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Abstract- The burgeoning amount of textual data in
distributed sources combined with the obstacles involved
in creating and maintaining central repositories motivates
the need for effective distributed information extraction
and mining techniques. Recently, as the need to mine
patterns across distributed databases has grown,
Distributed Association Rule Mining (D-ARM) algorithms
have been developed. These algorithms, however,
assume that the databases are either horizontally or
vertically distributed. In the special case of databases
populated from information extracted from textual data,
existing D-ARM algorithms cannot discover rules based
on higher-order associations between items in distributed
textual documents that are neither vertically nor
horizontally distributed, but rather a hybrid of the two. In
this article we present D-HOTM, a framework for
Distributed Higher Order Text Mining. Unlike existing
algorithms, D-HOTM requires neither full knowledge of
the global schema nor that the distribution of data be
horizontal or vertical. D-HOTM discovers rules based on
higher-order associations between distributed database
records containing the extracted entities. In this paper,
two approaches to the definition and discovery of higher
order itemsets are presented. The implementation of D-
HOTM is based on the TMI [20] and tested on a cluster at
the National Center for Supercomputing Applications
(NCSA). Results on a real-world dataset from the
Richmond, VA police department demonstrate the
performance and relevance of D-HOTM in law
enforcement and homeland defense.

|. Introduction

With the spread of information technology and sgosat
accumulation of data, data mining is becoming aessary
data analysis tool with a variety of applicatioAsnong the
different approaches to data mining, associatida naining
(ARM), is one of the most popular. ARM generatefesu
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based on item co-occurrence statistics. Co-occoerealso
called f-order association, captures the fact that two orem
items appear in the same context. Orders of aggmtisigher
than f-order are termed higher-order associations. Higher
order association refers to association among ithatscome
from different contexts. The higher-order assoociai are
formed by linking different contexts through commtam(s).
For example, if one customer buys {milk, eggs}, ambther
buys {bread, eggs}, then {milk, bread} is a highmder
association linked through “eggs”.

Higher-order associations are employed in a nunafer
real world applications including law enforcemenhda
homeland defense. For example, methamphetamings tise
number one drug problem in 60% of US counties drildiren
are often the victims due to the social naturehefuse of this
drug — parents often are both abusers, which erdarthe
health of the entire family [32]. The United StatBsug
Enforcement Administration (DEA) has conducted sale
operations to investigate the entire methampheamin
trafficking process. In 2003, the DEA and the Ragahadian
Mounted Police announced the arrests of over 6bviduhls
in ten cities throughout the United States and @ana an
international methamphetamine investigation [26]e Rrrests
were the result of an 18-month international inigedion
using manual higher-order association techniquas lthked
distributed documents through addresses, phone ensmtc.

Figure 1 depicts an example of the discovery ohéig
order associations in methamphetamine traffickiflge three
records are distributed in different databases. uruerscored
named entity in record 1 on site 1 reveals the esfdiof a
broker involved in selling precursor chemicals tmeth lab in
LA. This same address is extracted from record 3ite 2,
linking to a second named entity — the phone numbef a
suspect broker named Jason Carton. This same pluoniger
is extracted from record 3 on site 3, revealing lthk to a
Canadian chemical company that produces pseudoepbged



a precursor chemical used in meth production. Ughmy
address and phone number, Reu Robots, the supgfier
pseudoephedrine, can be linked to Jason Cartohemical
broker, who in turn is linked to the producer in.LAnking
the three records through the address and the phaoméer
results in the rule heth lab=> Reu Robots based on the
higher-order association {meth lab, Jason Cartoru R
Robots}. This is precisely the kind of informatiotmat
investigators need. No existing ARM algorithms aspable
of producing rules of this nature in a distribut/ironment.

Record 1 Record 2 Record 3
.. The meth lab ... Jason Carton, ... Reu Robots,
found in LA, CA drug deal ... ... CEO of Frega,
. The precursor, 245 4" St, Inc, a chemical
chemicals came | »Chicago, IL ... ... company .
from 245 4th Stf cie eer .. ... Calls pseudoephedrine
Chicago, IL ... « on his celb | | o on
...... (905)231-9000 <\\ ... ... (905)231-

29000
Sitel Site2 Site3

Figurel . An Example of Higher-Order Association

To identify rules based on higher-order associationa
distributed environment, another challenge
considered also — data fragmentation. As was mtikéngly
clear in the aftermath of the terrorist attack @pt&mber 11,
different kinds of records on a given individual yrexist in
different databases — a type of data fragmentatiora
distributed environment. In fact, the United Stddepartment
of Homeland Security (DHS) recognizes that theifaltion
of databases and schemas involving fragmented miztes a
challenge to information sharing. As a result, DES is
promoting a “System of Systems” approach that isetla
initially on the creation of standards for intercgglity and
communication in areas where standards are cuyrkaatking
[9]. Indeed, efforts are underway to establish ddads in
schema integration (e.g., OWL [13], GJXDM [18]).
Nonetheless, even should there be widespread atwepbf
such standards, the ability to integrate schem&matically
is still an open research issue [17].

Currently, there are no ARM algorithms capable afiny
distributed higher-order associations. Existing ARM
algorithms for mining distributed data are capadifianining
only data that is either horizontally or verticaftagmented
[11][28][31]. In addition, they assume that dathfma
integration problems have been solved [12]. Abdem@bility
to reason about record linkage, distributed ARMoethms
are incapable of identifying higher-order assooisti
Similarly, existing algorithms capable of mininggher order
associations are incapable of mining distributeth.d&his
paper proposes a novel distributed higher ordeuééxnining
(D-HOTM) framework that (1) provides a theoretibalkis for
higher order itemsets generation and evaluationis(able to

must be

discover propositional rules based on higher-order
associations between records linked by common jt€B)sn

the absence of knowledge of the complete globakrseh
enables mining of distributed data in a hybrid fottmat is
neither horizontally nor vertically fragmented.

The paper is organized as follows: in section 2digeuss
background and related work. In section 3 we presgo
approaches to discover higher order itemsets bawed
different definitions. The D-HOTM framework desigmd
implementation is discussed in section 4. We pitagsults in
section 5, and close with conclusions and futuragkwio
section 6.

1. Related Work

As noted in the Introduction, traditional ARM al@bms
only identify T-order associations, i.e., co-occurrence in the
same context. On the other hand, higher-order &adgmt
occurs between different contexts, linking contetkiough
items such as the value of an attribute in a daw@bBhere are
two types of ARM algorithms that identify certaingher-
order associations: sequential pattern mining angti-m
relational ARM. Sequential pattern mining is a dateing
approach that discovers frequent subsequencegtasgan a
sequence database. The sequential pattern mingagitam
was introduced by Agrawal and others in [1] and [4]later
work Mannila et al. introduce an efficient solutido the
discovery of frequent patterns in a sequence dstaf2b].
Chan et al. [10] study the use of wavelets in tBedes
matching and Faloutsos et al. [16] and Keogh et[2i]
propose indexing methods for fast sequence matagig
R* trees, the Discrete Fourier Transform and thecte
Wavelet Transform. Toroslu et al. introduce thehbem of
mining cyclically repeated patterns [29]. Han etiafroduce
the concept of partial periodic patterns and prepasdata
structure called the Max Subpattern Tree for figdpartial
periodic patterns in a time series [19]. To accomate the
phenomenon that the system behavior may changetiover
a flexible model of asynchronous periodic patteriss
proposed in [34]. In [35], instead of frequentlycarring
periodic patterns, statistically significant patierare mined.
Aref et al. extend Han’s work by introducing algbms for
incremental, online and merge mining of partial igeic
patterns [5]. Bettini et al. propose an algorithendiscover
temporal patterns in time sequences [7].

Multi-relational ARM is a type of ARM algorithm
designed specifically to mine rules across tahtea isingle
database [14]. In fact, multi-relational data m@in general
(not limited to ARM) is an emerging research arbatt
enables the analysis of complex, structured typemata such
as sequences in genome analysis. Similarly, tleeeewiealth
of recent work concerned with enhancing existintaaaining
approaches to employ relational logic. WARMR, faample,
is a multi-relational enhancement of Apriori preseh by



Dehaspe and Raedt [14]. Although WARMR pro-vides a theoretical framework on which to base higher oritlemset

sound theoretical basis for multi-relational ARNM dbes not
seriously address the efficiency of computation.fdat the

discovery. We begin with two different definitioimsorder to
explore the space of higher order itemsets: Idtgiter order

runtime performance of WARMR depends heavily on the itemsets and explicit higher order itemsets. In ftiilowing,

implementation of 6-subsumption, and becaused-
subsumption is NP-complete, performance is poor.
addition, the model sacrifices the perspicuity of
propositional representation. In summary, existingher
order ARM algorithms are neither capable of dealmith
distributed data (particularly in the absence ofwiedge of
the complete schema) nor do they efficiently supp8rand

higher order record linkage.

a

In

we introduce definitions and the approaches basdtiem.

A. Latent Higher Order Itemset Mining (LHOIM)

Latent higher order itemsets are formed by linking
different contexts through common item(s), refertedas
linkage items As in our prior work with Latent Semantic
Indexing [22], we leverage the latent information Higher
order connections, and thus refer to higher ortlamsets as

More recently, as the need to mine patterns acrosdatent.In the following, we will first precisely definaigher

distributed databases has emerged,
algorithms have been developed. Existing distridhuddRM
algorithms are based on a kernel that employs reApeiori
or a similar ARM algorithm based on data-paralfalif3].
Fast Distributed Mining (FDM) is based on counttilisition
[11]. The advantage of FDM over count distributierthat it
reduces the communication cost by sending the foegqlient
candidate itemsets to a polling site instead ofaticasting.
Also based on CD, Ashrafi et al. [6] propose thdi@ized
Distributed Association Mining (ODAM) algorithm wdh
both reduces the size of the average transactidrnrextuces
the number of message exchanges in order to acbietter
performance. Noting that FDM does not scale wellthses
number of sites grow, Schuster and Wolff [28] pregpdhe
Distributed Decision Miner algorithm based on sangpl
techniques. Otey et. al. [27] propose an increnhdregguent
itemset mining algorithm in a distributed enviromhevhich
focuses on efficiently generating itemsets when daéa is
updated.

It is noteworthy that all of the distributed ARMgakithms
we surveyed assume that the databases are holigonta
distributed. This limits the applicability of thesdgorithms.
Thus no existing distributed ARM algorithms are alale of
identifying higher-order associations, while botliséng
distributed and higher-order ARM algorithms are uitable
for use in a distributed environment in which ttemplete
global schema is unknown, data is fragmented inylaridh
non-vertical, non-horizontal form, and errors ocgurecord
linkage. In the following section we introduce tt@ncept of
latent itemsets which capture the higher order @ason
among items. The support calculation for lateningets is
also proposed.

[11. Approach

The first step in higher order association ruleingnis to
discover higher order itemsets. From higher ordemsets,
higher order association rules can be generatedthitm
section, we present two different approaches tadtbeovery
of higher order itemsets. First, however, we musivigde a

distributed ARMorder association and then present our approach to the

generation and evaluation of latent itemsets.

If item a and itemb from different transactions can be
associated acrossdistinct records, then itenasandb aren'™
order associated, denoted

a~"i ~%i,~..~"
i
co-occurrence relation andis termed a linkage item. The
order of a higher-order association is determingd the
number of distinct records. This definition allows each

record to occur at most once in a given transitiv.
Otherwise, cyclical links are possible such

as
", ~™b where ~ represents the

as
a~"1i, ~"i, ~" a,which allows an item to be linked to

itself at any order. This constraint is also neags3o be
consistent with the original ARM framework. For exae,

given a higher-order associati@~" i, ~% i, ~* b, based

on definition 1,a andb are 2% order associated because there
are two distinct records in the link. This confidhowever
with the fact thata and b actually are T-order associated
since they both come from. And higher-order links with
repeated records can always be shortened intoheetagder
link per definition 1.

Latent itemsetare itemsets in which item pairs may be
associated by orders of one or higher. For examiple,
itemset abk formed from the higher order link

a~"b~7c~..~" f ~"k, is latent higher order
associated:ab is 1%order associatedpk is n-1"-order
associated, andik is n™-order associated. Due to these
associationsabkis a latent itemset.

Considering that for a given link
a~"b~7c~..~" f ~" k, many other higher order
links share the same record sequence. The numbsuobf

n-1
links is I_J (I, N1, ]). The latent itemsets generated from
1=

higher order

all these links actually are the same as the ssilggmierated
from the union of the records. Thus, instead ofidgawith a
bunch of higher order links, we choose to use #eond
sequence, referred lisk group to accomplish the same goal.



A link groupis a group of higher order links between
records which have the same record sequence. Sitoila
Definition 1, we define the higher order links beem records

rpandr, as: r~*r,~% _.r_ ~*r,, whereg is a
linkage item. And the link group is written as
I I I -
n~tr~7..ry~"r wherel, =r,nr, . To
simplify this notation, henceforth, we use

rn~r,~...r_4 ~r, torepresent a link group. Clearly, the

latent itemsets generated from the higher ordek lin
a~"b~%c~..

from the link groug; ~ T,

~Mm1 f <™ Kk could also be discovered

~...I_, ~ I,. Thesizeof a link

group is defined as the product of the sizek.dfor example,
given a &-order link group k

To generate the context of latent itemsets in ndups,
each record could be mapped to a node, and edggsenh#o
common shared items, then the problem of findirigliak
groups reduces to finding all simple paths betwésn
vertices in a graph. Finding simple paths betwaenwertices
is solved using a backtracking technique. The tatemsets
are then generated from the merged records ofrtkegtoups.

Suppose latent itemse&t is generated from link group

with size s. Based on a

straightforward application of Apriori, the suppoftA would
be the frequency of occurrence in the link group, . This
approach presents two challenges: it results iry varge
support values, and it ignores the effect of thdeor To
address these issues, in what follows a metricdsgnted to
calculate support for latent itemsets which levesagoth the
size of the link group and the order.

Let L(A) be the set of link groups which contain the latent
itemsetA. We define thesupportof a latent itemseA as:

log,,(I.size+1)
|.order

~r,~. 0l ~T,

IOL(A)
1)
The idea behind thiglobal support is simply to account
for both the number of higher order links suppaytangiven
latent itemset as well as the order of the itemast.order
grows, intuition suggests that support ought tarelese — thus
the denominatotk.order. This reflects the assumption that the
longer the link between records, the weaker thenset
association. In contrast, intuition also suggelsés the more
link groups that contain a given itemset, the gissnthe
support should be. These two intuitions are jusit th
certainly, extensive experimentation is requiredaszertain
the utility of this definition of support. Nonetlesls, our
preliminary results are quite encouragiBgror! Reference

these factors are equally important. Thus, in otdeonstrain
l.sizeto grow linearly with order, the lggis taken. Also, one

is added td.sizein the numerator to ensure that the argument

to logyg is non-zero.
Based on the framework discussed above, an algotith
discover latent itemsets in presented in what ¥edlo

Latent Itemset Mining

Input: D, L, max_order, minsup
Output: latent itemsets

1. Form adjacency list

2. Generate connected sub-graphs
3.for each G
Enumpath(Gmax_ordey

. for eachn™order linkgroupg: r~r~..r

na T

r=0r;;r.order = n; r.size = Ig.size
addr to R

. Ly = {supported 1-itemsets};

. for ( k=2; L.1!=null; k++)

10. Cy = apriori-gen(k.1);

11. for eachr do

cENe o p

12. C, = subset(¢ 1)

13. for all candidates[dC;

14. c.count+=log10(sizetr1)/r.order
15. L, = { cOC | c.sup= minsup }

16. Result =L
Figure2: Latent Itemset Mining Algorithm

The first step is to form an undirected graph fitbm input
records based on the user’'s choice of entitiess ghaph is
then split into disjoint subgraphs, which is inpatEnumpath
in step 4. Enumpath employs the algorithm in [20find all
simple paths (i.e., link groups) between two vesdicThe
worst case time complexity of this stepO(V || E |) for a
given path where V is the set of vertices and Eetiiges in G.
Steps 5 to step 7 in Figure 2 generate merged dedoom
each link group. Steps 8 to 16 discover the fretjleent
itemsets. The latent itemsets which meet the suppshold
become the frequent latent k-itemsets used to genehe
latent k+1-itemsets. Except for the support catiote this
level-wise process is similar to that of Apriori.

B. Explicit Higher Order Itemset Mining

Latent itemsets implicitly include itemsets different
orders. Explicit itemsets, on the other hand, na&intlear
boundaries between itemsets of different ordersnAorder
explicit higher order itemset is an itemset for etheach pair
of items isn"™-order associated. For examplealicis a 3
order itemset, then there must exist at least tBf&erder

associations between a and b, b and ¢ and a and c

respectively. The context of explicit k-itemsetsiefined as a
k-recordset where there exists at least dhender link group
between each record pair. Thus, dhonder explicit higher

source not found.. The challenge arises when one considers order itemset,i,...supported by an'horder recordseatyr,...r,

the exponential growth of the link groups’ sizesegi that
order grows linearly. Again, intuition suggeststtimth of

contains no two items from the same record.



Similar to link groups, the size of a recordsetatculated
by taking the product of the sizes of each linkugrolt is
important to note that a given recordset might mamosed of
different link groups. This may occur fol'torder recordsets
when n is greater than two. In this case, givemsjances of
n"-order k-recordset rs, its size is defined as:

i k(k-1)/2

sizg ,(rs) = > ( l_l g, .siz8
u=l  v= . Given the sizes for all

recordsets, the support of a k-itemset is defirseth @quation
(2) below as:

maxzorder log,, /Y _size | (rs) +1

= t

sup (is) =

This metric is similar to Equation 1 — the globapport is
calculated by adding the local support at eachl.|&ue local
support is also designed based on the intuitiontteasize of
the recordsets should be of same importance asrtiez. To
constrain sizg(rs) to grow linearly with order, first the
square root ofsizg (rs) is taken and then the lgg The
square root accounts for the é(growth of number of edges
in a recordset as order grows; the jjpgccounts for the
exponential growth o§izg (rs). As before, one is added to
sizg . (rs) in the numerator to ensure that the argumeradg |
iS non-zero.

Based on the framework discussed above, an algotith
discover explicit higher order itemsets is presgieFigure 3.
EHOIM is structured in an order-first level-wise mnar.
Level-wise means that the size of k-itemsets irsrean each
iteration (as is the case for Apriori), while ordiest means
that at each level, itemsets are generated aclazslars. The
EHOIM algorithm is presented in Figure 3. In adtfitito the
notation used in LHOIM, EHOIM useR& to represent the

set ofk-recordsets. Each member has three fields: redprdse

order and sizeRS§, i is used for the set of "rorder k-

recordsets; each member has two fields: recordsgtsaze.

7. RE(rs, rs.order).size +¥s.size
8. else Rgrs,order)=size

9. For (k= 3; Rg#@ k++)

10. For ( n = 2; n maxorder n++)

11. R$_k: Gen_RS(R,S_k_l);
12. For each recordseIRS,
13. Enum_IS§, n);

14. For each itemset is wheiggk

max_order

18, 1S(9)-sup="5"0q fi5 " (is).supri/u

t=2
16. Answer=Answeéi{is|IS.(is).sup>mminsup

Figure 3: EHOIM Algorithm

The first three steps of EHOIM are the same as LW OI
the generation of link groups. For each link gragtpps 5-8 in
Figure 3 generate the corresponding 2-recordsalsulating
the size at a given order and storing iRi8. Steps 9 through
16 comprise one outer and two inner loops. TherdotEp
proceeds in a level-wise manner and keeps tratkeokizes
of recordsets. Although the (k+1)-recordsets amegged in
an Apriori-like fashion based on k-recordsets frahe
previous iteration, no pruning is performed for aetsets.
Step 11 generates th&-arder k-recordsets based on tife
order (k-1)-recordsets using Apriori's candidateneyation
ability. The size of the recordset is calculateddd on the
equation forsize,(rs) above. For each™-order k-recordset
generated, step 13 enumerates all possiblerder k-itemsets
from the recordset. Steps 14 and 15 calculate tbhbab
support for a single k-itemset across orders frovo to
maxorder based on the support in Equation 2. Ifglodal
support meets the threshold, the k-itemset is atmide final
output in step 16.

VI.D-HOTM Framework

In this section, we outline the Distributed Higherder

Similarly, we uselS, for the set of k-itemsets where each Text Mining framework, which discovers rules based

member has the global support of the corresponitiémyset.
IS, « is used for the set of "order k-itemsets, where each
itemset has its own local support.

Explicit Higher Order Itemset Mining
Input: D, L, maxorder minsup
Output: higher-order itemsets

1. Form Adjacency List

2. For each pair of vertices,y) in G

3. Enumpatl, x, y, maxordej

4. For each nth-order association gréup

R~r~rhy=r,

n-1

5. rs=(ry,r1,), IS.Size= |_| ()
1=i

rs.order =n,
6. if RS(rs, rs.order) is valid

higher order itemsets of entities extracted fromtual data.
The D-HOTM system is composed of entity extractanmd
association rule mining phases. More detail i2#] [

The entity extraction phase of D-HOTM is based 88] [
The technique employed by these authors, termed RRE
Discovery, discovers reduced regular expressionause in
information extraction. The algorithm discovers wengces of
words and/or part-of-speech tags that, for a geuetity, have
high frequency in the labeled instances of theningi data
(true set) and low frequency in the unlabeled imsta (false
set). The algorithm first ascertains the most festdly
appearing element of a reduced regular expresgRiRE)
which is called theroot of the RRE. It then broadens the
scope of the RRE in ‘AND’, ‘GAP’, and ‘Start/Endearning
phases. (See figure 3 in [33].)



After applying
unstructured textual data, the items (i.e., emsijtiextracted
populate databases local to each site that inltecome input
to our distributed latent itemsets mining algoritHeach row
in a given local database represents an objecthaisi for
example a particular individual mentioned in aneistigative
report. In addition to the items identifying thejedt such as a

person’s name or social security number, each rise a

contains other items known to exist in the sourmeudhent. It
is clear that this distributed data is not horizadigt
fragmented because there is no guarantee that siterwill

include the same set of items. On the other haredata is
not vertically fragmented either, because theradsone-to-
one mapping connecting records in the distributethlohses.
In addition, the (local) ‘schema’ for each indivadldocument
varies, and no clean division of all objects’ iterimgo

identical sets can be made as required for veltical

fragmented data. As a result, the distributed dataeither
vertically nor horizontally fragmented, but is peasin a form
we term ahybrid fragmentation

The D-HOTM framework provides different options fo

sharing records between databases in
environment. The first is the traditional approa&chvhich all
records are fully shared and the same model i$ bnileach
site. In this approach, the final model at a ginede is based
on both local and remote data. Alternatively, ogiveen node
D-HOTM can use remote data for higher order linkegation,
but filters remote records when generating itemsétss
enables a better local model to be built while eesipg data
privacy concerns. Finally, different sites can ukfferent
linkage items, again resulting in different locadaels.

The D-HOTM system is based on the Text Mining

Infrastructure (TMI) developed by the authors [2Dtiginally
designed for single-processor applications, inritsst recent
release (version 1.3), the TMI now includes support
mining in parallel or distributed environments bhsen
OpenMP or MPI.

V. Experimental Results and Evaluation

the entity extraction algorithm to

executed D-HOTM on the first half of the data irder to
predict name-crime pairs that would emerge &®rtler 2-
itemsets in the following three year period. Diffiet linkage
items were used in order to explore the qualitydiffierent
models. This is because using more linkage itenmengdly
results in a better model. Figure 4 depicts theailtesof
executing D-HOTM on four of the largest neighbortiean
the Richmond, VA area: Church Hills North, Gilpideff
David and Shockoe Bottom. For each neighborhood
conducted six experiments, four global and two amw
preserving. As noted, the experiments involved uke of
different linkage items. In addition, all experinerwere
based on the use of associations up"torier.

The first experiment, HV, usedome addresand vehicle
ID as the linkage items. Following this, HVI addégcument

we

ID (some records have the same document ID). HVO added

occupation as did HVOI. Several trends can be seen
Figure 4. First, it is clear that D-HOTM correciyedicted
increasing numbers of name-crime pairs as moradjaktems
were used. This can be seen by comparing the enpets
that used two linkage items such as HV vs. thosg¢ tised

a distributednore (such as HVI). This result is not surprisingl & fact is

expected. A second important trend revealed inrgidus the
increase in recall of name-crime pairs as ordenemges. This
trend is exhibited almost without exception regesdl of the
linkage items chosen. For example, all four neighbods

in

showed an increase ovet-arder performance for HVO and

HVOI, in many cases showing improvement right tiglod"-
order. This is a very significant result as it destoates
conclusive evidence for the value of higher ordesoaiation
rule mining. Figure 4 also depicts the resultsdgperiments
D-HV and D-HVI in which the models were constructey
leveraging remote data during higher order recimichbe, but
only local data was used to generate rules. Incthée too the
results reveal a trend of increasing performanceor@er
increases. Although the evidence is not as stratith, for
three of the four neighborhoods, the trend is clé&us for
two different approaches to constructing model® privacy
preserving, higher order record linkage improvesgomance

The D-HOTM system and algorithms were evaluated on ©f name-crime pair prediction.

two real-world data sets, one from a Richmond, #liqe

department database and one from an online e-corersée,
Gazelle.com. The Richmond, VA dataset currentlgtains
over two hundred thousand records, each with ab@dields.

We broke the dataset into geographic neighborhdods
analysis,
neighborhood. In particular, we split each neighiood into
two parts, one containing records of crimes conaigbrior
to 2003 and the other containing crimes from 20@4ugh
2006. We created a ground truth by applying thedsted (£

order) association rule mining algorithm Apriori tiee three
year portion after 2003, and obtained name-crinigeriset
pairs. Following this, for each neighborhood testede

and executed D-HOTM on subsets of each
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In a second set of experiments with explicit higbeder
itemset mining (EHOIM), we employed a real-worldtaket
from the KDD Cup 2000 (Kohavi et al., 2000) competi.
The data is e-commerce transactions from Gazeite.cp
now-defunct website for selling socks, pantyhode, €This
dataset is of particular interest to us becaudea@ proven
difficult to model in prior work published on KDDup 2000.
This may be due, for example, to the sparse natfiréne
transaction data.

In total, there are 530 transactions involving M4oducts
in the dataset. Of these, we randomly selectexlfe’0, 75,
100, and 200 transactions as well as using the 580
transaction dataset. In order to evaluate the BHOI
algorithm, we compared the itemsets generated b@IEH
with two other algorithms: Apriori ftorder) and Indirect
(2"-order) (Tan et al., 2002). The EHOIM algorithm was
limited to 6" order.

Three different evaluation methods were employed to
demonstrate the utility of higher order associatiorfirst, in
order to demonstrate the intrinsic value of higbeter
itemsets, we conducted experiments that show thHDIM
discovers support for itemsets in small dataseds ith only
discoverable by Indirect or Apriori with larger daéts. In
other words, we demonstrate the ability of EHOIMntore
accurately calculate support for known good itesisgecond,
we demonstrate EHOIM's ability to discover novenitsets,
undiscovered by either Indirect or Apriori. Thesevel
itemsets are either examples of associations teatiEique to
higher-orders or are examples of relationships betw
categories of products on Gazelle.com that are uanitp
higher orders. We explore these relationships ugiraditative
anecdotal evidence that illustrates the usefulneksthe
approach.

As revealed in Figure 5, results based on multiptes of
randomized data consistently demonstrated that &igiport
itemsets could be discovered by EHOIM using smaller
datasets than required by Apriori or Indirect tscdiver the
same itemsets. Because our algorithm leverageisicauid,
latent information, it can provide more accurateppsrt
calculations. We first ran Apriori on the entiret s 530
records, and discovered 40 itemsets with suppogetathan
two while 145 itemsets had support larger than drieese
itemsets act as our ground truth datadet each data series,
we randomly selected 50 records as the first tet then
added randomly selected records to bring the tot&b, and
so on for the 100 and 200 record sets. Then, th@A@nd
EHOIM algorithms were applied on each dataset iEspdy.
To compare the higher order itemsets generatedHi9IH
with the ground truth itemsets discovered by Apriave
chose the top-N itemsets ranked in order of supipom high

1 Although these values of support are extremely twy are in fact
the highest support itemsets in the Gazelle.cormseat

support to low support. In the generated higheepi@msets,
for example, we selected about 45 itemsets to coenpé&h
the top 45 itemsets in the ground truth. This paldr number
was selected to include all itemsets with the s&eguency
as the 48 itemset in the ground truth. The same method was
applied when comparing EHOIM’s results with the tbb
itemsets of the ground truth. The recall compassaine
portrayed in Figure 5 for orders up to six. Frorasih recall
charts, we draw the following conclusion: for masimple
datasets (sizes 50 to 200), higher order (espgc®lland
higher) results in higher top-N recall of highlyaked -
order itemsets than thé“brder Apriori algorithm. This is a
significant result in that it supports our thesiatthigher order
associations reveal not only novel relationshipg blso
discover useful knowledge in smaller datasets temuired
by 1°-order methods.
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Figure 5: Recall Charts on Gazelle.com Data

d) Serie E: Top 145 ~ Top 145

For comparison purposes we also applied LHOIM on
Gazelle.com data and achieved similar results ler 200
record dataset, but little to any benefit in thealien sets.
Interestingly, the Gazelle.com experiments reviealdifferent
characteristics of LHOIM and EHOIM. Clearly, EHOIM
discovers more hidden associations than LHOIM.
particular, EHOIM discovers latent information wittsmaller
datasets that LHOIM misses. On the other hand,tithe
complexity of the LHOIM algorithm is significantligss than
that of EHOIM.

In

V1. Conclusions and Future Work
We have embarked on an ambitious program of relsearc
and development that addresses significant chadkeng
distributed data management faced by organizatsoich as
law enforcement agencies and healthcare provitféeshave
identified critical assumptions made in existings@sation
rule mining algorithms that prevent them from suglito
complex distributed environments in which the costgpl
global schema is unknown, data is fragmented irylarith
non-vertical, non-horizontal form, and errors octurecord
linkage. We developed a theoretical framework thefines
higher order itemsets and their corresponding ctsiten
addition, the traditional definition of support wastended
and two algorithms were developed correspondinght®



definitions of support. We also designed, impleradnand
tested a distributed higher order association mmli@ing
framework, D-HOTM, which discovers propositionallas
based on higher-order associations in a distributed
environment. [7].

In our future work we plan to address both theoattand
practical issues in areas such as the utility ghéi-order
associations as well as record linkage, evaluatietrics and
issues in efficiency of execution. Second, our euotr
framework for reasoning about record linkage netdde
expanded in several ways. Third, metrics are needed
provide a measure of the strength or importanchigiier-
order links and link clusters. Finally, since bddlse positive
and false negative mismatches are possible in ith@ade
item/object ID mapping process in D-HOTM, additibna
theoretical work is needed to develop suitable icetfor
evaluating the utility of the resulting rules.
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