreahd
would input a new instance every set number ofesyclOn
the other hand, the classifier could be part okwiak that
tests an instance intermittently. In this case, thassifier
would receive a new instance along with a clocknaig
Upon completion of the classification, the cloareil would
cease to be applied, thereby “deactivating” thesifer until
a new instance is ready.

Fig. 1 illustrates our architecture for a linearried SVM
classifier in LNS. In general when an unknownanse is
presented to the classifier, the Register is iigd to b,
from (1), and the Counter is initialized to zefbhe instance
to be classified is stored in the unknown-instamater, and
the support-vector information holds the weighfhus the
Multiply-and-Accumulate (MAC) unit performs as many
operations as there are attributes of the instamxors.
Finally, the SVM classification result is the sighthe value
stored in the Register.

Unknown_Instance_Buf fer

Input

Attribute [Control]

=1

V4
N

Support_Vector_Info
Control

4

wmmmm

VY

‘ Op2 Control

MAC
Resutt 2|

Counter

Op1 Op3

1 Count Value

IS

Inpu
M| Register
S

Qutput

NN

s Instance

INpUT
LoV
| &
Class SUTPUT:

Figure 1. Linear Kernel SVM Classification LNS Architecture

C. Design Smulations and Verification

The design was simulated to ascertain the perforean
Our work in [7] utilized certain machine-learningtdsets to
ascertain the classification accuracy of LNS imp@atations
with varying precisions versus traditional floatipgint
results. We thus compared the results of our fatur-
precision hardware design against the resultsfiflpating-
point software and four-bit precision LNS simulao This
was done for four machine-learning datasets. Tdble
summarizes the results.

As Table | indicates, the LNS hardware realizaieams
to yield results comparable to experimental LNStvearfe
results [7]. The differences have been tracedhedfact that
an exact representation of zero is not availableN8. Thus
results extremely close to or exactly zero may be
misclassified. A study of SVM operations, however,
indicated that this is a rare circumstance.

A statistical analysis of the results was performsithg a
two-samplet-test. Thet-test indicated g-value of 0.9155
when comparing the LNS hardware and FP softwandtses
and ap-value of 0.9528 when comparing LNS hardware and
software results. The-value is also known as the observed
significance level. A simplified explanation ofetp-value
that compares two methods is that the clospvalue is to
1.0, the more similar the two results are. Thusan be
stated with confidence that the differences betwésn
accuracies of the LNS hardware and LNS software
implementations are statistically insignificant.

TABLE 1.

CLASSIFICATION ACCURACY LINEAR KERNEL WITH4-BIT

PRECISION
Dataset LNS LNS Floating
Hardware Software Point

Simulation Software

Diabetes 75.0 78.5 79.2
Votes 93.8 94.3 94.4
Heart Risk 79.2 81.2 81.2
SONAR 83.6 78.2 74.0

statistically has the same performance as software
simulations. Logarithmic Number Systems represmmt
extremely attractive technology for realizing didjihardware
implementations of SVMs and possibly other machine
learning approaches.

B. Future Work

This paper has described the first steps towards
developing robust, kernel-based hardware machiueileg
platforms employing logarithmic arithmetic. These
platforms will serve as foundations for low-poweachine-

The hardware synthesis of the various LNS SVMieaming research, and for porting software sohstido
classifiers indicates a reduced and efficient haréw hardware configurations.

complexity. Table Il indicates the slices out lné {768 used
on a simple Xilinx FPGA, the Spartan3 XC3s50pq208-5 Our
In order to evaluate the complexity of théS-
based operations, Table Il also lists the slicesd ufor

device.

comparison systems using conventional arithmetic.

TABLE Il SLICES USED ON XILINX FPGA DURING SYNTHESIS
Dataset 10-bit LNS 10-bit FX 20-bit FX
Diabetes 218 181 358

\otes 244 245 490
Heart Risk 246 232 455
SONAR 629 638 1244

D. Comparision with Fixed-Point |mplementation

In order to evaluate the efficiency of an LNS-baS&tiM
classifier, it is necessary to compare it againgsiaditional
standard. To that extent, 10- and 20-bit FixechP@tX)
implementations were synthesized, and the resuttingber
of slices are shown in Table Il. The 10-bit FX sien
classifies less accurately than is acceptable asbddwn here
for comparison because the LNS design also use®-hit 1
word size. For example, on the diabetes problam10-bit
FX has an accuracy of only 34.9. According flp #120-bit
FX version offers adequate accuracy, and theréoaemore
realistic benchmark to compare the LNS against. islt
noteworthy that on most datasets, the fully funeioLNS
version takes roughly the same number of slicegshas
inadequate 10-bit FX version. When compared agaiies
more realistic 20-bit FX version, the LNS classHgieare
about one-half the size of the FX classifiers. g B0-bit FX
SONAR dataset is too big to fit
XC3s50pg208-5 device.) Such area savings shoadlate
into equivalent reduction in power consumption.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We have presented a novel digital SVM employing

logarithmic arithmetic. The LNS SVM compares faatay
with the only other work done in digital SVM hardwd1],
and a sample fixed-point implementation. The ham/v_

realization of the LNS SVM Classification module i
efficient in terms of hardware complexity and weide, and

in the Spartan3

future goals include exploring precision
requirements for hardware LNS-based SVM trainingthw/
the singular exception of the (non-LNS) recent wiorkl],

to the best of our knowledge no research into hardw
based training has been accomplished. Our othafsgo
include employing an increased range of possiblaéls,
and expanding LNS hardware architectures to other
machine-learning algorithms.

ACKNOWLEDGMENTS

The authors would like to acknowledge Jie Ruan and
Philip Garcia for their contributions. Co-author Ifgim M.
Pottenger gratefully acknowledges His Lord and &avi
Yeshua the Messiah (Jesus the Christ).

REFERENCES

[1] Davide Anguita, et al., “A Digital Architecture fcSupport Vector
Machines: Theory, Algorithm, and FPGA Implementafiol EEE
Trans. Neural Networks, vol. 14, no. 5, pp. 993-1009, Sept. 2003.

[2] Mark Arnold, et al. "On the Cost Effectiveness obgharithmic
Arithmetic for Back Propagation Training on SIMDoeessors,Tntl.
Conf. Neural Networks, Houston, TX, pp. 933-936, June 9-12, 1997.

[83] Mark Arnold. "Slide Rules for the 21st Century: laosghmic
Arithmetic as a High-speed, Low-cost, Low-power eMftative to
Fixed Point Arithmetic,'Online Seminar Elec. Engr., 2001.

http://ww.techonline.con community/ 20140

[4] Gert Cauwenberghs, Ed.earning on Slicon: Adaptive VLS Neural
Systems. Boston: Kluwer Academic Publishers, 1999.

[5] Roman Genov and Gert Cauwenberghs. "Kerneltropp&t Vector
Machine in Silicon,"IEEE Trans. Neural Networks, vol. 14, no. 5,
pp. 1426-1434, 2003.

[6] Ralf Herbich.Learning Kernel Classifiers: Theory and Algorithms.
Cambridge: The MIT Press, 2002.

[7] Faisal M. Khan, Mark G. Arnold and William M. Pattger. “Finite
Precision Analysis of Support Vector Machine Clisation in
Logarithmic Number Systems,1EEE Euromicro Symp.Digital
System Design (DSD), pp. 254-261, Sept. 2004.

[8] Vladimir Vapnik, The Nature of Statistical Learning Theory, Springer
Verlag, 1995.

[9] V. Paliouras and T. Stouraitis, “Low-power Propestiof the
Logarithmic Number System,Proc. 15" Symp. ARITH, Vail, CO,
pp. 229-236, June 2001.

[10] V. Paliouras, “Optimization of LNS Operations fomBedded Signal
Processing Applications,Proc. ISCAS, Scottsdale, AZ, pp. 744-747,
2002.

